Proof-theoretic conservations of weak weak intuitionistic constructive set theories

L. Gordeev

Tübingen – Falkensee, Germany

LC’11 Barcelona, July 13, 2011
1. Introduction

L. G. (1977, 1982): Constructive interpretations of Set Theory that are compatible with Recursive Analysis.

H. Friedman (1977): Intuitionistic extensional set theories $T_1 \subseteq T_2 \subseteq T_3 \subseteq T_4$ whose proof-theoretic strengths are between (those of) classical first and second order arithmetic: $|PA| = |HA| = |T_1| < |T_2| < |T_3| < |T_4| = |HA_2| = |PA_2|$, which justifies the designation weak.

Despite proof-theoretic weakness, these intuitionistic set theories have great expressive power.

J. Myhill [1975], H. Friedman [1977]: Constructively meaningful principles of *weak* Set Theory.
J. Myhill [1975], H. Friedman [1977]: Constructively meaningful principles of *weak* Set Theory.

L. G. [1977], [1982]: Constructive interpretations of Set Theory that are compatible with Recursive Analysis.

Despite proof-theoretic weakness, these intuitionistic set theories have great expressive power.
J. Myhill [1975], H. Friedman [1977]: Constructively meaningful principles of *weak* Set Theory.

L. G. [1977], [1982]: Constructive interpretations of Set Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories $T_1 \subset T_2 \subset T_3 \subset T_4$ whose proof-theoretic strengths are between (those of) classical first and second order arithmetic: $|PA| = |HA| = |T_1| < |T_2| < |T_3| < |T_4| = |HA_2| = |PA_2|$ which justifies the designation *weak*. Despite proof-theoretic weakness, these intuitionistic set theories have great expressive power.

L. G. [1977], [1982]: Constructive interpretations of Set Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories $T_1 \subset T_2 \subset T_3 \subset T_4$ whose proof theoretic strengths are between (those of) classical first and second order arithmetic:

$|PA| = |HA| = |T_1| < |T_2| < |T_3| < |T_4| = |HA_2| = |PA_2|$
§1. Introduction -1-

- J. Myhill [1975], H. Friedman [1977]: Constructively meaningful principles of *weak* Set Theory.
- L. G. [1977], [1982]: Constructive interpretations of Set Theory that are compatible with Recursive Analysis.
- H. Friedman [1977]: Intuitionistic extensional set theories $T_1 \subset T_2 \subset T_3 \subset T_4$
 - whose proof theoretic strengths are between (those of) classical first and second order arithmetic:
 \[|PA| = |HA| = |T_1| < |T_2| < |T_3| < |T_4| = |HA_2| = |PA_2| \]
 - which justifies the designation *weak*.

Despite proof-theoretic weakness, these intuitionistic set theories have great expressive power.

L. G. [1977], [1982]: Constructive interpretations of Set Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

\[T_1 \subset T_2 \subset T_3 \subset T_4 \]

- whose proof theoretic strengths are between (those of) classical first and second order arithmetic:
 \[|PA| = |HA| = |T_1| < |T_2| < |T_3| < |T_4| = |HA_2| = |PA_2| \]

- which justifies the designation weak.

Despite proof-theoretic weakness, these intuitionistic set theories have great expressive power.
Example

Zermelo's power-set axiom

\[\text{Pow} \equiv \exists \mathbb{P}(x) = \{ y : y \subset x \} \]

is replaced in \(T_1, T_2, T_3, T_4 \) by the exponentiation axiom

\[\text{Exp} \equiv \exists (x^y) = \{ f : f \subset x \times y \land (\forall u \in x) (\exists! v \in y) (\langle u, v \rangle \in f) \} \]

In classical set theory:

\[\text{Pow} \iff \text{Exp} \]

However, intuitionistically \(\text{Exp} \) is weaker than \(\text{Pow} \).

Hint: think of \(x^y \) as (possibly enumerable) set of constructive functions from \(x \) to \(y \) (e.g., algorithms).

L. Gordeev
Proof-theoretic conservations of weak weak intuitionistic constructive set theories
Example

Zermelo’s *power-set axiom*

\[\text{Pow} \equiv \exists \emptyset (x) = \{ y : y \subset x \} \]
Example

Zermelo’s *power-set axiom*

\[\text{Pow} \equiv \exists \wp(x) = \{ y : y \subset x \} \]

is replaced in \(T_1, T_2, T_3, T_4 \) by the *exponentiation axiom*
Example

Zermelo’s *power-set axiom*

\[
\text{Pow} \equiv \exists \emptyset \ (x) = \{ y : y \subset x \}
\]

is replaced in \(T_1, T_2, T_3, T_4 \) by the *exponentiation axiom*

\[
\text{Exp} \equiv \exists \ (^x y) = \{ f : f \subset x \times y \land (\forall u \in x) (\exists ! v \in y) (\langle u, v \rangle \in f) \}
\]
Example

Zermelo’s *power-set axiom*

\[
\text{Pow} \equiv \exists \emptyset (x) = \{ y : y \subset x \}
\]

is replaced in \(T_1, T_2, T_3, T_4 \) by the *exponentiation axiom*

\[
\text{Exp} \equiv \exists (^x y) = \{ f : f \subset x \times y \land (\forall u \in x) (\exists! v \in y) (\langle u, v \rangle \in f) \}
\]

- In classical set theory: \(\text{Pow} \iff \text{Exp} \).
Example

Zermelo’s power-set axiom

\[\text{Pow} \equiv \exists \emptyset (x) = \{y : y \subset x\} \]

is replaced in \(T_1, T_2, T_3, T_4 \) by the exponentiation axiom

\[\text{Exp} \equiv \exists (\times y) = \{f : f \subset x \times y \land (\forall u \in x) (\exists! v \in y) (\langle u, v \rangle \in f)\} \]

- In classical set theory: \(\text{Pow} \Leftrightarrow \text{Exp} \).
- However intuitionistically \(\text{Exp} \) is weaker than \(\text{Pow} \).
Example

Zermelo’s power-set axiom

\[\text{Pow} \equiv \exists \emptyset (x) = \{ y : y \subset x \} \]

is replaced in \(T_1, T_2, T_3, T_4 \) by the exponentiation axiom

\[\text{Exp} \equiv \exists (\times y) = \{ f : f \subset x \times y \land (\forall u \in x) (\exists! v \in y) (\langle u, v \rangle \in f) \} \]

- In classical set theory: \(\text{Pow} \iff \text{Exp} \).
- However intuitionistically \(\text{Exp} \) is weaker than \(\text{Pow} \).
 - Hint: think of \(\times y \) as (possibly enumerable) set of constructive functions from \(x \) to \(y \) (e. g. algorithms).
Apart from Exp, theories T_1, T_2, T_3 also include:

1. Ext (Cantor's axiom of extensionality).
2. Δ^0-Sep (restricted separation schema).

Arguably Δ^0-Sep is predicative.

Other axioms to be discussed later.

T_1, T_2, T_3 regarded as being constructive.

T_4 contains full separation and is not really constructive.
Apart from \textbf{Exp}, theories T_1, T_2, T_3 also include:

- Ext (Cantor's axiom of extensionality).
- Δ_0-Sep (restricted separation schema).

Arguably Δ_0-Sep is predicative. Other axioms to be discussed later.

T_1, T_2, T_3 regarded as being constructive.

T_4 contains full separation and is not really constructive.
Apart from \textbf{Exp}, theories T_1, T_2, T_3 also include:

1. \textbf{Ext} (Cantor's \textit{axiom of extensionality}).
Apart from \textbf{Exp}, theories T_1, T_2, T_3 also include:

1. \textbf{Ext} (Cantor’s axiom of extensionality).
2. \textbf{Δ_0-Sep} (restricted separation schema).
Apart from \textbf{Exp}, theories T_1, T_2, T_3 also include:

1. \textbf{Ext} (Cantor’s \textit{axiom of extensionality}).

2. \textbf{Δ_0-Sep} (\textit{restricted separation schema}).

Arguably Δ_0-\textbf{Sep} is \textit{predicative}.
Apart from Exp, theories T_1, T_2, T_3 also include:

1. **Ext** (Cantor’s *axiom of extensionality*).
2. **Δ_0-Sep** (*restricted separation schema*).

Arguably Δ_0-Sep is *predicative*.

Other axioms to be discussed later.
Apart from **Exp**, theories T_1, T_2, T_3 also include:

1. **Ext** (Cantor’s *axiom of extensionality*).
2. **Δ_0-Sep** (*restricted separation schema*).

Arguably **Δ_0-Sep** is *predicative*.

Other axioms to be discussed later.

T_1, T_2, T_3 regarded as being *constructive*.
Apart from \textbf{Exp}, theories T_1, T_2, T_3 also include:

1. \textbf{Ext} (Cantor’s \textit{axiom of extensionality}).
2. Δ_0-\textbf{Sep} (\textit{restricted separation schema}).

- Arguably Δ_0-\textbf{Sep} is \textit{predicative}.
- Other axioms to be discussed later.

- T_1, T_2, T_3 regarded as being \textit{constructive}.
- T_4 contains full separation and is not really constructive.
Conservative extensions, i-conservation

Suppose $\text{HA} \subset S$, an intuitionistic theory with nice proof theory. Let $|S| = \sup\{\alpha \mid S \vdash \text{TI Ar}(\alpha)\} = \text{proof-theoretic strength of } S$. So for any arithmetical sentence A, $\text{HA + TI Ar}(\text{<|S|}) \vdash A \implies S \vdash A$.

Definition: Call S i-conservative iff S is a conservative extension of $\text{HA + TI Ar}(\text{<|S|})$, i.e. for any arithmetical sentence A, $\text{HA + TI Ar}(\text{<|S|}) \vdash A \iff S \vdash A$.

In particular if $|S| = \varepsilon_0$, then S is i-conservative $\iff S$ is conservative extension of HA. Meaning: if S is i-conservative, then its arithmetical part is based on standard intuitionistic principles only.
Conservative extensions, i-conservation
Conservative extensions, i-conservation

Suppose $HA \subset S$ intuitionistic theory with nice proof theory.
Conservative extensions, i-conservation

- Suppose HA ⊂ S intuitionistic theory with nice proof theory.
- |S| = sup {α : S ⊢ TI_{Ar} (α)} = proof-theoretic strength of S.
Conservative extensions, i-conservation

- Suppose $HA \subset S$ intuitionistic theory with nice proof theory.
- $|S| = \sup \{ \alpha : S \vdash TI_{Ar}(\alpha) \} = \text{proof-theoretic strength of } S$. So for any arithmetical sentence A,

 $HA + TI_{Ar}(\langle |S| \rangle) \vdash A \Rightarrow S \vdash A$.

Definition
Conservative extensions, i-conservation

- Suppose $\text{HA} \subset S$ intuitionistic theory with nice proof theory.
- $|S| = \sup \{ \alpha : S \vdash \text{TI}_\text{Ar}(\alpha) \} = \text{proof-theoretic strength of } S$. So for any arithmetical sentence A,
 $\text{HA} + \text{TI}_\text{Ar} (<|S|) \vdash A \Rightarrow S \vdash A$.

Definition

Call S i-	extit{conservative} iff S is a conservative extension of $\text{HA} + \text{TI}_\text{Ar} (<|S|)$, i.e. for any arithmetical sentence A,
$\text{HA} + \text{TI}_\text{Ar} (<|S|) \vdash A \Leftrightarrow S \vdash A$.
Conservative extensions, i-conservation

- Suppose $\text{HA} \subset S$ intuitionistic theory with nice proof theory.
- $|S| = \sup \{ \alpha : S \vdash \text{TI} \text{Ar} (\alpha) \} = \text{proof-theoretic strength of } S$. So for any arithmetical sentence A,
 $\text{HA} + \text{TI} \text{Ar} (< |S|) \vdash A \Rightarrow S \vdash A$.

Definition

Call S \textit{i-conservative} iff S is a conservative extension of $\text{HA} + \text{TI} \text{Ar} (< |S|)$, i.e. for any arithmetical sentence A,
$\text{HA} + \text{TI} \text{Ar} (< |S|) \vdash A \Leftrightarrow S \vdash A$. In particular if $|S| = \varepsilon_0$, then S is \textit{i-conservative} $\Leftrightarrow S$ is conservative extension of HA.

Meaning: if S is \textit{i-conservative}, then its arithmetical part is based on standard intuitionistic principles only.
Conservative extensions, i-conservation

- Suppose $HA \subset S$ intuitionistic theory with nice proof theory.
- $|S| = \sup \{ \alpha : S \vdash TI_{Ar}(\alpha) \} =$ proof-theoretic strength of S.
 So for any arithmetical sentence A,
 $HA + TI_{Ar}(< |S|) \vdash A \Rightarrow S \vdash A$.

Definition

Call S **i-conservative** iff S is a conservative extension of $HA + TI_{Ar}(< |S|)$, i.e. for any arithmetical sentence A,
$HA + TI_{Ar}(< |S|) \vdash A \Leftrightarrow S \vdash A$. In particular if $|S| = \varepsilon_0$, then S is **i-conservative** $\Leftrightarrow S$ is conservative extension of HA.

- Meaning: if S is **i-conservative**, then its arithmetical part is based on standard intuitionistic principles only.
Problem

H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, $\Sigma_1^{AC}(i)$, $ID(i)$, HA_2, respectively?

Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?

Solution L. G. [1982, 1988]: Yes, T_1, T_2, T_3 are i-conservative.

Note that $|T_1| = \varepsilon_0$, $|T_2| = \phi_{\varepsilon_0}(0)$, $|T_3| = \text{Howard ordinal } \phi_{\varepsilon_\Omega+1}(0)$.

Hence in particular T_1 is conservative extension of HA.
Problem

H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ^1_1-ACi), ID^i, HA_2, respectively?

Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?

Solution L. G. [1982, 1988]: Yes, T_1, T_2, T_3 are i-conservative.

Note that $|T_1| = \varepsilon_0$, $|T_2| = \phi_{\varepsilon_0}(0)$, $|T_3| = \text{Howard ordinal } \phi_{\varepsilon_{\Omega+1}}(0)$.

Hence in particular T_1 is conservative extension of HA_2.

L. Gordeev

Proof-theoretic conservationsof weak weak intuituonisticconstructi
H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ^1_1-$\text{AC}^{(i)}$, $\text{ID}_1^{(i)}$, HA$_2$, respectively?
Problem

H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ^1_1-$AC^{(i)}$, $ID^{(i)}_1$, HA_2, respectively? Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?
<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ^1_1-AC$^{(i)}$, ID1_1, HA$_2$, respectively? Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
</table>
Problem

H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ_1^1-$AC^{(i)}$, $ID_1^{(i)}$, HA_2, respectively? Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?

Solution

L. G. [1982, 1988]: Yes, T_1, T_2, T_3 are i-conservative.
Problem

H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ^1_1-$AC(i)$, ID^i_1, HA_2, respectively? Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?

Solution

L. G. [1982, 1988]: Yes, T_1, T_2, T_3 are i-conservative. Note that $|T_1| = \varepsilon_0$, $|T_2| = \varphi_{\varepsilon_0}(0)$, $|T_3| = Howard ordinal \varphi_{\varepsilon_{\Omega+1}}(0)$.
Problem

H. Friedman [1977]: Are T_1, T_2, T_3, T_4 conservative extensions of HA, Σ^1_1-$AC^{(i)}$, $ID^{(i)}_1$, HA_2, respectively? Dropping T_4, consider equivalent question: Are T_1, T_2, T_3 i-conservative?

Solution

L. G. [1982, 1988]: Yes, T_1, T_2, T_3 are i-conservative. Note that $|T_1| = \varepsilon_0$, $|T_2| = \varphi_{\varepsilon_0}(0)$, $|T_3| = Howard ordinal \varphi_{\varepsilon_{\Omega+1}}(0)$. Hence in particular T_1 is conservative extension of HA.
More on $T_1 - T_3$

1. T_1 includes only set-restricted arithmetic induction (Ind_0).
2. T_2 includes full arithmetic induction (Ind) and full Relative Dependent Choice (RDC).
3. T_3 includes both Ind and RDC, as well as full \in-induction (Ind_\in).
More on $T_1 - T_3$

1. T_1, T_2, T_3 all include Fnd (Foundation) and SC (Strong Collection):

\begin{align*}
\text{Fnd} & \equiv \text{Trans}(x) \land (\forall y \in x) (y \subset z \rightarrow y \in z) \rightarrow x \subset z \\
\text{SC} & \equiv (\forall x \in a) (\exists y \varphi(x, y) \rightarrow (\exists z ((\forall x \in a) (\exists y \in z) \varphi(x, y) \land (\forall y \in z) (\exists x \in a) \varphi(x, y))))
\end{align*}

T_1 includes only set-restricted arithmetic induction (Ind_0).

T_2 includes full arithmetic induction (Ind) and full Relative Dependent Choice (RDC).

T_3 includes both Ind and RDC, as well as full \in-induction (Ind_\in).
More on $T_1 - T_3$

1. T_1, T_2, T_3 all include **Fnd** (Foundation) and **SC** (Strong Collection):
 - **Fnd** $\equiv \text{Trans}(x) \land (\forall y \in x) (y \subset z \rightarrow y \in z) \rightarrow x \subset z$

2. T_1 includes only set-restricted arithmetic induction (Ind^0).
3. T_2 includes full arithmetic induction (Ind) and full Relative Dependent Choice (RDC).
4. T_3 includes both Ind and RDC, as well as full \in-induction (Ind_\in).
More on $T_1 - T_3$

T_1, T_2, T_3 all include **Fnd** (Foundation) and **SC** (Strong Collection):

- **Fnd** $\equiv \text{Trans}(x) \land (\forall y \in x)(y \subset z \rightarrow y \in z) \rightarrow x \subset z$

- **SC** $\equiv (\forall x \in a) \exists y \varphi(x, y) \rightarrow$
 $\exists z ((\forall x \in a)(\exists y \in z) \varphi(x, y) \land (\forall y \in z)(\exists x \in a) \varphi(x, y))$
More on $T_1 - T_3$

1. T_1, T_2, T_3 all include Fnd (Foundation) and SC (Strong Collection):
 - $\text{Fnd} \equiv \text{Trans}(x) \land (\forall y \in x) (y \subset z \rightarrow y \in z) \rightarrow x \subset z$
 - $\text{SC} \equiv (\forall x \in a) \exists y \varphi(x, y) \rightarrow \\
 \exists z ((\forall x \in a) (\exists y \in z) \varphi(x, y) \land (\forall y \in z) (\exists x \in a) \varphi(x, y))$

2. T_1 includes only set-restricted arithmetic induction (Ind_0).
More on $T_1 - T_3$

1. T_1, T_2, T_3 all include Fnd (Foundation) and SC (Strong Collection):
 - $\text{Fnd} \equiv \text{Trans}(x) \land (\forall y \in x) (y \subset z \rightarrow y \in z) \rightarrow x \subset z$
 - $\text{SC} \equiv (\forall x \in a) \exists y \varphi(x, y) \rightarrow \exists z ((\forall x \in a) (\exists y \in z) \varphi(x, y) \land (\forall y \in z) (\exists x \in a) \varphi(x, y))$

2. T_1 includes only set-restricted arithmetic induction (Ind_0).

3. T_2 includes full arithmetic induction (Ind) and full Relative Dependent Choice (RDC).
More on $T_1 - T_3$

1. T_1, T_2, T_3 all include Fnd (Foundation) and SC (Strong Collection):
 - $\text{Fnd} \equiv \text{Trans}(x) \land (\forall y \in x) (y \subset z \rightarrow y \in z) \rightarrow x \subset z$
 - $\text{SC} \equiv (\forall x \in a) \exists y \varphi(x, y) \rightarrow \\
 \exists z ((\forall x \in a) (\exists y \in z) \varphi(x, y) \land (\forall y \in z) (\exists x \in a) \varphi(x, y))$

2. T_1 includes only set-restricted arithmetic induction (Ind_0).

3. T_2 includes full arithmetic induction (Ind) and full Relative Dependent Choice (RDC).

4. T_3 includes both Ind and RDC, as well as full \in-induction (Ind_\in).
§2. Recent developments

We consider Basic+Ext and its extensions.

K. Sato [2009] (basic results):

$$\|\text{Basic} + \text{Ext}\| = \varepsilon_0,$$

$$\|\text{Basic} + \text{Ext} + \Delta_0^-\text{-Sep}\| = \Gamma_0.$$

Remember: these are theories with classical logic.

Problem: What about intuitionistic counterparts Basic (i) + Ext and Basic (i) + Ext + $\Delta_0^-\text{-Sep}$?

Solution:

$$\|\text{Basic} (i) + \text{Ext}\| = \|\text{Basic} (i) + \text{Ext} + \Delta_0^-\text{-Sep}\| = \varepsilon_0.$$ Moreover Basic (i) + Ext + $\Delta_0^-\text{-Sep}$ is i-conservative, and hence conservative extension of HA.
K. Sato [2009]: classical *weak weak* set theory **Basic** and beyond. We consider **Basic+Ext** and its extensions.

Remember: these are theories with classical logic.

Problem: What about intuitionistic counterparts Basic\(^{(i)}\)+Ext and Basic\(^{(i)}\)+Ext+\(\Delta_0\)-Sep?

Solution:
\[|\text{Basic}^{(i)}+\text{Ext}| = |\text{Basic}^{(i)}+\text{Ext}+\Delta_0\text{-Sep}| = \varepsilon_0.\]

Moreover, Basic\(^{(i)}\)+Ext+\(\Delta_0\)-Sep is i-conservative, and hence conservative extension of HA.
§2. Recent developments

- K. Sato [2009]: classical weak weak set theory Basic and beyond. We consider Basic+Ext and its extensions.
- K. Sato [2009] (basic results):
 \[|\text{Basic} + \text{Ext}| = \varepsilon_0, \ |\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| = \Gamma_0. \]
§2. Recent developments

- K. Sato [2009]: classical weak weak set theory Basic and beyond. We consider Basic + Ext and its extensions.

- K. Sato [2009] (basic results):
 \[|\text{Basic} + \text{Ext}| = \varepsilon_0, \quad |\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| = \Gamma_0. \]
 Remember: these are theories with classical logic.

Problem: What about intuitionistic counterparts Basic \((i)\) + Ext and Basic \((i)\) + Ext + \Delta_0\text{-Sep}?

Solution:

\[|\text{Basic} \((i)\) + \text{Ext}| = |\text{Basic} \((i)\) + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0. \]

Moreover Basic \((i)\) + Ext + \Delta_0\text{-Sep} is \(i\)-conservative, and hence conservative extension of HA.
K. Sato [2009]: classical weak weak set theory \textbf{Basic} and beyond. We consider \textbf{Basic}+\textbf{Ext} and its extensions.

K. Sato [2009] (basic results):

\[|\text{Basic} + \text{Ext}| = \varepsilon_0, \quad |\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| = \Gamma_0. \]

Remember: these are theories with \textit{classical} logic.

Problem
K. Sato [2009]: classical weak weak set theory \textbf{Basic} and beyond. We consider \textbf{Basic}+\textbf{Ext} and its extensions.

K. Sato [2009] (basic results):
\[|\text{Basic} + \text{Ext}| = \varepsilon_0, \quad |\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| = \Gamma_0. \]
Remember: these are theories with \textit{classical} logic.

Problem

What about intuitionistic counterparts

\textbf{Basic}^{(i)}+\textbf{Ext} and \textbf{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} ?
§2. Recent developments

- K. Sato [2009]: classical weak weak set theory Basic and beyond. We consider Basic+Ext and its extensions.

- K. Sato [2009] (basic results):
 \[|\text{Basic} + \text{Ext}| = \varepsilon_0 \], \[|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| = \Gamma_0 \].
 Remember: these are theories with classical logic.

Problem

What about intuitionistic counterparts

Basic\(^{(i)}\)+Ext and Basic\(^{(i)}\) + Ext + \Delta_0\text{-Sep} ?

Solution
§2. Recent developments

- K. Sato [2009]: classical weak weak set theory Basic and beyond. We consider $\text{Basic} + \text{Ext}$ and its extensions.

- K. Sato [2009] (basic results):
 \[|\text{Basic} + \text{Ext}| = \varepsilon_0, \quad |\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| = \Gamma_0. \]
 Remember: these are theories with *classical* logic.

Problem

What about intuitionistic counterparts $\text{Basic}^{(i)} + \text{Ext}$ and $\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}$?

Solution

\[|\text{Basic}^{(i)} + \text{Ext}| = |\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0. \]

Moreover $\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}$ is i-conservative, and hence conservative extension of HA.
Generalizations

Note that Basic includes Clps (Collapsing):

\[
\text{Clps} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle / \in r') \land \text{WF}(x, r) \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y).
\]

but the rest is much weaker than Friedman's T_1.

Also consider Sato's strengthening Anti-Reg that is not in Basic (clearly Fnd and Anti-Reg are incompatible):

\[
\text{Anti-Reg} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle / \in r') \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y).
\]

Theorem Basic $(i) + \text{Ext} + \Delta^0_0 - \text{Sep} + \text{Exp} + \text{SC} + \text{Fnd}$ and Basic $(i) + \text{Ext} + \Delta^0_0 - \text{Sep} + \text{Exp} + \text{SC} + \text{Anti-Reg}$ are both conservative extensions of HA.

Stronger results to be discussed later.
Note that **Basic** includes **Clps** (Collapsing):

- **Clps** $\equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle \notin r') \land \WF(x, r) \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y)$

but the rest is much weaker than Friedman’s T_1.

Theorem

Basic $(i) + \text{Ext} + \Delta^0_0 - \text{Sep} + \text{Exp} + \text{SC} + \text{Fnd}$ and **Basic** $(i) + \text{Ext} + \Delta^0_0 - \text{Sep} + \text{Exp} + \text{SC} + \text{Anti-Reg}$ are both conservative extensions of HA.
Note that **Basic** includes **Clps** (Collapsing):

- \[\text{Clps} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle \notin r') \land \text{WF}(x, r) \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y) \]

but the rest is much weaker than Friedman’s \(T_1 \).

Also consider Sato’s strengthening **Anti-Reg** that is not in **Basic** (clearly **Fnd** and **Anti-Reg** are incompatible):
Generalizations

- Note that **Basic** includes **Clps** (Collapsing):
 - \(\text{Clps} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle \notin r') \land \text{WF}(x, r) \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y) \)

 but the rest is much weaker than Friedman’s \(T_1 \).

- Also consider Sato’s strengthening **Anti-Reg** that is not in **Basic** (clearly **Fnd** and **Anti-Reg** are incompatible):
 - \(\text{Anti-Reg} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle \notin r') \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y) \).
Generalizations

- Note that **Basic** includes **Clps** (Collapsing):

 \[
 \text{Clps} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \iff \langle s, t \rangle \notin r') \land \\
 \text{WF}(x, r) \to (\exists f, y) \text{TrClps}(f, x, r, y)
 \]

 but the rest is much weaker than Friedman’s \(T_1 \).

- Also consider Sato’s strengthening **Anti-Reg** that is not in **Basic** (clearly **Fnd** and **Anti-Reg** are incompatible):

 \[
 \text{Anti-Reg} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \iff \langle s, t \rangle \notin r') \to \\
 (\exists f, y) \text{TrClps}(f, x, r, y)
 \]

Theorem

Theorem Basic \(i \) + Ext + \(\Delta_0 \) - Sep + Exp + SC + Fnd and Basic \(i \) + Ext + \(\Delta_0 \) - Sep + Exp + SC + Anti-Reg are both conservative extensions of \(\text{HA} \).

Stronger results to be discussed later.
Generalizations

- Note that **Basic** includes **Clps** (Collapsing):

 \[
 \text{Clps} \equiv \text{Ord}(x) \land (\forall s, t \in x) ((s, t) \in r \leftrightarrow (s, t) \notin r') \land \\
 \text{WF}(x, r) \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y)
 \]

 but the rest is much weaker than Friedman's \(T_1 \).

- Also consider Sato's strengthening **Anti-Reg** that is not in **Basic** (clearly **Fnd** and **Anti-Reg** are incompatible):

 \[
 \text{Anti-Reg} \equiv \text{Ord}(x) \land (\forall s, t \in x) ((s, t) \in r \leftrightarrow (s, t) \notin r') \rightarrow \\
 (\exists f, y) \text{TrClps}(f, x, r, y).
 \]

Theorem

\[
\begin{align*}
\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \text{Exp} + \text{SC} + \text{Fnd} & \text{ and} \\
\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \text{Exp} + \text{SC} + \text{Anti-Reg} & \text{are both conservative extensions of HA.}
\end{align*}
\]
Note that **Basic** includes **Clps** (Collapsing):

\[
\text{Clps} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle \notin r') \land \\
\text{WF}(x, r) \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y)
\]

but the rest is much weaker than Friedman’s T_1.

Also consider Sato’s strengthening **Anti-Reg** that is not in **Basic** (clearly **Fnd** and **Anti-Reg** are incompatible):

\[
\text{Anti-Reg} \equiv \text{Ord}(x) \land (\forall s, t \in x) (\langle s, t \rangle \in r \leftrightarrow \langle s, t \rangle \notin r') \rightarrow \\
(\exists f, y) \text{TrClps}(f, x, r, y).
\]

Theorem

Basic$^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \text{Exp} + \text{SC} + \text{Fnd}$ and **Basic**$^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \text{Exp} + \text{SC} + \text{Anti-Reg}$

are both conservative extensions of HA.

- Stronger results to be discussed later.
Theorem K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (in fact $= \Gamma_0$).

Proof. Crucial inconstructive argument: all ordinals are comparable.

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via $\Delta_0\text{-Sep}$ that $(\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$.

Now by the IH we have: $(\forall \gamma' \in \gamma) (\forall \delta' \in \delta) (\gamma' \in \delta' \lor \gamma' = \delta' \lor \gamma' \ni \delta')$.

If $(\exists \gamma' \in \gamma) (\gamma' = \delta \lor \gamma' \ni \delta)$ then $\delta \in \gamma$.

Thus $\delta \in \gamma$ or $\gamma \subset \delta$, and similarly $\gamma \in \delta$ or $\delta \subset \gamma$.

But then $\delta \in \gamma \lor (\gamma \subset \delta \land \delta \subset \gamma) \lor \gamma \in \delta$, which by Ext yields $\delta \in \gamma \lor \delta = \gamma \lor \delta \ni \gamma$.

Hence $\alpha \in \beta \lor \alpha = \beta \lor \alpha \ni \beta$, as desired.

And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (in fact $= \Gamma_0$).

Proof. Crucial inconstructive argument: all ordinals are comparable.

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via Δ_0-Sep that $(\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$.

Now by the IH we have: $(\forall \gamma' \in \gamma) (\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)$ and $(\forall \delta' \in \delta) (\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')$.

If $(\exists \gamma' \in \gamma) (\gamma' = \delta \lor \gamma' \ni \delta)$ then $\delta \in \gamma$.

Thus $\delta \in \gamma$ or $\gamma \subset \delta$, and similarly $\gamma \in \delta$ or $\delta \subset \gamma$.

But then $\delta \in \gamma \lor (\gamma \subset \delta \land \delta \subset \gamma) \lor \gamma \in \delta$, which by Ext yields $\delta \in \gamma \lor \delta = \gamma \lor \delta \ni \gamma$.

Hence $\alpha \in \beta \lor \alpha = \beta \lor \alpha \ni \beta$, as desired.

And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
Theorem

K. Sato [2009]: \(|\text{Basic + Ext + } \Delta_0\text{-Sep}| \geq \Gamma_0 \ (\text{in fact } = \Gamma_0)\).
§3. More on Basic + Ext + Δ_0-Sep

Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (*in fact* $= \Gamma_0$).

Proof.

Crucial inconstructive argument: all ordinals are comparable.

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$.

We show by WF($\alpha + 1) \land \text{WF}(\beta + 1)$ via Δ_0-Sep that ($\forall \gamma \in \alpha + 1)$ ($\forall \delta \in \beta + 1)$ ($\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta$).

Now by the IH we have: ($\forall \gamma' \in \gamma)$ ($\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta$) and ($\forall \delta' \in \delta)$ ($\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta'$).

If ($\exists \gamma' \in \gamma)$ ($\gamma' = \delta \lor \gamma' \ni \delta$) then $\delta \in \gamma$.

Thus $\delta \in \gamma$ or $\gamma \subset \delta$, and similarly $\gamma \in \delta$ or $\delta \subset \gamma$.

But then $\delta \in \gamma \lor (\gamma \subset \delta \land \delta \subset \gamma) \lor \gamma \in \delta$, which by Ext yields $\delta \in \gamma \lor \delta = \gamma \lor \delta \ni \gamma$.

Hence $\alpha \in \beta \lor \alpha = \beta \lor \alpha \ni \beta$, as desired.

And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
§3. More on **Basic + Ext + Δ₀-Sep**

Theorem

K. Sato [2009]: \(|\text{Basic} + \text{Ext} + Δ₀-\text{Sep}| ≥ Γ₀ (in fact = Γ₀).

Proof.

Crucial **inconstructive** argument: all ordinals are comparable. *)
Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (in fact $= \Gamma_0$).

Proof.

Crucial *inconstructive* argument: all ordinals are comparable. *)
Let $\text{Ord} (\alpha) \land \text{Ord} (\beta)$.

*) And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
§3. More on Basic + Ext + Δ_0-Sep

Theorem

K. Sato [2009]: $|\text{Basic } + \text{ Ext } + \Delta_0\text{-Sep}| \geq \Gamma_0$ (in fact $= \Gamma_0$).

Proof.

Crucial inconstructive argument: all ordinals are comparable. *)

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via Δ_0-Sep that $(\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$.

*) And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
$\S 3$. More on $\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}$

Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (*in fact* $= \Gamma_0$).

Proof.

Crucial *inconstructive* argument: all ordinals are comparable. *)

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via $\Delta_0\text{-Sep}$ that $(\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$. Now by the IH we have: $(\forall \gamma' \in \gamma) (\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)$ and $(\forall \delta' \in \delta) (\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')$.

*) And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
§3. More on Basic + Ext + Δ_0-Sep

Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (*in fact $= \Gamma_0$*).

Proof.

Crucial *inconstructive* argument: all ordinals are comparable. *)

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via $\Delta_0\text{-Sep}$ that $(\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$.

Now by the IH we have: $(\forall \gamma' \in \gamma) (\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)$ and $(\forall \delta' \in \delta) (\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')$. If $(\exists \gamma' \in \gamma) (\gamma' = \delta \lor \gamma' \ni \delta)$ then $\delta \in \gamma$.
Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (in fact $= \Gamma_0$).

Proof.

Crucial inconstructive argument: all ordinals are comparable. *)

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via $\Delta_0\text{-Sep}$ that $(\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$. Now by the IH we have: $(\forall \gamma' \in \gamma) (\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)$ and $(\forall \delta' \in \delta) (\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')$. If $(\exists \gamma' \in \gamma) (\gamma' = \delta \lor \gamma' \ni \delta)$ then $\delta \in \gamma$. Thus $\delta \in \gamma$ or $\gamma \subset \delta$, and similarly $\gamma \in \delta$ or $\delta \subset \gamma$.

§3. More on Basic + Ext + Δ_0-Sep

Theorem

K. Sato [2009]: $|\text{Basic} + \text{Ext} + \Delta_0$-Sep$| \geq \Gamma_0$ (in fact $= \Gamma_0$).

Proof.

Crucial inconstructive argument: all ordinals are comparable. *)

Let Ord(α) \land Ord(β). We show by WF($\alpha + 1$) \land WF($\beta + 1$) via Δ_0-Sep that $(\forall \gamma \in \alpha + 1)(\forall \delta \in \beta + 1)(\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$. Now by the IH we have: $(\forall \gamma' \in \gamma)(\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)$ and $(\forall \delta' \in \delta)(\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')$. If $(\exists \gamma' \in \gamma)(\gamma' = \delta \lor \gamma' \ni \delta)$ then $\delta \in \gamma$. Thus $\delta \in \gamma$ or $\gamma \subset \delta$, and similarly $\gamma \in \delta$ or $\delta \subset \gamma$.

But then $\delta \in \gamma \lor (\gamma \subset \delta \land \delta \subset \gamma) \lor \gamma \in \delta$, which by Ext yields $\delta \in \gamma \lor \delta = \gamma \lor \delta \ni \gamma$.

* And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
§3. More on Basic + Ext + Δ_0-Sep

Theorem

K. Sato [2009]: $|\text{Basic + Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0$ (*in fact $= \Gamma_0$*).

Proof.

Crucial inconstructive argument: all ordinals are comparable. *)

Let $\text{Ord}(\alpha) \land \text{Ord}(\beta)$. We show by $\text{WF}(\alpha + 1) \land \text{WF}(\beta + 1)$ via $\Delta_0\text{-Sep}$ that $(\forall \gamma \in \alpha + 1)(\forall \delta \in \beta + 1)(\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)$. Now by the IH we have: $(\forall \gamma' \in \gamma)(\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)$ and $(\forall \delta' \in \delta)(\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')$. If $(\exists \gamma' \in \gamma)(\gamma' = \delta \lor \gamma' \ni \delta)$ then $\delta \in \gamma$. Thus $\delta \in \gamma$ or $\gamma \subset \delta$, and similarly $\gamma \in \delta$ or $\delta \subset \gamma$.

But then $\delta \in \gamma \lor (\gamma \subset \delta \land \delta \subset \gamma) \lor \gamma \in \delta$, which by Ext yields $\delta \in \gamma \lor \delta \lor \gamma \ni \gamma$. Hence $\alpha \in \beta \lor \alpha = \beta \lor \alpha \ni \beta$, as desired.

*) And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
§3. More on Basic + Ext + Δ_0-Sep

Theorem

K. Sato [2009]: \(|\text{Basic} + \text{Ext} + \Delta_0\text{-Sep}| \geq \Gamma_0 \) (in fact \(= \Gamma_0\)).

Proof.

Crucial inconstructive argument: all ordinals are comparable. *)

Let \(\text{Ord} (\alpha) \land \text{Ord} (\beta)\). We show by \(\text{WF} (\alpha + 1) \land \text{WF} (\beta + 1)\) via Δ_0-Sep that \((\forall \gamma \in \alpha + 1) (\forall \delta \in \beta + 1) (\gamma \in \delta \lor \gamma = \delta \lor \gamma \ni \delta)\). Now by the IH we have: \((\forall \gamma' \in \gamma) (\gamma' \in \delta \lor \gamma' = \delta \lor \gamma' \ni \delta)\) and \((\forall \delta' \in \delta) (\gamma \in \delta' \lor \gamma = \delta' \lor \gamma \ni \delta')\). If \((\exists \gamma' \in \gamma) (\gamma' = \delta \lor \gamma' \ni \delta)\) then \(\delta \in \gamma\). Thus \(\delta \in \gamma\) or \(\gamma \subset \delta\), and similarly \(\gamma \in \delta\) or \(\delta \subset \gamma\).

But then \(\delta \in \gamma \lor (\gamma \subset \delta \land \delta \subset \gamma) \lor \gamma \in \delta\), which by Ext yields \(\delta \in \gamma \lor \delta = \gamma \lor \delta \ni \gamma\). Hence \(\alpha \in \beta \lor \alpha = \beta \lor \alpha \ni \beta\), as desired.

*) And hence all countable well-orderings are mutually comparable, since Clps postulates that they can be collapsed to ordinals.
§4. Stronger results

Theorem And yet $\left| \left| \text{Basic} \left(i \right) + \text{Ext} + \Delta_0 - \text{Sep} \right| \right| = \epsilon_0$.

Actually we have: $\left| \left| \text{Basic} \left(i \right) + \text{Ext} + \Delta_0 - \text{Sep} + \Theta + \text{Fnd} \right| \right|$ and $\left| \left| \text{Basic} \left(i \right) + \text{Ext} + \Delta_0 - \text{Sep} + \Theta + \text{Cpl} \right| \right|$ are both conservative extensions of HA, where $\Theta = \text{Ful} + \text{AC}! + \text{SC} + \text{Enm}$ and $\Theta = \text{Cpl} \equiv r \subset x \times x \rightarrow (\exists f, y) \text{TrClps} (f, x, r, y)$, $\text{Enm} \equiv (\exists y \subset \omega) (\exists f) \text{Surj} (f, y, x)$, $\text{AC}! \equiv (\forall u \in x) \left(\exists! v \in y \psi (u, v) \rightarrow \exists f \left(\text{Func} (f, x, y) \land (\forall u \in x) \psi (u, f (u)) \right) \right)$, $\text{Ful} \equiv (\exists z) \left((\forall r \in z) \text{Tot} (r, x, y) \land (\forall r) (\text{Tot} (r, x, y) \rightarrow (\exists s \in z) (s \subset r \land \text{Tot} (s, x, y)) \right)$. $\text{Tot} (r, x, y) \equiv r \subset x \times y \land (\forall u \in x) (\exists v \in y) (\langle u, v \rangle \in r)$.
§4. Stronger results

Theorem

And yet ⏐⏐

Basic $(i) +$ Ext $+ ∆_0 - Sep ⏐⏐ = ε_0$.

Actually we have:

Basic $(i) +$ Ext $+ ∆_0 - Sep + Θ + Fnd$

and

Basic $(i) +$ Ext $+ ∆_0 - Sep + Θ + Cpl$

are both conservative extensions of HA, where

$Θ = Ful + AC! + SC + Enm$

and:

$Cpl ≡ r ⊂ x × x → (∃ f, y) TrClps (f, x, r, y)$,

$Enm ≡ (∃ y ⊂ ω) (∃ f) Surj (f, y, x)$,

$AC! ≡ (∀ u ∈ x) (∃! v ∈ y) ψ (u, v) → (∃ f (Func (f, x, y) ∧ (∀ u ∈ x) ψ (u, f (u))))$,

$Ful ≡ (∃ z) (∀ r ∈ z) (Tot (r, x, y) ∧ (∀ r) (Tot (r, x, y) → (∃ s ∈ z) (s ⊂ r ∧ Tot (s, x, y))))$,

$Tot (r, x, y) ≡ r ⊂ x × y ∧ (∀ u ∈ x) (∃ v ∈ y) (⟨ u, v ⟩ ∈ r)$.
§4. Stronger results

Theorem

And yet \(|\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0\).
§4. Stronger results

Theorem

And yet \(|\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0\). Actually we have:
Basic^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Fnd} and
Basic^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Cpl}
are both conservative extensions of HA, where
\Theta = \text{Ful} + \text{AC}! + \text{SC} + \text{Enm} and:
§4. Stronger results

Theorem

And yet $|\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0$. Actually we have:

$\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Fnd}$ and

$\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Cpl}$

are both conservative extensions of HA, where

$\Theta = \text{Ful} + \text{AC}! + \text{SC} + \text{Enm}$ and:

$\text{Cpl} \equiv r \subseteq x \times x \rightarrow (\exists f, y) \text{TrClps} (f, x, r, y)$,
§ 4. Stronger results

Theorem

And yet $|\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0$. Actually we have:

Basic$^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Fnd}$ and
Basic$^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Cpl}$

are both conservative extensions of HA, where

$\Theta = \text{Ful} + \text{AC}! + \text{SC} + \text{Enm}$ and:

$\text{Cpl} \equiv r \subset x \times x \rightarrow (\exists f, y) \text{TrClps}(f, x, r, y),$

$\text{Enm} \equiv (\exists y \subset \omega) (\exists f) \text{Surj}(f, y, x),$
§4. Stronger results

Theorem

And yet \(\lvert \text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} \rvert = \varepsilon_0 \). Actually we have:

Basic\(^{(i)}\) + Ext + \(\Delta_0\text{-Sep} + \Theta + \text{Fnd} \) and

Basic\(^{(i)}\) + Ext + \(\Delta_0\text{-Sep} + \Theta + \text{Cpl} \)

are both conservative extensions of HA, where

\(\Theta = \text{Ful} + \text{AC}! + \text{SC} + \text{Enm} \) and:

Cpl \(\equiv r \subset x \times x \rightarrow (\exists f, y) \text{TrClps} (f, x, r, y), \)

Enm \(\equiv (\exists y \subset \omega) (\exists f) \text{Surj} (f, y, x), \)

AC! \(\equiv (\forall u \in x) (\exists! v \in y) \psi (u, v) \rightarrow \exists f (\text{Func} (f, x, y) \land (\forall u \in x) \psi (u, f (u))) \)
§4. Stronger results

Theorem

And yet \(|\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0\). Actually we have:

\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Fnd} and

\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Cpl}

are both conservative extensions of HA, where

\[\Theta = \text{Ful} + \text{AC!} + \text{SC} + \text{Enm}\]

and:

\[\text{Cpl} \equiv r \subseteq x \times x \rightarrow (\exists f, y) \text{TrClps} (f, x, r, y),\]

\[\text{Enm} \equiv (\exists y \subseteq \omega) (\exists f) \text{Surj} (f, y, x),\]

\[\text{AC!} \equiv (\forall u \in x) (\exists! v \in y) \psi (u, v) \rightarrow \exists f (\text{Func} (f, x, y) \land (\forall u \in x) \psi (u, f (u)))\]

\[\text{Ful} \equiv \]

\[\exists z \left((\forall r \in z) \text{Tot} (r, x, y) \land \forall r \left((\text{Tot} (r, x, y) \rightarrow (\exists s \in z) \left(s \subseteq r \land \text{Tot} (s, x, y) \right) \right) \right), \]
§4. Stronger results

Theorem

And yet \(|\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep}| = \varepsilon_0\). Actually we have:

\[
\begin{align*}
\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Fnd} \quad &\text{and} \\
\text{Basic}^{(i)} + \text{Ext} + \Delta_0\text{-Sep} + \Theta + \text{Cpl} \\
\end{align*}
\]

are both conservative extensions of HA, where

\(\Theta = \text{Ful} + \text{AC!} + \text{SC} + \text{Enm}\) and:

\[
\begin{align*}
\text{Cpl} &\equiv r \subset x \times x \rightarrow (\exists f, y) \text{TrClps} (f, x, r, y), \\
\text{Enm} &\equiv (\exists y \subset \omega) (\exists f) \text{Surj} (f, y, x), \\
\text{AC!} &\equiv (\forall u \in x) (\exists ! v \in y) \psi (u, v) \rightarrow \\
&\exists f (\text{Func} (f, x, y) \land (\forall u \in x) \psi (u, f (u))) \\
\text{Ful} &\equiv \\
(\exists z) \left((\forall r \in z) \text{Tot} (r, x, y) \land \forall r \left(\left(\text{Tot} (r, x, y) \rightarrow (\exists s \in z) \\
(s \subset r \land \text{Tot} (s, x, y)) \right) \right) \right), \\
\end{align*}
\]

\(\text{Tot} (r, x, y) \equiv r \subset x \times y \land (\forall u \in x)(\exists v \in y)(\langle u, v \rangle \in r).\)
Remarks

Basic $i + \Delta_0$-Sep $\Theta + Fnd$ is a proper extension of Friedman's T_1. Within Basic $i + \Delta_0$-Sep Ful implies Exp (but not otherwise), both being much weaker than Pow.

Within Basic $i + \Delta_0$-Sep Enm: Cpl is equivalent to Anti-Reg.

For brevity we use standard constructive version of Ord (x):

$\text{Ord}(x) \equiv \text{POrd}(x) \land \emptyset \in x \land (\forall u)((\forall y \in x)(y \subset u \iff y \in u) \rightarrow x \subset u)$.

L. Gordeev

Proof-theoretic conservation of weak weak intuitionistic constructive set theories
Remarks

- **Basic**(i) + Ext + Δ_0-Sep + Θ + Fnd is a proper extension of Friedman’s T_1.
Remarks

- **Basic**(i) + Ext + Δ₀-Sep + Θ + Fnd is a proper extension of Friedman’s T_1.
- Within **Basic**(i) + Δ₀-Sep + SC, Ful implies Exp (but not otherwise), both being much weaker than Pow.
Basic\(^{(i)}\) + Ext + \(\Delta_0\)-Sep + \(\Theta\) + Fnd is a proper extension of Friedman’s \(T_1\).

Within Basic\(^{(i)}\) + \(\Delta_0\)-Sep + SC, Ful implies Exp (but not otherwise), both being much weaker than Pow.

Within Basic\(^{(i)}\) + \(\Delta_0\)-Sep + Enm : Cpl is equivalent to Anti-Reg.
Remarks

- **Basic\(^{(i)}\) + Ext + \(\Delta_0\)-Sep + \(\Theta\) + Fnd** is a proper extension of Friedman’s \(T_1\).
- Within **Basic\(^{(i)}\) + \(\Delta_0\)-Sep + SC**, **Ful** implies **Exp** (but not otherwise), both being much weaker than **Pow**.
- Within **Basic\(^{(i)}\) + \(\Delta_0\)-Sep + Enm**:
 - **Cpl** is equivalent to **Anti-Reg**.
- For brevity we use standard constructive version of \(\text{Ord}(x)\):
 \[
 \text{Ord}(x) \equiv P\text{Ord}(x) \land \emptyset \in x \land \\
 (\forall u)(((\forall y \in x)(y \subseteq u \iff y \in u) \rightarrow x \subseteq u)
 \]
The proofs run along the lines of L. G. [1982, 1988] in 3 steps:

1. Realizability bisimulation-interpretation of chosen extensional set theory T within suitable Feferman-style explicit intensional intuitionistic theory of functions and classes EFC.

2. Constructive cut elimination in EFC (most difficult part of proof).

3. Realizability elimination via forcing in explicit intuitionistic arithmetic EHA (along the lines of M. Beeson [1979]).

L. Gordeev

Proof-theoretic conservations of weak weak intuitionistic constructive set theories.
The proofs run along the lines of L. G. [1982, 1988] in 3 steps:
On proofs -1-

The proofs run along the lines of L. G. [1982, 1988] in 3 steps:

1. Realizability bisimulation-interpretation of chosen extensional set theory T within suitable Feferman-style explicit intensional intuitionistic theory of functions and classes EFC.

2. Constructive cut elimination in EFC (most difficult part of proof).

3. Realizability elimination via forcing in explicit intuitionistic arithmetic EHA (along the lines of M. Beeson [1979]).
The proofs run along the lines of L. G. [1982, 1988] in 3 steps:

1. Realizability bisimulation-interpretation of chosen extensional set theory T within suitable Feferman-style explicit intensional intuitionistic theory of functions and classes EFC

2. Constructive cut elimination in EFC (most difficult part of proof).
The proofs run along the lines of L. G. [1982, 1988] in 3 steps:

1. Realizability bisimulation-interpretation of chosen extensional set theory T within suitable Feferman-style explicit intensional intuitionistic theory of functions and classes EFC

2. Constructive cut elimination in EFC (most difficult part of proof).

3. Realizability elimination via forcing in explicit intuitionistic arithmetic EHA (along the lines of M. Beeson [1979]).
This yields for any arithmetical sentence A:

1. $T \vdash A \Rightarrow EFC \vdash (A$ realizable$)$,
2. $EFC \vdash (A$ realizable$) \Rightarrow EHA \vdash (A$ realizable$)$,
3. $EHA \vdash (A$ realizable$) \Rightarrow HA \vdash A$,

as desired.
This yields for any arithmetical sentence A:
This yields for any arithmetical sentence A:

1. $T \vdash A \Rightarrow EFC \vdash (A \text{ realizable}),$
This yields for any arithmetical sentence A:

1. $T \vdash A \Rightarrow EFC \vdash (A \text{ realizable})$,
2. $EFC \vdash (A \text{ realizable}) \Rightarrow EHA \vdash (A \text{ realizable})$, as desired.
This yields for any arithmetical sentence A:

1. $T \vdash A \Rightarrow EFC \vdash (A \text{ realizable})$,
2. $EFC \vdash (A \text{ realizable}) \Rightarrow EHA \vdash (A \text{ realizable})$,
3. $EHA \vdash (A \text{ realizable}) \Rightarrow HA \vdash A$, as desired.
Thanks for patience!