
Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Parallelization of Bulk Operations for STL
Dictionaries

Leonor Frias 1 Johannes Singler 2

1Dep. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

2Institut für Theoretische Informatik, Universität Karlsruhe

HPPC Workshop
28/08/2007

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Outline

1 Introduction

2 Previous work

3 Algorithms
Bulk Construction
Bulk Insertion
Dynamic Load-Balancing

4 Implementation Aspects

5 Experiments

6 Conclusions and Future Work

7 References

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Motivation

Multi-core processors everywhere but parallel programming is hard.

Our approach: Provide parallel libraries of algorithms and data
structures.

Multi-Core Standard Template Library(MCSTL) [SSP07]:
Parallel implementation of the C++ STL

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Motivation

Multi-core processors everywhere but parallel programming is hard.

Our approach: Provide parallel libraries of algorithms and data
structures.

Multi-Core Standard Template Library(MCSTL) [SSP07]:
Parallel implementation of the C++ STL

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

(MC)STL

Standard Template Library (STL):
Algorithmic core of the C++ Standard Library.

Components:

Containers: list, vector, map...

→ This talk

Iterators: high-level pointers

Algorithms: sort, merge, find...

→ Friday [SSP07]

Parallel implementation?

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

(MC)STL

Standard Template Library (STL):
Algorithmic core of the C++ Standard Library.

Components:

Containers: list, vector, map...

→ This talk

Iterators: high-level pointers

Algorithms: sort, merge, find...

→ Friday [SSP07]

Parallel implementation?

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

(MC)STL

Standard Template Library (STL):
Algorithmic core of the C++ Standard Library.

Components:

Containers: list, vector, map...

→ This talk

Iterators: high-level pointers

Algorithms: sort, merge, find... → Friday [SSP07]

Parallel implementation?

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

(MC)STL

Standard Template Library (STL):
Algorithmic core of the C++ Standard Library.

Components:

Containers: list, vector, map... → This talk

Iterators: high-level pointers

Algorithms: sort, merge, find... → Friday [SSP07]

Parallel implementation?

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

int main(){
 vector<int> V;
 read_and_sort(V);

 set<int> S(V.begin() + V.size()/2, V.end());

 int key, x;
 cin >> key;
 while (cin >> x) S.insert(x);

 for(typename set<int>::iterator it = S.find(key); it != S.end(); ++it)
cout << *it << endl;

}

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

int main(){
 vector<int> V;
 read_and_sort(V);

 set<int> S(V.begin() + V.size()/2, V.end());

 int key, x;
 cin >> key;
 while (cin >> x) S.insert(x);

 for(typename set<int>::iterator it = S.find(key); it != S.end(); ++it)
cout << *it << endl;

}

Bulk insertion:
min(O(k+n), O(klog n))

--if sorted input--

Bulk construction:
 (k)

--if sorted input--

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

int main(){
 vector<int> V;
 read_and_sort(V);

 set<int> S(V.begin() + V.size()/2, V.end());

 int key, x;
 cin >> key;
 while (cin >> x) S.insert(x);

 for(typename set<int>::iterator it = S.find(key); it != S.end(); ++it)
cout << *it << endl;

}

Bulk insertion:
min(O(k+n), O(klog n))

--if sorted input--

Search-based operations:
 O(log n)

Bulk construction:
 (k)

--if sorted input--

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

STL Dictionaries

set, multiset, map, multimap.

Operations: Given |dictionary | =n, |input| =k
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

int main(){
 vector<int> V;
 read_and_sort(V);

 set<int> S(V.begin() + V.size()/2, V.end());

 int key, x;
 cin >> key;
 while (cin >> x) S.insert(x);

 for(typename set<int>::iterator it = S.find(key); it != S.end(); ++it)
cout << *it << endl;

}

Bulk insertion:
min(O(k+n), O(klog n))

--if sorted input--

Search-based operations:
 O(log n)

Scan in sorted order:
 amortized O(1)

Bulk construction:
 (k)

--if sorted input--

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Implementation of STL Dictionaries

Balanced Binary Search Trees (red-black trees)

5

9

17

22

31

40

47

52

58

64

77

96

Parallelization? Bulk operations: construction and insertion

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Implementation of STL Dictionaries

Balanced Binary Search Trees (red-black trees)

5

9

17

22

31

40

47

52

58

64

77

96
Parallelization?

Bulk operations: construction and insertion

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Implementation of STL Dictionaries

Balanced Binary Search Trees (red-black trees)

5

9

17

22

31

40

47

52

58

64

77

96
Parallelization? Bulk operations: construction and insertion

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Previous Work

PRAM Parallel Red-Black Tree Algorithms [PP01].

STAPL library [AJR+01]:

No implementation available

Aiming for distributed-memory systems

Rigid partitioning of the tree
(in worst case, work by one thread)

Our implementation: On the top of libstdc++ (GCC 4.2.0).

Sequential data structure unaffected

No rigid partitioning, but per operation

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Previous Work

PRAM Parallel Red-Black Tree Algorithms [PP01].

STAPL library [AJR+01]:

No implementation available

Aiming for distributed-memory systems

Rigid partitioning of the tree
(in worst case, work by one thread)

Our implementation: On the top of libstdc++ (GCC 4.2.0).

Sequential data structure unaffected

No rigid partitioning, but per operation

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Relation between Bulk Construction and Insertion

bulk_insertion()

bu
lk
_c
on
st
ru
ct
io
n(
)

bu
lk
_c
on
st
ru
ct
io
n(
) bulk_construction()

bulk_construction()

bulk_construction()

RB tree

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Algorithms: Common Steps

Setup
Output: sorted sequence divided into p pieces

Allocation + initialization of tree nodes in parallel
Output: Array of (unlinked) nodes

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Construction

52

5

9

17

22

31

40

47

64

77

96

58

Threads are fully independent.
Similarities with theory [PP01].

Parallel time: Θ(k/p).

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Construction

52

5

9

17

22

31

40

47

64

77

96

58

Threads are fully independent.
Similarities with theory [PP01].
Parallel time: Θ(k/p).

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Work Pieces

1 Pivots ∈ input sequence → split the tree

2 Pivots ∈ tree → divide the sequence

5

9

17

22

31

40

47

52

58

64

77

96

3 15 20 35 58 70 75 83 91

77

96

75 83 91

Taking subtree
root key as pivot
No guarantee on
the length

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Work Pieces

1 Pivots ∈ input sequence → split the tree

2 Pivots ∈ tree → divide the sequence

5

9

17

22

31

40

47

52

58

64

77

96

3 15 20 35 58 70 75 83 91-∞ ∞

From a perfect division of the sequence

77

96

75 83 91

Taking subtree
root key as pivot
No guarantee on
the length

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Work Pieces

1 Pivots ∈ input sequence → split the tree

2 Pivots ∈ tree → divide the sequence

5

9

17

22

31

40

47

52

58

64

77

96

3 15 20 35 58 70 75 83 91-∞ ∞

From a perfect division of the sequence

77

96

75 83 91

Taking subtree
root key as pivot
No guarantee on
the length

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 1

Split into p subtrees (p number of threads).

5

9

17

22

31

40

47

52

58

64

77

96

3 15 20 35 58 70 75 83 91-∞ ∞

Sequential time: O(p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 1

Split into p subtrees (p number of threads).

5

9

17

40

47

52

58

64

77

96

3 15 20

22

35 58 70 83 91

75

31

75

p insertion tasks

p
-

1
co

nc
at

en
at

io
n

ta
sk

s
Sequential time: O(p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 2

Process insertion tasks in parallel.

5

9

17

40

47

52

58

64

77

96

3 15 20

22

35 58 70 83 91

75

31

75

Parallel time:
O(k/p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 2

Process insertion tasks in parallel.

5

9

17

22

35

40

47

52

58

64

7015 20

3

77

96

91

83

31
75

Parallel time: O(k/p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 3

Process concatenation tasks in parallel.

5

9

17

22

35

40

47

52

58

64

7015 20

3

77

96

91

83

31
75

Sequential time of one concatenation: O(log n1/n2)
Parallel time of doing all concatenations: O(log p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 3

Process concatenation tasks in parallel.

5

9

17

22

35

40

47

52

58

64

7015 20

3

77

96

91

83

31
75

Sequential time of one concatenation: O(log n1/n2)
Parallel time of doing all concatenations: O(log p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion: Step 3

Process concatenation tasks in parallel.

5

9

17

22

35

40

47

52

58

64

7015 20

3

77

96

91

83

75

31

Sequential time of one concatenation: O(log n1/n2)
Parallel time of doing all concatenations: O(log p log n)

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Dynamic Load-Balancing: Motivation

The tree size of insertion problems may be very different.

5

9

17

40

47

52

58

64

77

96

3 15 20

22

35 58 70 83 91

75

31

75

This could degrade performance!
Use dynamic load-balancing to process them instead.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Dynamic Load-Balancing: Motivation

The tree size of insertion problems may be very different.

5

9

17

40

47

52

58

64

77

96

3 15 20

22

35 58 70 83 91

75

31

75

This could degrade performance!

Use dynamic load-balancing to process them instead.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Dynamic Load-Balancing: Motivation

The tree size of insertion problems may be very different.

5

9

17

40

47

52

58

64

77

96

3 15 20

22

35 58 70 83 91

75

31

75

This could degrade performance!
Use dynamic load-balancing to process them instead.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Dynamic Load-Balancing: Approach

Division of insertion tasks into smaller ones.

Creation of concatenation tasks to reestablish the tree.

40

47

52

58

64

35 58 70

Use (MCSTL) work-stealing queue

.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Dynamic Load-Balancing: Approach

Division of insertion tasks into smaller ones.
Creation of concatenation tasks to reestablish the tree.

40

47 58

64

35 58 70

52

40

47

52

58

64

35 58 70

Use (MCSTL) work-stealing queue

.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Dynamic Load-Balancing: Approach

Division of insertion tasks into smaller ones.
Creation of concatenation tasks to reestablish the tree.

40

47 58

64

35 58 70

52

40

47

52

58

64

35 58 70

Use (MCSTL) work-stealing queue.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Memory Management

Memory allocation takes a considerable share of the time.

C++ does not allow asymmetric allocation/deallocation, i. e.
allocate several nodes at once, and then, deallocate one by one.

Parallelization?
Allocation + initialization scales quite well.

Hoard allocator [BMBW00] used successfully on the Sun machine,
but not in the 64-bit Intel Platform.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Memory Management

Memory allocation takes a considerable share of the time.

C++ does not allow asymmetric allocation/deallocation, i. e.
allocate several nodes at once, and then, deallocate one by one.

Parallelization?

Allocation + initialization scales quite well.

Hoard allocator [BMBW00] used successfully on the Sun machine,
but not in the 64-bit Intel Platform.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Memory Management

Memory allocation takes a considerable share of the time.

C++ does not allow asymmetric allocation/deallocation, i. e.
allocate several nodes at once, and then, deallocate one by one.

Parallelization?
Allocation + initialization scales quite well.

Hoard allocator [BMBW00] used successfully on the Sun machine,
but not in the 64-bit Intel Platform.

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Environment

1 Sun T1

1 socket, 8 cores, 1.0 GHz, 32 threads
3 MB shared L2 cache
GCC 4.2.0

2 Intel Xeon E5345

2 sockets, 2 × 4 cores, 2.33 GHz
2 × 2 × 4 MB L2 cache, shared among two cores each
Intel C++ compiler 10.0.25

Compiler/linker options:
-O3, OpenMP support, libstdc++ (GCC 4.2.0).

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Parameters

Sequence

Presorted, otherwise unfair

32-bit signed integers elements

Randomness: {RAND MIN . . . RAND MAX} (default),
{RAND MIN/100 . . . RAND MAX/100} (limited range).

Initial tree for insertion tests: built by sequential algorithm

Algorithm variants:

Dynamic load-balancing: activated (default), deactivated

Initial tree splitting: activated (default), deactivated

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Parameters

Sequence

Presorted, otherwise unfair

32-bit signed integers elements

Randomness: {RAND MIN . . . RAND MAX} (default),
{RAND MIN/100 . . . RAND MAX/100} (limited range).

Initial tree for insertion tests: built by sequential algorithm

Algorithm variants:

Dynamic load-balancing: activated (default), deactivated

Initial tree splitting: activated (default), deactivated

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Parameters

Sequence

Presorted, otherwise unfair

32-bit signed integers elements

Randomness: {RAND MIN . . . RAND MAX} (default),
{RAND MIN/100 . . . RAND MAX/100} (limited range).

Initial tree for insertion tests: built by sequential algorithm

Algorithm variants:

Dynamic load-balancing: activated (default), deactivated

Initial tree splitting: activated (default), deactivated

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Construction on the T1

 0

 2

 4

 6

 8

 10

 12

100 1000 10000 100000 106 107

Sp
ee

du
p

Number of inserted elements (k)

32 th
16 th

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion, n = 0.1k , Xeon

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106 107

Sp
ee

du
p

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Insertion, n = 10k , Xeon

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106

Sp
ee

du
p

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Effect of Algorithm Variants

Initial tree splitting:

crucial for good performance

Dynamic-load balancing:

Robustness

Improves performance for big input sizes

No damage for small input sizes

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Effect of Algorithm Variants

Initial tree splitting:

crucial for good performance

Dynamic-load balancing:

Robustness

Improves performance for big input sizes

No damage for small input sizes

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Effect of Core Mapping (Construction)

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106 107

Sp
ee

du
p

Number of inserted elements (k)

2 threads, different sockets
2 threads, same socket, different dice

2 threads, same die
1 thread

sequential

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Conclusions

Bulk construction and insertion can be effectively parallelized.
On the top of the sequential libstdc++ implementation. This
remains unaffected.

Code for the four STL associative containers is now released with
the MCSTL [Sin06].

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Future directions

Lazy update: split sequences of library calls into homogeneous
subsequences of maximal length.
Could be offered transparently by the library.

Better library support for memory allocation:

Asymmetric usage

Perfectly scalable parallel allocation

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Future Work: Algorithms and Data Structures

Other tree operations to parallelize

Bulk deletion of elements using remove if

set difference for dictionaries

Other data structures

Search tree storing subtree sizes: allows perfect tree size
partitioning in logarithmic time

What is the effect on performance?

Priority queues: lazy parallel data structure update

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Further Performance Evaluation

Detailed evaluation of hardware counters: cache misses, branches,
limitation by (random-access) memory bandwidth

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

References

P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase,
N. Thomas, N. M. Amato, and L. Rauchwerger.
STAPL: An Adaptive, Generic Parallel C++ Library.
In LCPC, pages 193–208, 2001.
http://parasol.tamu.edu/groups/rwergergroup/
research/stapl/.

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,
and Paul R. Wilson.
Hoard: A scalable memory allocator for multithreaded
applications.
In ASPLOS-IX, 2000.

Heejin Park and Kunsoo Park.
Parallel algorithms for red-black trees.
Theoretical Computer Science, 262:415–435, 2001.

http://parasol.tamu.edu/groups/rwergergroup/research/stapl/
http://parasol.tamu.edu/groups/rwergergroup/research/stapl/

Introduction Previous work Algorithms Implementation Aspects Experiments Conclusions and Future Work References

Johannes Singler.
The MCSTL website, June 2006.
http://algo2.iti.uni-karlsruhe.de/singler/mcstl/.

Johannes Singler, Peter Sanders, and Felix Putze.
The Multi-Core Standard Template Library.
In Euro-Par 2007: Parallel Processing, 2007.

http://algo2.iti.uni-karlsruhe.de/singler/mcstl/

	Introduction
	Previous work
	Algorithms
	Bulk Construction
	Bulk Insertion
	Dynamic Load-Balancing

	Implementation Aspects
	Experiments
	Conclusions and Future Work
	References

