
Extending STL maps using LBSTs ∗

Leonor Frias §

Abstract

Associative containers are basic generic classes of the C++

standard library. Access to the elements can be done by

key or iterator, but not by rank. This paper presents a

new implementation of the map class, which extends the

Standard with the ability to support efficient direct access

by rank without using extra space. This is achieved using

LBST trees. This document reports on the algorithmic

engineering of this implementation as well as, experimental

results that show its competitive performance compared to

the widespread GCC library map implementation.

1 Introduction.

The use of standard libraries has become a practice
of increasing importance in order to ease and fasten
software development. The C++ programming language
defines a standard library [5] whose algorithmic core
constitutes the Standard Template Library (STL) [6].

The STL defines three different types of objects
that cooperate between them. These are containers
(to store collections of elements), iterators (to access
and traverse elements in a container) and algorithms
(to process the elements in a container). The C++

standard library defines both the functionality and the
performance (using Big-O notation) of these objects.

Associative data structures (including sets, maps,
multisets and multimaps) are a particularly important
kind of containers in the STL. The map class is a
generic container that corresponds to the idea of a
dictionary. Specifically, it is defined as a unique ordered
associative container, that is, a container with efficient
search, insertion and deletion of elements (pairs of key
and value) based on unique keys that are also used
to define an order among container elements. This
order is internally kept to allow the user to efficiently
navigate the structure through iterators. On a map with
n keys, search, insertion and deletion operations must
be performed in O(log n) time; iterator traversal (either
in increasing or decreasing order) must take amortized

∗This work has been supported by GRAMMARS project under
grant CYCIT TIN2004-07925 and partially by AEDRI-II project
under grant MCYT TIC2002-00190.

§Departament de Llenguatges i Sistemes Informàtics, Univer-
sitat Politècnica de Catalunya.

O(1) time. For more details see [6, section 6.6].
The use of maps is illustrated in the following

example that prints, in lexicographic order, how many
times each word appears in the input:

string word;

map<string,int> M;

while (cin >> word) ++M[word];

for (map<string,int>::iterator it=M.begin();

it!=M.end(); ++it)

cout << it->first << " " << it->second << endl;

According to the Standard, access to the map ele-
ments can be done using direct access by key (as the
instruction ++M[word] in the example above) or using
sequential bidirectional iterators that traverse the map
in order (as in the for loop above). However, direct
access by rank in the ordered sequence is not consid-
ered. This means that, for instance, getting the median
element in a map of size n takes Θ(n) time.

This paper presents a new implementation of the
map class. While retaining compatibility with the C++

standard library, this new implementation offers effi-
cient random access to the map elements. This func-
tionality is achieved through the inclusion of random
access iterators for maps, which allow the user to access
the i-th element basically in the same way as he/she
would access the i-th element of an array or a vector.

For instance, using random access iterators one can
get the median element in M using the standard brackets
operator, in the following way:

string median = M.begin()[M.size()/2].first;

Besides, it is possible to compute the difference
between two random access iterators p and q with the
usual subtraction: p - q. This could be useful, for
instance, to calculate how many words are between two
specific ones in the map M above. Additionally, an
integer k can be added to an iterator (p+=k) to get
the same result as repeating k times ++p. Finally, it
is possible to compare two iterators (p<q, p<=q, . . .).
Note that in all these operations the elements cardinal
position in the sequential structure is used to get the
result (instead of their keys).

In order to offer all these possibilities, we have
implemented the map class using Logarithmic Binary

Search Trees (LBSTs) [10]. This variant of balanced
binary search trees adds to existing implementations the
ability to support direct access by rank in logarithmic
time without using extra space. Moreover, its balancing
criterion is fast to evaluate, and hence it is expected to
be efficient in practice.

In this paper we report on the algorithmic and
implementation issues of this new variant of maps,
and experimentally show its competitive performance
compared to the GCC implementation, which uses red-
black trees as internal data structure. Besides, by
contrast to other implementations, care has been taken
to use the most appropriate algorithm upon input
characteristics as required by the Standard. Altogether,
equivalent or better performance has been obtained in
main operations such as search, insertion or deletion by
key, thus proving that more functionality can be offered
without relevant drawbacks.

The remainder of this paper is organized as follows.
First, in Section 2, related work is outlined. Then, in
Section 3, the characteristics of the LBST implementa-
tion are presented. In Section 4, the design and results
of the experiments are shown. Finally, Section 5 sets out
the conclusions of this work. The appendix presents the
details of the feasibility of the new method presented in
Section 3 for one-way insertion and deletion operations.

2 Related work.

Due to the map cost requirements fixed by the C++ Stan-
dard, balanced binary search trees have been typically
used for map implementation. Note that because ele-
ments must be kept in sorted order, hashing is not an
option. Also, because the Standard fixes the costs re-
quirements in the worst case scenario, randomized data
structures like skip-lists can neither be used.

There are many different STL map implementations.
However, none offers direct access by rank. Further-
more, a lot of them originally derive from the Hewlett-
Packard implementation [11] that uses red-black trees:
GCC 1, STL Port 2, SGI 3 and Microsoft 4.

This paper compares the performance of the LBST
implementation against that of the GCC STL v.3 imple-
mentation [3]. The main reason for this selection is that
this is a widespread, accessible and free implementation.
An important characteristic of the GCC implementation
is its use of generic operations for the four ordered asso-
ciative containers included in the Standard (map, set,
multimap and multiset), i.e., the same algorithm is

1http://gcc.gnu.org
2http://www.stlport.org
3http://www.sgi.com/tech/stl/
4http://www.microsoft.com/downloads/details.aspx?FamilyId=

272BE09D-40BB-49FD-9CB0-4BFA122FA91B&displaylang=en

used for each container when possible, even if this could
cause unnecessary overhead. Another characteristic of
the GCC implementation is that almost all algorithms
are coded iteratively. Finally, it is not specialized for
operations with sorted ranges as input and so, for these
operations, violates the standard cost requirements.

Other approaches not using red-black trees have
been proposed. For example, CPH STL [2] offers an
implementation using B+ trees that is reported to be
faster than SGI for search and traversal but equal or
worse for insertion and deletion [4]. Another implemen-
tation uses AVL trees; in this case, the obtained results
are equal or slightly worse compared to SGI’s [7].

In any case, if these implementations were extended
to support logarithmic access by rank, both extra space
(to store subtrees sizes) and time in modifying oper-
ations (to keep size data updated) would be required.
In [1, section 14.1] an extended red-black tree is anal-
ysed.

3 Implementation characteristics.

The final version of the map class is the result of
successive refinements guided by experimental results.
Specifically, three complete versions were developed.
Although all of them are based on LBSTs, some changes
in the structure were introduced successively. This
section defines LBSTs and presents the evolution and
characteristics of the three implementations.

Logarithmic binary search trees. LBSTs [10]
are binary search trees that are balanced upon subtree
sizes. Implementing the map class with LBSTs adds to
existing implementations the ability to support direct
access by rank (by means of random access iterators)
in logarithmic time without using extra space. Further-
more, its balancing criterion is easier and faster to eval-
uate than that of other variants of BSTs that are also
balanced upon subtree sizes, such as Weighted BSTs [9].

Before we go on, let us recall the definition of
LBSTs. Let `(n) be the number of bits required to
encode n, that is, `(0) = 0, and `(n) = 1 + blog2 nc for
any n ≥ 1. Given a BST T , denote by |T | its number of
nodes, and let `(T) denote `(|T |). Then, T is an LBST
if and only if (1) T is an empty tree, or (2) T is a non-
empty tree with subtrees L and R, such that L and R
are LBSTs and |(`(L)− `(R))| ≤ 1.

First version. The first version was a straightfor-
ward recursive implementation of the LBST algorithms.
A basic LBST node contains (apart from a key and its
related value) its subtree size and two pointers to its
children. As in the GCC implementation, each node
was enlarged to store its parent pointer, so as to support
navigating the structure starting at any point. Empty
trees were represented by a null pointer. Finally, a spe-

cial header node was introduced to mark the end of the
sorted sequence (according to keys) of the map elements.

Unlike the GCC implementation, this first version
was already compliant with the costs required by the
Standard for some specialized operations with sorted
ranges as input (this mainly includes constructors and
multiple element insertions). For instance, given n ele-
ments in sorted order, the GCC implementation builds a
map in Θ(n log n) time, while our implementation does
so in Θ(n) time, as the C++ Standard requires. This
was achieved implementing specific algorithms for these
cases.

Besides, our algorithms may be more convenient
than the ones in GCC for the “insertion with hint”
operation. This standard operation is intended to
reduce insertion time by starting the search at the
hint, instead of at the tree root. Our implementation
tries to minimize key comparisons assuming that the
hint is close to the target key, whereas the GCC
implementation ignores it unless the new element should
go just before it. The experimental results showed that
this approach reduces the cost of insertions by hint
when the hint is good and comparisons are expensive.
Anyway, the cost of our algorithm is never worse than
O(log n).

Unfortunately, LBSTs exhibited a limitation: delet-
ing a node from an iterator requires logarithmic cost,
because every node from the deleted one to the root
must be checked for balance, and its size field must be
updated. Note that the Standard requires amortized
constant cost for this operation. However, this require-
ment of cost is not critical, and was probably established
arbitrarily assuming a red-black tree implementation.
Observe that the cost of deleting by iterator (which is
perhaps not a very common operation) is usually off-
set by the cost of previous insertions. Moreover, our
implementation does offer an efficient range erase.

Second version. Experimental comparison of our
first version against the GCC implementation proved
that, on single element operations, GCC was faster.
The analysis of the GCC code suggested that recursiv-
ity could be the reason of the weakness: it is well known
that recursive implementations usually have worse per-
formance on hardware than iterative ones.

Therefore, a second, iterative version was imple-
mented. Besides, a unique dummy node for all empty
trees was introduced. This dummy node reduced the
number of possible cases and simplified the resulting
code, thus making it both faster and easier to debug.

Third version. The experimental analysis of the
second version showed that all operations achieved
similar or better performance than GCC’s, except for
single element insertion, which was still around 30%

slower. In order to understand the reason for this
difference, observe that single element insertion and
deletion have three main phases: (1) top-down search,
(2) local insertion or deletion of the input key, and (3)
down-top update of subtree sizes and rebalance through
single or double rotations. The main difference between
red-black trees and LBSTs is in the last phase, which
can be inferred from the code and confirmed by profiling
and experimental data. Specifically, while the red-black
tree final update takes an amortized constant number of
steps, this in LBSTs requires logarithmic time, because
all levels, from the update point until the root, must be
visited.

As the extra visited nodes are in fact the same that
in the top-down search phase but in opposite order,
the feasibility of suppressing the down-top traversal was
considered. This involved new insertion and deletion
algorithms to update the tree in just one (top-down)
phase. These algorithms must update the tree and
preserve the balancing criterion without knowing if
the insertion or deletion will finally take place. The
details of these new, sophisticated algorithms are in the
Appendix.

The implementation of these algorithms, jointly
with other minor changes, made up the third and final
version. First, the LBST structure was required to be
more flexible. The new LBST structure was based on
an idea of [8] that consists on changing the meaning of
the node’s size field: rather than corresponding to its
subtree size, it corresponds to the size of only one of
the two children (which one is determined by the sign).
Additionally, the total tree size is stored in the header
node.

As a consequence of this change, the size of each
subtree must be calculated at every step down the tree.
However, this can be done in constant time. When
starting at the root (the common case), we know the
total size of the tree and the size of one of its children.
Therefore, the child size is known directly, or otherwise
trivially calculated. This process can be repeated at
each step down the tree. On the other hand, for iterator
operations that start anywhere in the tree, the size of
the current subtree can be obtained visiting a constant
number of tree levels on the average.

Finally, changing the meaning of the size field
produced another benefit: a substantial reduction, in
search schemes, of the number of visited nodes. In the
third version, the only visited nodes are those whose key
must be compared by the operator <. By contrast, in the
first and second versions, some nodes were visited just
to look up its size field. Altogether, these modifications
decreased memory accesses, improved their locality and
reduced the total time of operations.

4 Performance evaluation.

This section presents the experiments that were con-
ducted to compare the three versions of the LBST im-
plementation and the GCC implementation.

Experimental setting. An experiment is config-
ured by means of input parameters such as: map imple-
mentation, key and value type (integer or string), map
operation, input data characteristics and operation size.
An experiment output is the time (in seconds) that takes
the operation, not including experiment set up. In the
case of single element operations, output is the amount
of time of the complete sequence of operations.

All the experiments were performed on different
widely available hardware architectures (x86, Ultra-
Sparc and Alpha) in order to obtain general results.
Given that the results for every machine are similar in
terms of relative performance (as compared to GCC),
this paper only presents results for an x86 based ma-
chine: an Intel Pentium-4 with a 3.06 GHz hyper-
threading CPU with 512 Kb cache and 900 Mb of main
memory.

By default, the results assume integer keys. Results
for other key types will only be mentioned when they
present a different qualitative behavior.

Search. The map class offers four kinds of search.
However, they are very similar in terms of number of
visited nodes and comparisons, so their experimental
behavior is also similar. Therefore, results are only
shown for find (classical search) and equal range
(range containing all elements whose key is the given
one), in Figures 1(a) and 1(b), respectively.

Search operations neither use nor change balancing
information, and so, their cost depends mainly on tree
height. Given that the experimental results are almost
identical for all implementations (see Figure 1(a)), the
height of the trees can be considered equal from a
practical point of view.

Nevertheless, for equal range, our implementation
is faster, specially for string keys, because it avoids the
unnecessary overhead of the generic implementation in
GCC. Specifically, equal range is implemented in GCC
calling both lower bound and upper bound, so our im-
plementation performs almost half as key comparisons
as GCC’s.

Simple insertion. Results for random input data
are shown in Figure 1(c). They show that our final
implementation is competitive in performance and how
our implementation has improved gradually.

Deletion by key. Results for existing integer keys,
non existing integer keys and existing string keys are
shown in Figures 2(a), 2(b) and 2(c), respectively. They
show that our third implementation is faster in general
than GCC’s; it is only slightly slower than GCC’s for

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

FIND for EXISTING data and OP size 2

gcc3.x map
recursive map
iterative map

last map

(a) Classical search (find) of existing integer keys,
fixed operation size of 2 ∗ 104

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

EQUAL_RANGE for EXISTING data and OP size 2

gcc3.x map
recursive map
iterative map

last map

(b) equal range of existing integer keys, fixed opera-
tion size of 2 ∗ 104

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

SIMPLE INSERTION for NOT-SORTED-NOT-UNIQUE data and OP size 2

gcc3.x map
recursive map
iterative map

last map

(c) Simple insertion for random data and fixed opera-
tion size of 2 ∗ 104

Figure 1: Experimental results for insertion and search
by key (x axis=operation size/104, y axis= time in
seconds).

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

ERASE BY KEY for EXISTING data and OP size 32

gcc3.x map
recursive map
iterative map

last map

(a) Erase of existing integer keys, fixed operation size
of 32 ∗ 104

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

ERASE BY KEY for NOT-EXISTING data and OP size 32

gcc3.x map
recursive map
iterative map

last map

(b) Erase of not existing integer keys, fixed operation
size of 32 ∗ 104

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

ERASE BY KEY for EXISTING data and OP size 1

gcc3.x map
recursive map
iterative map

last map

(c) Erase of existing string keys, fixed operation size
of 1 ∗ 104

Figure 2: Experimental results for erase by key (x
axis=operation size/104, y axis= time in seconds).

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

HINT INSERTION for SORTED-UNIQUE data and OP size 2

gcc3.x map
recursive map
iterative map

last map

(a) Hint insertion for (string) sorted data and fixed
operation size of 2 ∗ 104

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

operation size (in 10^4)

RANGE INSERTION for SORTED-UNIQUE data and MAP size 8

gcc3.x map
recursive map
iterative map

last map

(b) Insertion from a sorted range and fixed map size of
8 ∗ 104

Figure 3: Experimental results for some non-basic map
operations (x axis=operation size/104, y axis= time in
seconds).

non existing integer keys due to rotations. In fact, it
is substantially faster (more than 25%) than GCC’s for
successful erases of string keys because GCC erase by
key is implemented through an equal range operation,
for which our implementation performs half as key com-
parisons as the GCC implementation (as commented
previously, because equal range GCC implementation
is common to all associative containers).

Insertion with hint. In this experiment, each
insert execution uses the previous inserted element as
a hint. Results for sorted string input data are shown
in figure 3(a). They show that our approach is slightly
better than GCC’s when the hint is reasonable. As
expected, when the hint is not accurate, LBST results
are slightly worse than GCC’s.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

operation size (in 10^4)

RANGE CONSTRUCT for SORTED-UNIQUE data and MAP size 0

gcc3.x map
recursive map
iterative map

last map

(a) Constructor from a sorted range

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

ERASE BY ITERATOR for EXISTING data and OP size 1

gcc3.x map
recursive map
iterative map

last map

(b) Erase by iterator, fixed operation size of 1 ∗ 104

Figure 4: Experimental results for some non-basic map
operations (x axis=operation size/104, y axis= time in
seconds).

Operations with sorted input. Results for con-
struction and insertion with sorted input are shown in
Figures 4(a) and 3(b) respectively. Although the results
for range insertions in LBSTs are only significantly bet-
ter than GCC’s when the input size is bigger than the
current map size, the LBST constructor remarkably out-
performs GCC’s.

Besides, range insertion results suggest a possible
change in the implementation that would take into
account the range size to check whether it is sorted or
not.

Deletion operations through iterators. Re-
sults for single deletion through an iterator are shown
in Figure 4(b). They show modest results for the LBST
implementation because, as explained in Section 3, the
LBST data structure is worse fit than red-black trees

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

OP_DEC_N_IT for 32-DEC data and OP size 8

recursive map
iterative map

last map

(a) 32-position decrement with fixed operation size of
8 ∗ 104

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 50 100 150 200 250 300 350 400 450 500

tim
e

(in
 s

ec
)

map size (in 10^4)

OP_DEC_N_IT for VERY-BIG-DEC data and OP size 8

recursive map
iterative map

last map

(b) Very big decrement relative to map size with fixed
operation size of 8 ∗ 104

Figure 5: Experimental results for some random access
iterator operations (x axis=operation size/104, y axis=
time in seconds).

for this operation. However, absolute times are not that
high and are similar to those of deletions by key. On the
other hand, results for deletion operation from a range
defined by iterators are very similar for both implemen-
tations and show small absolute times.

Random access iterators operations (rank
operations). Arbitrary iterator increment and decre-
ment operations have been analyzed. Results for 32-
position decrement and a bigger decrement are shown
in Figures 5(a) and 5(b), respectively. As the GCC im-
plementation does not support these operations, results
are only shown for LBSTs.

First, when tuning our approach, we found that
our general increment/decrement algorithm was already
faster than the incremental approach from just 3 or

4 positions movement. Besides, observed times are
similar for different increments/decrements, and not
great differences in performance are observed between
the versions of our implementation. This last result
highlights that in the final version, the overhead cost of
calculating subtree size from an arbitrary node is offset
by the advantages of the new approach. Specifically, less
nodes are accessed for looking up the size fields when
traversing the tree downwards.

5 Conclusions.

In this paper, a new implementation of the map class
of the standard C++ library using LBSTs has been
presented. This implementation extends the Standard
with the ability to support direct access by rank taking
logarithmic time, and without using extra space. This
was achieved by using random access iterators, which
are an standard extension of bidirectional iterators,
already required for the map class.

Our implementation meets the standard map cost
requirements for almost all operations. The only rele-
vant exception is the deletion through an iterator, which
requires logarithmic cost due to the underlying LBST
structure. On the other hand, some operations like con-
struction from a sorted range do meet the Standard re-
quirements. By contrast, the current GCC implemen-
tation (a widespread, accessible, free implementation
based on red-black trees) does not.

The final implementation of the map class is the re-
sult of successive algorithmic refinements guided by ex-
perimental results. Three versions have been presented.
The final version includes changes in the LBST struc-
ture to make it more suitable for implementing its oper-
ations. Specifically, a new algorithm for single element
insertion and deletion was designed and its correctness
exhaustively proved. The key point was to perform a
unique top-down traversal, joining search and update
phases. These changes decrease memory accesses and
improve the use of cache memory.

Overall, the final implementation achieves a com-
petitive performance compared to GCC’s. In particular,
main operations such as search, insertion or deletion by
key show equivalent or better performance. This shows
that the Standard could offer more functionality with-
out relevant drawbacks.

Finally, this work could be extended in several
ways. First, it could be widen for the rest of associative
containers. Also, some operations could be specialized
with respect to the key type. Finally, the efficiency
could be further improved applying low-level techniques
such as loop unrolling, or improving cache usage.

6 Acknowledgments.

I would like to thank Jordi Petit and Salvador Roura for
their ideas and remarks, in short, for making possible
this work.

References

[1] T. H. Cormen, C. Leiserson, and R. Rivest. Intro-
duction to algorithms. The MIT Press, Cambridge, 2
edition, 2001.

[2] DIKU (Performance Engineering Laboratory). CPH
STL (Copenhaguen STL). http://www.cphstl.dk.

[3] GNU GCC. GCC C++ Standard Library.
http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-

USERS-3.3/index.html.
[4] J. Hansen and A. Henriksen. The (multi)?(map|set) of

the Copenhagen STL. Technical report, DIKU
(Performance Engineering Laboratory), 2001.
http://www.cphstl.dk/Report/Map+Set/cphstl-report-

2001-6.ps.
[5] International Standard ISO/IEC 14882. Programming

languages — C++. American National Standard Insti-
tute, 1st edition, 1998.

[6] N. M. Josuttis. The C++ Standard Library : A Tutorial
and Reference. Addison-Wesley, 1999.

[7] S. Lynge. Implementing the AVL-trees for
the CPH STL. Technical report, DIKU
(Performance Engineering Laboratory), 2004.
http://www.cphstl.dk/Report/AVL-tree/cphstl-report-

2004-1.ps.
[8] C. Mart́ınez and S. Roura. Randomized binary search

trees. Journal of the ACM, 45(2):288–323, 1998.
[9] J. Nievergelt and E. Reingold. Binary search trees

of bounded balance. SIAM Journal on Computing,
2(1):652–686, 1985.

[10] S. Roura. A new method for balancing binary search
trees. In F. Orejas, P.G. Spirakis, and J. van Leeuwen,
editors, 28th International Colloquium on Automata,
Languages and Programming, volume 2076 of Lectures
Notes in Computer Science, pages 469–480. Springer–
Verlag, Berlin, 2001.

[11] A. Stepanov and M. Lee. The standard template
library. Technical Report HPL-95-11(R.1), HP, 1995.
http://www.hpl.hp.com/techreports/95/HPL-95-11.html.

Appendix A: Case analysis for single element
insertion and erase

Changes introduced in the basic LBST structure aim
that single element modifying operations require a
unique tree top-down traversal merging search and up-
date phases. However, we must proof that for each pos-
sible input LBST and modifying operation a correct al-
gorithm exists, whether the modification takes eventu-
ally place or not.

On the one hand, for unconditional modifications
(that is, always take place) such as erase from an iterator
or erase the minimum or maximum from a tree, we
can always get a correct algorithm without making any
assumptions.

On the other hand, for conditional modifications
such as, insertion or erase by key, which are the most
frequent operations, tree coherence must be proved for
every possible case with a case analysis.

The case analysis is presented for insertion/erase in
left child (because right is analogous) and in case of be-
ing successful, the tree should be rebalanced (otherwise,
the tree coherence is directly preserved in both cases).

Additionally, we will assume that all the nodes
depicted exist and subtrees may be empty. Finally,
size fields of visited nodes will be changed properly
to indicate the opposite subtree size of the one being
modified.

Lastly, notation:

• `(T) sat: if and only if increasing T size in one unit,
provokes `(T) also to be incremented.

• λ− > β: shows change in `(T) value in case the
operation is successful.

A.1 Insertion by key. There are two main cases:

Insertion in left branch of left child

There are three possible situations, showed in
figure 6. They are the following:

Figure 6: (Hypothetical) unbalancing insertion in left
branch of left child (A1). Possible configurations.

1. `(A1) = λ− 1(sat), `(A2) = λ− 1(sat)
2. `(A1) = λ− 1, `(A2) = λ
3. `(A1) = λ, `(A2) = λ− 1

For the first and third cases a single right rotation
suffices (see figure 7(a)). On the other hand, for
the second case (see figure 7(b)) a double rotation
is needed given that `(A1) < `(A2) whether the
insertion is successful or not (if `(A1) reached λ,
there would be a contradiction because then `(a)
before the insertion should be λ + 1).

Insertion in right branch of left child

There are three possible situations, showed in fig-
ure 8. They are the following:

1. `(A1) = λ, `(A2) = λ− 1
2. `(A1) = λ− 1(sat), `(A2) = λ− 1(sat)
3. `(A1) = λ− 1, `(A2) = λ

Figure 8: (Hypothetical) unbalancing insertion in right
branch of left child (A2). Possible configurations.

For the first case, a single right rotation suffices
(see figure 9(a)). For the second case on the other
hand, a double rotation is needed, whether the
insertion takes place in A2L subtree or in A2R (see
figure 9(b)).

However, the third case is a bit more complicated:
in figures 10 and 11 is shown the result of applying
a double rotation to the initial tree, supposing that
insertion takes place respectively in A2L and A2R
subtrees.

For the first subcase we obtain a satisfactory result:
as A1 is not saturated (otherwise `(A) should be
λ + 1 before the insertion), `(a) cannot be greater
than λ.

On the other hand, for the second subcase an
incoherence may arise(marked with *) when `(C) =
λ − 1(sat). To solve it, A2 subtree must be firstly
rotated to the left, as shown in figure 12, where
insertion may take place either in left or right child
of A2R.

(a) Case 1 and 3: tree after
one right rotation

(b) Case 2: tree before and after the double rotation

Figure 7: (Hypothetical) unbalancing insertion in left branch of left child (A1).

(a) Case 1: tree after a single
right rotation

(b) Case 2: tree before and after the double rotation, supposing insertion in
A2L or in A2R.

Figure 9: (Hypothetical) unbalancing insertion in right branch of left child (A2).

Figure 10: (Hypothetical) unbalancing insertion in right branch of left child (A2). Case 3: tree before and after
the double rotation. Supposing insertion in A2L

Figure 11: (Hypothetical) unbalancing insertion in right branch of left child (A2). Case 3: tree before and after
the double rotation. Supposing insertion in A2R.

Figure 12: (Hypothetical) unbalancing insertion in right branch of left child (A2). Case 3*: tree before and after
the triple rotation for * insertion case in A2R

(a) Cases 1,2,3: tree
before and after a left
rotation

(b) Case 4: tree before and after a double rotation.

Figure 13: Unbalancing erase in left child (A).

Figure 14: Unbalancing erase in left child (A). Case 5: tree before and after the double rotation.

(a) Initial impossible con-
figuration, analogous to in-
sertion’s 3.*

(b) Case where b increment is not enough. Inside the square is found the
unbalanced subtree to be the starting point at the next erase step

Figure 15: Subtree b analysis for case 5* of unbalancing erase in left child (A).

A.2 Erase by key. There are 5 basic possible
configurations, shown in figure 16. They are the
following:

1. `(C1) = λ, `(C2) = λ + 1
2. `(C1) = λ, `(C2) = λ
3. `(C1) = λ− 1, `(C2) = λ
4. `(C1) = λ + 1, `(C2) = λ
5. `(C1) = λ, `(C2) = λ− 1

For the three first cases a simple left rotation suffices
(see figure 13(a)). On the other hand, for case 4
and 5, at least a double rotation is needed given that
`(C1) < l(C2). Specifically, for case 4 a double rotation
suffices (see figure 13(b)), but it does not for case 5
(see figure 14). Specifically, an incoherence will arise
(marked with *) if `(C1L) = λ − 2 and erase is not
successful (`(A) = λ).

In order to solve it, size of right child of left child
obtained after the double rotation (that is, new right
child of b) must be incremented. In fact, subtree b

configuration is analogous to the initial configuration
of an unbalancing insertion in left child, except for
transition direction, and so share some similarities and
differences. So, next, b possible configurations, different
from those of insertion, are discussed.

Figure 16: Unbalancing erase in left child (A). Possible
configurations.

First of all, transition direction makes that insertion
configuration 3.* is not possible for subtree b. On the
other hand, there is a new configuration (marked with
* in figure 15(b)) where b increment is not enough.
However, right subtree of the result of incrementing b
(so b again) corresponds to the initial configuration of an
unbalancing erase in left child. Therefore, this situation
is solved starting next step at b, instead of starting at
b left child (the case for situations where b increment is
enough).

