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Motivation

Multi-core processors everywhere but parallel programming is hard.

Our approach: Provide parallel libraries of algorithms and data
structures.

Multi-Core Standard Template Library(MCSTL) [SSP07]:
Parallel implementation of the C++ STL
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(MC)STL

Standard Template Library (STL):
Algorithmic core of the C++ Standard Library.

Components:

Containers: list, vector, map...

→ This talk

Iterators: high-level pointers

Algorithms: sort, merge, find...

→ Friday [SSP07]

Parallel implementation?
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STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
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STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

int main(){
    vector<int> V;
    read_and_sort(V); 
    
    set<int> S(V.begin() + V.size()/2, V.end());

    int key, x;
    cin >> key;
    while (cin >> x) S.insert(x);

    for(typename set<int>::iterator it = S.find(key); it != S.end(); ++it) 
cout << *it << endl;

}
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Bulk construction:
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STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

int main(){
    vector<int> V;
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    int key, x;
    cin >> key;
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cout << *it << endl;

}

Bulk insertion:
min(O(k+n), O(klog n))

--if sorted input--

Search-based operations:
  O(log n)

Scan in sorted order:
  amortized O(1)

Bulk construction:
  (k) 

--if sorted input--
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Implementation of STL Dictionaries

Balanced Binary Search Trees (red-black trees)
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Previous Work

PRAM Parallel Red-Black Tree Algorithms [PP01].

STAPL library [AJR+01]:

No implementation available

Aiming for distributed-memory systems

Rigid partitioning of the tree
(in worst case, work by one thread)

Our implementation: On the top of libstdc++ (GCC 4.2.0).

Sequential data structure unaffected

No rigid partitioning, but per operation
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Relation between Bulk Construction and Insertion
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Algorithms: Common Steps

Setup
Output: sorted sequence divided into p pieces

Allocation + initialization of tree nodes in parallel
Output: Array of (unlinked) nodes
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Construction
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Threads are fully independent.
Similarities with theory [PP01].

Parallel time: Θ(k/p).



Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Construction

52

5

9

17

22

31

40

47

64

77

96

58

Threads are fully independent.
Similarities with theory [PP01].
Parallel time: Θ(k/p).



Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Work Pieces

1 Pivots ∈ input sequence → split the tree

2 Pivots ∈ tree → divide the sequence
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Insertion: Step 1

Split into p subtrees (p number of threads).
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Sequential time: O(p log n)
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Insertion: Step 2

Process insertion tasks in parallel.
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Insertion: Step 3

Process concatenation tasks in parallel.
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Parallel time of doing all concatenations: O(log p log n)
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Dynamic Load-Balancing: Motivation

The tree size of insertion problems may be very different.

5

9

17

40

47

52

58

64

77

96

3  15  20 

22

35  58  70    83  91

75

31

75

This could degrade performance!
Use dynamic load-balancing to process them instead.
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Dynamic Load-Balancing: Approach

Division of insertion tasks into smaller ones.

Creation of concatenation tasks to reestablish the tree.
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Memory Management

Memory allocation takes a considerable share of the time.

C++ does not allow asymmetric allocation/deallocation, i. e.
allocate several nodes at once, and then, deallocate one by one.

Parallelization?
Allocation + initialization scales quite well.

Hoard allocator [BMBW00] used successfully on the Sun machine,
but not in the 64-bit Intel Platform.
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Environment

1 Sun T1

1 socket, 8 cores, 1.0 GHz, 32 threads
3 MB shared L2 cache
GCC 4.2.0

2 Intel Xeon E5345

2 sockets, 2 × 4 cores, 2.33 GHz
2 × 2 × 4 MB L2 cache, shared among two cores each
Intel C++ compiler 10.0.25

Compiler/linker options:
-O3, OpenMP support, libstdc++ (GCC 4.2.0).
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Parameters

Sequence

Presorted, otherwise unfair

32-bit signed integers elements

Randomness: {RAND MIN . . . RAND MAX} (default),
{RAND MIN/100 . . . RAND MAX/100} (limited range).

Initial tree for insertion tests: built by sequential algorithm

Algorithm variants:

Dynamic load-balancing: activated (default), deactivated

Initial tree splitting: activated (default), deactivated
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Construction on the T1

 0

 2

 4

 6

 8

 10

 12

100 1000 10000 100000 106 107

Sp
ee

du
p

Number of inserted elements (k)

32 th
16 th

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq



Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion, n = 0.1k , Xeon
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Insertion, n = 10k , Xeon
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Effect of Algorithm Variants

Initial tree splitting:

crucial for good performance

Dynamic-load balancing:

Robustness

Improves performance for big input sizes

No damage for small input sizes
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Effect of Core Mapping (Construction)
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Conclusions

Bulk construction and insertion can be effectively parallelized.
On the top of the sequential libstdc++ implementation. This
remains unaffected.

Code for the four STL associative containers is now released with
the MCSTL [Sin06].
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Future directions

Lazy update: split sequences of library calls into homogeneous
subsequences of maximal length.
Could be offered transparently by the library.

Better library support for memory allocation:

Asymmetric usage

Perfectly scalable parallel allocation
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Future Work: Algorithms and Data Structures

Other tree operations to parallelize

Bulk deletion of elements using remove if

set difference for dictionaries

Other data structures

Search tree storing subtree sizes: allows perfect tree size
partitioning in logarithmic time

What is the effect on performance?

Priority queues: lazy parallel data structure update
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Further Performance Evaluation

Detailed evaluation of hardware counters: cache misses, branches,
limitation by (random-access) memory bandwidth
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