
Lists Revisited:
Cache Conscious STL lists

Leonor Frias, Jordi Petit, Salvador Roura

Departament de Llenguatges i Sistemes Informàtics.

Universitat Politècnica de Catalunya.

Overview

Goal: Improve STL lists perfomance in most common settings
using a cache-conscious data structure.

Previous work: Either

2 double-linked lists implementations: easily cope with
standard requirements

2 theoretical cache-conscious data structures: do not take into
account any of these requirements

Main contribution: merging both approaches.

Main problem: dealing with STL lists iterator functionality.

Work done: analysis, design, implementation and
comprehensive experimental study.

Index

1. Introduction and motivation

2. Problem and our approach

3. Design

4. Experiments

5. Conclusions and further work

Standard Template Library (STL)

Core of C++ standard library [International Standard ISO/IEC 14882

1998].

Elements:

2 containers: list, vector, map...

2 iterators: high-level pointers

2 algorithms: sort, reverse, find...

Implementation: classical literature on algorithms and data
structures.

Improve performance

Use memory hierarchy effectively
for known / regular access patterns
→ cache-conscious algorithms &
data structures
General idea: organize data s.t.
logical access pattern
≈ physical memory locations.
Models:

2 cache-aware

2 cache-oblivious [Frigo et al. 1999]

STL lists

Forward and backward traversal container, that supports
insertion and deletion in constant time.

STL list iterators properties:

2 arbitrary number

2 operations cannot invalidate them

Straightforward implementation:

This is what all known STL implementations do!

Double-linked lists cache performance

Pointer-based data structures cannot guarantee good cache
performance.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal using libstdc++

no-modification
1-insert-erase
2-insert-erase
4-insert-erase
8-insert-erase

16-insert-erase
32-insert-erase
64-insert-erase

sort

It is worth trying a cache-conscious approach!

Index

1. Introduction and motivation

2. Problem and our approach

3. Design

4. Experiments

5. Conclusions and further work

Previous work on cache-conscious lists

[Demaine 2002]

Cache-aware: partition of Θ(n/B) pieces with (B/2, B) elems.

2 Traversal: O(n/B) amortized

2 Update: constant

Cache-oblivious: uses the packed memory structure,
array of Θ(n) size with uniformly distributed gaps.

2 Traversal: O(n/B) amortized

2 Update: O((log2 n)/B) (lower by partitioning the array)

. Amortized constant with self-organizing structures
(updates may break the uniformity until the list is
reorganized when traversed).

Problem

Pointers + cache-conscious data structure:
physical/logical location are not independent.

No trivial pointers ⇒ reach iterators whenever a modification
occurs.

Main issue: unbounded number of iterators pointing to the
same element.

Achieving Θ(1) operations:

2 number of iterators arbitrarily restricted

2 iterators pointing to the same element share some data

STL lists are not traversed as a whole but step by step ⇒ NO
self-organizing strategies.

Our approach

Efficient data access + full iterator functionality +
(constant) worst case costs compliant with the Standard

Base: cache-aware solution.

Common list usages:

2 Only a few iterators on a list instance

2 Many traversals are performed due to sequential access

2 Frequent modifications at any position

2 Small/Plain old data (POD) types
(*)Implicit or explicit in general cache-conscious literature

Index

1. Introduction and motivation

2. Problem and our approach

3. Design

4. Experiments

5. Conclusions and further work

Basic design

Double-linked list of buckets.

What more?

1. how to arrange the elements inside a bucket

2. how to reorganize the buckets on insertion/deletion

3. how to manage iterators

4. bucket capacity? → Experimentally

Arrangement of elements

Reorganization of buckets

Preserve data structure invariant after modification

2 minimum bucket occupancy

2 arrangement coherency

2 . . .

Main issue: Keeping balance between:

2 high occupancy

2 few bucket accessed

2 few elements movements

Iterators management

Key idea: all the iterators referred to an element are identified
with a dynamic node (relayer) that points to it.

Figure 1: Bucket of
pairs

Figure 2: 2-level-
list

Index

1. Introduction and motivation

2. Problem and our approach

3. Design

4. Experiments

5. Conclusions and further work

Set up

Our three implementations:

2 bucket-pairs

2 2-level-cont

2 2-level-link

against libstdC++ in GCC 4.01.

Basic environment :

2 64-bit Sun Workstation, AMD Opteron CPU at 2.4 Ghz

2 1 GB main memory

2 64 KB + 64 KB 2-associative L1 cache, 1024 KB 16-associative L2

cache and 64 bytes per cache line.

Other : Pentium 4, 3.06 GHz hyperthreading CPU, 900 Mb of main

memory and 512 Kb L2 cache.

Which experiments

Performance measures:

2 wall-clock times

2 cache performance data: Pin [Luk et al. 2005]

Types of experiments:

2 lists with no iterators

2 lists with iterators

2 lists with several bucket capacities

2 LEDA

Lists before and after elements reorganization (by sorting).

Traversal before

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal before shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

Traversal after

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal after shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

Pin Traversal after

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 n

um
be

r
of

 L
2

ca
ch

e
ac

ce
ss

es

list size (in 10^4)

Traversal after shuffling (0% it load and bucket capacity 100)

gcc (misses)
bucket-pairs (misses)
2-level-cont (misses)
2-level-link (misses)

gcc (total)
bucket-pairs (total)
2-level-cont (total)
2-level-link (total)

Insert before

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Insert traversal before shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

Insert after

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Insert traversal after shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

Intensive insertion

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Insert after shuffling (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

Internal sort

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Sort (0% it load and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

Effect of bucket capacity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

bucket capacity

Insert traversal after shuffling (486* 10^4 list size and 0% it load)

gcc
bucket-pairs
2-level-cont
2-level-link

Iterators

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

percentage of iterator load

Traversal after shuffling (486* 10^4 list size and bucket capacity 100)

gcc
bucket-pairs
2-level-cont
2-level-link

LEDA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 4 8 16 32 64 128 256 512

sc
al

ed
 ti

m
e

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal after shuffling (0% it load and bucket capacity 100)

gcc
leda

2-level-link

Index

1. Introduction and motivation

2. Problem and our approach

3. Design

4. Experiments

5. Conclusions and further work

Conclusions (1)

Pioneering to show the importance of porting existing theory
and practice on cache-conscious data structures to standard
libraries, as the STL.

Provided three standard compliant cache-conscious lists
implementations. This is not straightforward, although based
on simple existing data structures.

2 Kept with standard requirements, in particular with
iterators. We have provided two standard compliant
iterators designs.

2 The algorithms involved must be designed carefully to keep
up some properties.

Conclusions (2)

Provided a comprehensive experimental study.

Our implementations are prefferable in many (common)
situations to classical double-linked list implementations, such
as GCC (or LEDA).

Specifically,

2 5-10 times faster traversals

2 3-5 times faster internal sort

2 still competitive with (unusual) big load of iterators

2 bucket capacity is not a critical parameter

Between our implementations:

2 2-level linked implementation

2 linked bucket implementation

What next?

My webpage: www.lsi.upc.edu/~lfrias

Extended article: reorganization algorithm analysed in detail.

2 Using amortized analysis, we show that the number of
created/destroyed buckets is assymptotically optimal.

Thank you

Questions?

References

Demaine, E. (2002). Cache-oblivious algorithms and data structures.
In EEF Summer School on Massive Data Sets, LNCS.

Frigo, M., C. Leiserson, H. Prokop, and S. Ramachandran (1999).
Cache-oblivious algorithms. In FOCS ’99, pp. 285. IEEE Computer
Society.

International Standard ISO/IEC 14882 (1998). Programming lan-
guages — C++ (1st ed.). American National Standard Institute.

Luk, C., R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood (2005, June). Pin: Building
customized program analysis tools with dynamic instrumentation.
In PLDI ’05, Chicago, IL.

