
Asynchronous Branch & Bound and A* for
DisWCSPs, with heuristic function based on

Consistency-Maintenance
Marius-Călin Silaghi† and Jerry Landwehr† and Javier Bondia Larrosa‡

†Florida Institute of Technology
‡Universitat Politècnica de Catalunya

Abstract.
Distributed weighted constraint satisfaction problems occur, for example, when

privacy requirements exclude the centralization of the problem description. New defi-
nitions of arc consistency (AC) and node consistency (NC*) for centralized weighted
constraint satisfaction problems (WCSP) have been recently proposed and prove in-
creased simplicity and effectiveness [4]. We show how they can be exploited in asyn-
chronous search: (a) Weighted Consistency Labels (WCL) are introduced to represent
costs inherent to each value of a variable in an explored subproblem. (b) A maximal
propagation of the weights with NC* can be guaranteed by either (b’) designating a
single agent for performing the summation of the costs synthesized by different agents
for the same value and subproblem, or (b”) having all agents learn and separately sum
up all such costs. (c) The obtained weights combined with asynchronous Branch &
Bound (B & B) leads to a distributed equivalent of powerful centralized versions of
B & B. (d) The heuristic function needed by asynchronous A* can also be extracted
from such costs computed concurrently with the search.

1 Introduction

An agent’s private requirements can often be formulated in a general framework such as
constraint satisfaction problems (i.e. where everything is modeled by either variables, values,
or constraints) and then can be solved with any of the applicable CSP techniques. But often
one has to also find agreements with the other agents for a solution from the set of possible
valuations of shared resources that satisfy her subproblem. The general framework modeling
this kind of distributed combinatorial problems is called Distributed Constraint Satisfaction.

In practice one often meets optimization problems. The techniques developed for satisfac-
tion problems have proven to be very useful when adapted to fit optimization problems (e.g.
arc consistency maintenance led to PFC-MRDAC [5]). Two simpler and efficient techniques,
W-AC and W-AC*, were recently developped for enforcing arc consistency in WCSPs [4].

Distributed Weighted CSPs (DisWCSPs) is a general formalism that can model negotia-
tion problems and can quantify their privacy requirements [15, 2, 14]. Here it is shown how a
basic technique for constraint satisfaction, namely maintainance of consistency can be com-
bined with W-AC* and applied to asynchronous Branch & Bound and A* for optimization in
DisWCSPs.

2 M. C. Silaghi and J. Landwehr and J. B. Larrosa

x1/x2 0 1 2 3
0 2 5 4 7
1 2 6 5 4
2 1 5 5 7
3 1 2 2 ∞

Figure 1: Example of a constraint in a WCSP.

We first introduce the distributed Weighted Constraint Satisfaction Problem and the notion
of arc consistency for weighted CSPs, W-AC*. The initial definition of W-AC* considered
only binary constraints, but its extension to n-ary constraints is so straightforward that we
present it directly. Next, we introduce the basic asynchronous backtracking algorithm for
solving distributed CSPs, ABT. Three incremental modifications to ABT are used to introduce
the proposed technique. A first small modification to ABT is ABT-cL, and is intended to allow
us more flexibility for future modifications. The second modification shows how Branch &
Bound can help ABT-cL to tackle distributed DisWCSPs. In the end, a set of alternative ways
of maintaining arc consistency are analyzed and compared theoretically.

2 Distributed Weighted CSPs

CSP A constraint satisfaction problem (CSP) is defined by three sets: (X , D, C). X =
{x1, ..., xn} is a set of variables and D = {D1, ..., Dn} is a set of domains such that xi can
take values only from Di. C = {φ1, ..., φc} is a set of constraints such that φi is a pred-
icate over an ordered subset Xi of the variables in X , Xi ⊆ X . An assignment is a pair
〈xi, v〉 meaning that the variable xi is assigned the value v. φi specifies the legality of each
combination of assignments to the variables in Xi with values in their domains.

A tuple is an ordered set. The projection of the set of assignments in a tuple ε over a tuple
of variables Xi is denoted ε|Xi . A solution of a CSP (X , D, C) is a tuple of assignments ε∗
with one assignment for each variable inX (i.e. ε∗∈D1×...×Dn) such that all the constraints
φi ∈ C are satisfied by ε ∗ |Xi .

Constraint Satisfaction Problems (CSPs) do not model optimization requirements. An
extension allowing for modeling optimization concerns is given by Weighted CSPs.

Definition 1 (WCSP). A Weighted CSP is defined by a triplet of sets (X,D,C) and a bound
B. X and D are defined as in CSPs. In contrast to CSPs, C={φ1, ..., φc} is a set of functions,
φi : Di1×...×Dimi

→ IN∞ where mi is the arity of φi.
Its solution is ε∗ = argmin

ε∈D1×...×Dn

∑c
i=1 φi(ε|Xi), if

∑c
i=1 φi(ε ∗ |Xi) < B.

Example 1. An example of a binary constraint in WCSPs is given in Figure 1. It is known that
any maximization problem can be straightforwardly translated into a minimization problem.
Weighted CSP can be also distributed.

A Distributed CSP (DisCSP) is defined by four sets (A,X,D,C). A={A1, ..., An} is a set
of agents. X , D, C and the solution are defined like in CSPs except that |C|=|X|=|A|=n.
Assignments for each variable xi can be proposed only by Ai. Each constraint φi is defined
only on xi and its predecessors, and is known only by Ai.

Asynchronous B & B and A* for DisWCSPs 3

Definition 2 (DisWCSP). A Distributed Weighted CSP is defined by four sets (A,X,D,C)
and a bound B. A,X,D are defined as for DisCSPs. In contrast to DisCSPs, C is a set of
functions φi : Di1×...×Diki

→ IN∞ defined on xi and on some of its predecessors, and
known only by Ai.

Its solution is ε∗ = argmin
ε∈D1×...×Dn

∑c
i=1 φi(ε|Xi), if

∑c
i=1 φi(ε ∗ |Xi) < B.

Arc consistency We recall (see any basic AI manual like Russell&Norvig’s [10]) that local
arc/bound consistency is a property of a labeling of variables for a CSP. A label for xi is
nothing else than a set of values containing the possible valuations of xi. In initial problem
descriptions variables may also have in their domains values that no not appear in any solu-
tion. While such values add exponential complexity to systematic search techniques, some of
them can be detected and eliminated with local observations on small subproblems bounded
by a predefined size. These eliminations require an effort that is only polynomial in the size
of the global problem. Therefore, recalculation/shrinking of labels based on local reasoning
is a principled technique, very recommended, specially in its forms where cost complexity is
of a low polynomial degree (achievement of node, arc, bound, singleton consistencies).

W-AC* W-AC* is a recent notion of consistency in WCSPs based on an inherent cost of
the problem, C∅, common to any solution. It also employs Cxi [v], an inherent cost of each
value v for each variable xi.Cxi [v] is an additional cost (besidesC∅) appearing in any solution
where v is assigned to xi. It is defined based on an upper boundB for the cost of an acceptable
solution. The initial definition of W-AC* considered only binary constraints, but its extension
to n-ary constraints is straightforward and we present it directly.

Definition 3 (NC*). Let P = (X,D,C) be a WCSP with B the lowest known upper bound
for an acceptable solution. 〈xi, v〉 is node consistent if C∅ + Cxi [v] < B. Variable xi is node
consistent if: i) all its values are node consistent and ii) there exists a value v ∈ Di such
that Cxi [v] = 0. Value v is a support for variable’s xi node consistency. P is node consistent
(NC*) if every variable is node consistent.

Definition 4 (AC*). 〈xi, v〉 is arc consistent with respect to constraint φk if it is NC* node
consistent and there is a tuple of assignments ε for all variables in Xk such that ε|{xi} =
{〈xi, v〉} and φk(ε) = 0. Tuple ε is called a support of v. Variable xi is arc consistent if
all its values are arc consistent with respect to every constraint affecting xi. A WCSP is arc
consistent (AC) if every variable is arc consistent.

InitiallyCx[v] andC∅ are set to 0. For n-ary WCSPs, W-AC* runs by iteratively increasing
different Cx[v] by projections from some constraint φk, or decreasing a Cx[v] by projecting
it unto C∅, until a fix point is achieved. Namely, the fix point may depend on the order of
the operations. Cx[v] is increased by subtracting and transferring to it min{ε|〈x,v〉∈ε} φk(ε|Xk),
from all the values {φk(ε|Xk)|〈x, v〉 ∈ ε}, enforcing AC arc consistency. Each value v such
that Cx[v]+C∅ is higher than the current bound for acceptable solution is removed, achieving
NC consistency. A common share of minv Cx[v] of each weight accumulated in Cx[v] is
transferred to C∅, and this last type of operation obtains what is called NC* node consistency.

4 M. C. Silaghi and J. Landwehr and J. B. Larrosa

3 Asynchronous algorithms

In solving distributed problems, needs of synchronization make the whole system run at the
speed of the slowest link. Synchronizations also force agents to communicate all the private
information due in that round (usually called epoch), even if some divulgations can be proven
unnecessary by subsequent communications.

A solution is to let the distributed solving run asynchronously. Namely the agents need not
synchronize but rather they can flexibly exchange messages of several types. Only a subset
of these messages are required in order to guarantee correctness properties, but even those
messages can be sent with a bounded delay. As explained before, this improves robustness to
slow links and handling of privacy. [13, 1].

We propose an asynchronous algorithm that exploits consistency maintainance concur-
rently with search in a way that lets the most promising behavior to emerge. It consist in
running asynchronous backtracking (ABT), on top of which distributed ’local’ consistency
achievement is enforced independently and concurrently on several subproblems that are de-
fined dynamically.

ABT ABT is a technique currently known for solving DisCSPs, where each agent Ai asyn-
chronously and concurrently with the other agents performs Backtracking’s actions to assign
xi with a value from Di [16]. The assignment is announced via ok? messages to lower pri-
ority agents, namely agents Aj , j>i. In making her assignment Ai must satisfy φi given the
other assignments she knows for Xi from higher priority agents. When this task is impossi-
ble, Ai announces the lowest priority agent Ak among those whose assignments explain the
conflict, by sending her the explanation. A conflict explanation is called nogood and consist
of the set of inconsistent assignments. This explanation is integrated in φk. Ai also removes
that assignment of xk, which should allow her to now make her assignment or find a second
conflict (recursively calling backtrack).

A further improvement consists of allowing agents to send new assignments and labels
for a variable xi only to those agents Aj that have constraints involving xi. We say that Aj is
interested in xi. When a new agent receives a conflict explanation creating a constraint on a
new variable xk, it announces this to Ak via an add-link message.

Algorithms 1 and 2 contain the pseudocode performing the functionalities described
above. check agent view is where agents try to make their assignment and backtrack is
where they treat conflicts as described above. Each agent Ai maintains a set outgoing-links
naming the other agents having constraints on the variable it owns, xi. It also maintains an
agent-view, namely the set of latest proposals received from each agent and that are still valid
(i.e. they are not yet expected to have been changed). Agents exchange ok?, add-link, and
nogood messages with instantiation proposals, interests, respectively nogoods:

• ok? messages are sent from Ai to lower priority agents proposing a value vi for xi (times-
tamped with cxi).

• add-link messages are sent from an agentAi to a higher priority agentAj to show interest
in current and future proposals for xj . It is normally due to the acquisition of constraints
on xj by Ai.

• nogood messages are sent from an agent Ai to a higher priority agent Aj to announce
an impossible partial valuation of even higher priority proposals due to the value of xj it

Asynchronous B & B and A* for DisWCSPs 5

when received (ok?,〈xj, vj, , cxj〉) do
if(old cxj) then return;
if(j≤cLi) then cLi←i//only in ABT-cL;

1.1 add(xj ,vj ,cxj) to agent view;
eliminate invalidated nogoods;
maintain consistency(j)//only in DisWMAC;
check agent view; //only satisfies consistency nogoods of levels t, t<cLi, in ABT-cL;

end do.
procedure check agent view do

when agent view and current value are not consistent //cf. nogoods of levels t, t<cLi
if no value in Di is consistent with agent view then

backtrack;
else

select d ∈ Di where agent view and d are consistent;
current value← v; C i

xi
++;

send (ok?,〈xi, v, C i
xi
〉) to lower priority agents in outgoing links;

end
end do.

Algorithm 1: Procedures ofAi for receiving ok? messages in ABT, ABT-cL, and DisWMAC.

knows.

4 Preliminary adjustments

First modification: ABT-cL In ABT, when a nogood is sent toAj , xj is expected to change
and is therefore removed from agent view. In typical versions with polynomial space require-
ments, forgetting assignments leads to forgetting the nogoods in which they are involved.

We do not want to forget data structures (namely consistency labels) that may be stored
by other agents. This can lead to persistent inconsistency in the views of the agents and a
distributed W-AC* algorithm may not converge to a consistent fix point.

For integration with the proposed algorithm, a threshold cLi is introduced for each agent
Ai (initially having value i). An agent checks the consistency of an assignment only versus
assignments received from agents Aj , j<cLi. When a nogood is sent to Ak, cLi is reduced to
k. The agent can try again to make her assignment. cLi is reset to i when an ok? message is
received from Ak, k≤cLi. This version is called ABT-cL.

Lemma 1. After each sending of a nogood message (which reduces the cLi), either Ai will
eventually receive an assignment for a variable xj , j≤cLi (which resets cLi to i), or failure is
detected.

Proof The agent AcLi will either change its assignment, or the conflict specified in the
nogood is invalidated by some previous change of assignment, or recursively AcLi sends a
nogood for which it expects a new assignment.

The recursion either goes until an empty nogood is detected (e.g. at latest by the first
agent), and failure is detected, or changes of assignments are found to invalidate all the con-
flicts specified in the generated nogoods (to a variable xj, j<cLi from the nogood). q.e.d.

Theorem 1. ABT-cL is correct, complete and terminates.

6 M. C. Silaghi and J. Landwehr and J. B. Larrosa

when received (nogood,Aj ,¬N) do
if (((〈xi, v, c〉∈N ∧ (Ai knows (M→(xi 6=v)))∧¬(better¬N than¬M))∨ invalid(¬N)))
then

if (current version stores all nogoods) then
when 〈xk, vk, tk〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, vk, tk〉 to agent view;

store ¬N ;
end

else
when 〈xk, vk, tk〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, vk, tk〉 to agent view;

put ¬N in nogood-list for xi=v;
add all new assignments in ¬N to agent view;

2.1 reconsider stored and invalidated nogoods;
end
maintain consistency(smallest modified level)//only DisWMAC;
check agent view;

end do.
procedure backtrack do

nogoods←{V |V=inconsistent subset of agent view≤ cLi};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution; terminate this algorithm;

for every V ∈ nogoods do
select 〈xj, vj, txj〉 where xj has the lowest priority in V ;

2.2 send (nogood,Ai,V) to Aj;
cLi←j−1 // only ABT-cLi;

end do
check agent view;

end do.
Algorithm 2: Procedures of Ai for receiving nogood messages in ABT, ABT-cL, and Dis-
WMAC.

Proof Correctness (i.e. at quiescence the state is a solution): From Lemma 1 it results
that at quiescence (without detecting failure) all cLi are equal with i. Also, at quiescence all
agents know the last assignments of their predecessors based on timestamps. Therefore each
agent Ai is consistent with all assignments to previous variables having φi satisfied. This
means that the set of all assignments satisfies all constraints.
Completeness (i.e. failure cannot be detected if there is a solution): All used nogoods are
generated based on logical inference. No failure can therefore be inferred if a solution exists.
Termination: Recursively for i growing from 1 to n, once agents Aj, j<i no longer change
their assignments, Ai either exhausts its domain generating a valid nogood leading to failure
in finite time, or one of its proposals will never be refused with a nogood. q.e.d.

The technique proposed in ABT-cL is somewhat similar to a mechanism we used in [11],
but here the reseting of cLi to i on the receipt of an ok? message had to be made explicit.

Asynchronous B & B and A* for DisWCSPs 7

when received (solution,B) do
add φ(x) to the set of local constraints:

φ(x) =

{ ∞ if
∑

known xci
xci≥B

0 if
∑

known xci
xci<B

end do.
procedure solution-detected (solution) do

B ←∑
(xci ,Ci,ki)∈solution

Ci;
broadcast (solution,B)

end do.
Algorithm 3: Procedure of Ai for receiving solution messages in ABT-cL-BB. All other
procedures are inherited from ABT-cL. The procedure solution-detected is run by whoever
detects and builds the solution. If each agent builds the solution separately then the message
needs not be broadcast but just delivered locally.

Second modification: Branch and Bound Soft (weighted) constraints alone cannot be
used to prune the search space. The extension of ABT-cL to DisWCSPs is based on exploiting
the hard constraints (bounds) defined by already found solutions. Let us introduce a new
variable xci , xci≥0 for each agent Ai. These variables model the cost of the current proposal,
i.e. the value of φi. Since all agents are interested in the variables xci , all the agents are in the
outgoing-links of each agent Ai for the variable xci . Ai proposes xci=k when his proposal for
xi has cost of local constraints k.

Example 2. E.g. consider A2 having φ2 given in Figure 1, and having in her agent view
x1 = 0. xc2 is assigned k=4 when the proposal of A2 is x2 = 2.

If her agent view is empty, A2 picks a cost of her choice among those possible for her
proposal. E.g. when proposing x2 = 2 without knowing x1, A2 could pick xc2 = 2 (which is
otherwise true only if x1 = 3).

In Branch & Bound (B & B) the idea is to discard search paths for which it is proven that
any enclosed solution is more expensive than some already found solution. Any solution with
value B defines therefore a nogood (i.e. dynamically inferred constraint),

∑
i xci<B, that is

broadcast to all agents. It is known that xci≥0, therefore each agent can enforce the weaker
constraint: ∑

known xci

xci<B

No other modification is required and a new B & B algorithm is obtained. The last found
solution is optimal. This algorithm is called ABT-cL-BB.

Remark 1. With ABT-cL-BB, the value of a solution is given by the sum of the values assigned
in it to the xci variables.

Each time that a solution is detected, a solution message is broadcast to participants, hav-
ing as parameter the value B of the obtained solution. Algorithm 3 shows how the constraint∑

i xci<B is added to each agent. Initially B =∞ and agents enforce
∑

i xci<∞.

Proposition 2. ABT-cL-BB is correct, complet, terminates, and finds the optimal solution.

8 M. C. Silaghi and J. Landwehr and J. B. Larrosa

Proof. The proof is immediate from the correctness of ABT-cL and by construction (intro-
duction of B & B behavior which is known to be correct).

It was already mentioned that Branch & Bound can be added to several asynchronous
techniques [12]. There is no specific difference in the way in which it was added here to
ABT-cL.

5 Asynchronous maintainance of W-AC*

We propose to maintain arc consistency concurrently for each subproblem Pk, k∈{0..n}, gen-
erated by adding to DisWCSP the last proposed assignments of agents Ai, i≤k. Intuitively,
this is done by having each agent Aj, j>k asynchronously and concurrently compute consis-
tent labels for her view of the problem Pk. Her view of a DisWCSP consists of φj and of the
labels it knows. The labels modified by this computation are sent by Aj to all agents Ai, i≥k.

5.1 Factoring out weights

In the previous section it can be noticed that in ABT-cL-BB, cost conflicts were only detected
from partial valuations. A better idea has been introduced for centralized techniques in [5,
6, 9], where propagation of labels also estimate costs. The most promising among them is
W-AC*. We propose to exchange W-AC* labels, Cx and C∅, obtained by Ai together with the
assignments explaining them, under the form of a Weighted Consistency Label which has a
stand-alone logic semantic.

Definition 5 (Weighted Consistency Label). A weighted consistency label (WCL) for a level
(i.e. search depth) k and a variable x has the form 〈Ai, x, k, C

i
x[k], C i

∅[k], V 〉.
V is a set of assignments. Any assignment in V must have been proposed by Ak or its

predecessors. Ai is the agent computing the WCL. C i
x is a set of inherent additional costs of

each value of x given V and when the cost inherent to the problem of Ai is C i
∅[k].

An assignment is valid if no assignment with a newer timestamp is known for the same
variable.

Definition 6 (valid weighted nogood). A WCL is valid only as long as all the assignments
involved in it are valid.

5.2 Considerations in chosing Data Structures for DisWMAC

The family of algorithms proposed here, DisWMAC, builds on ABT-cL-BB by adding the
use of WCLs for propagating costs.

The following approaches are known for maintaining data structures with nogood-based
consistency (considering that labels are treated as ranges):

• DMAC0: Storing only the last valid consistency nogood (CN) per variable (related to
what was done in [3] for each value).

• DMAC1: Storing only the last valid CN per variable per search depth (as in MHDC [12]).

• DMAC2: Storing only the last valid CN per variable per search depth per agent generating
CNs (as in the version of DMAC proposed in [11]).

Asynchronous B & B and A* for DisWCSPs 9

• DMAC3: Storing only the last valid CN per variable per search depth per agent generating
CNs and per agent whose constraints are not involved in the CN (as in [12] for robustness
in treating openness).

All of the previous four alternatives translate to DisWMAC, storing WCLs instead of
CNs.

We recall that maintainance of W-AC* is done by modifying constraints. Therefore the
agents also need to store a distinct copy of her constraint for each consistency level, tagged
with the view based on which it was modified. The resulting techniques are therefore called:
DisWMAC0, DisWMAC1, DisWMAC2, DisWMAC3.

In the previous versions each agent reinforces separately the consistency of the labels.
With W-AC*, the problem common cost C∅ cannot be reliable computed locally if an agent
does not know all the labels of all variables. This requires that every WCL is sent to all agents
in that level.

A way to alleviate this requirement is by deciding agents responsible for the fraction ofC∅
coming out of each variable. Namely, Ai will be responsible for computing and distributing
the increment of C∅ that is obtained from Cxi . In the obtained scheme, DisWMAC4, each
agent Ai needs to store for each level k, and agent Aj:

• the last WCL received from Aj for the variable xi at level k, including the last Cj
∅ [k]

received from each Aj ,

• and a WCL for each xj from agent Aj .

The advantage of DisWMAC4 is that Ai will not need to announce everybody each change
in each set C i

x[k]. She only needs to announce changes of C i
xj

[k] to Aj . Changes to C i
∅[k] still

have to be announced to all agentsAj, j≥k.Ai is the single agent that can know all the values
that can be safely removed from the domain of xi and on each modification of the label of xi
at level k it has to send a WCL to each other agent Aj, j≥k.

5.3 The DisWMAC4 Algorithm

The DisWMAC4 algorithm illustrates well the tradeoffs in maintaining W-AC*. As shown
before, W-AC*, maintains an inherent cost of the problem, C∅, that will be in any solution.
It also maintains an incremental inherent cost of each value v for each variable x, Cx[v].
Cx[v] occurs in any solution where x is assigned to v. In DisWMAC4, Ai is responsible for
computing and distributing the increment of C∅ that can be obtained from Cxi . The structures
used in Algorithm 4 are:

• B is the cost of best solution announce so far.

• ckxv(j, i) is the last timestamp received by Ai from Aj for a WCL for xv at level k. In
DisWMAC4 v is either j or i.

• φi[k], is the vector of weighted constraints ofAi at each level k together with an explaining
view.

• Ki
xj

[k] is the inherent cost vector for each value of variable xj as inferred from the con-
straints of Ai at level k. It is computed by Ai and sent only to Aj together with an ex-
plaining view.

10 M. C. Silaghi and J. Landwehr and J. B. Larrosa

when received(propagate,Aj ,xv,k,C ′jxv [k],Cj
∅ [k],ckxv(j), V) do

3.1 when have higher tag ckxv(j, i)≥ckxv(j) then return;
ckxv(j, i)← ckxv(j);
when any 〈x, v, c〉 in V is invalid (old c) then return;
when 〈xu, vu, cu〉, with a not connected xu is in V

send add-link to Au;
add 〈xu, vu, cu〉 to agent view;

3.2 add other new assignments in V to agent view;
eliminate invalidated nogoods and structures;
if (i=v) store C ′jxv [k] as Kj

xi
[k], else as Cj

xv [k];
also store Cj

∅ [k], both tagged by V;
maintain consistency(min level that is modified);
check agent view; //up to level t, t≤cLi;

end do.
procedure maintain consistency(minT) do

if (minT > cLi) then return;
3.3 for (t←minT; t≤i; t++) do

new-cns← local-W-AC*(t);
when (domain wipe out explained by nogoods)

if finding an empty nogood then
broadcast failure;

end
for every V ∈ nogoods do

select 〈xj, vj, cxj〉 where xj has the lowest priority in V ;
3.4 send (nogood,Ai,V) to Aj;

cLi ←min(j,cLi);
end do
break;

for every (K i
xu [t],V i

u [t]) ∈ new-cns do
when C i

xu [t] is modified
ctxu(i)++;

3.5 send (propagate,Ai,xu,t,K i
xu [t],C i

∅[t], c
t
xu , V i

u [t]) to Au;
end do
when C i

xi
[t] is modified

3.6 send (propagate,Ai,xi,t,C i
xi

[t],C i
∅[t],c

t
xi

,V i
i [t]) to all other agents Aj, j≥t inter-

ested in xi;
when C i

∅[t] is modified
3.7 send (propagate,Ai,xi,t,C i

xi
[t],C i

∅[t],c
t
xi

,V i
i [t]) to all other agents Aj, j≥t;

end
end do.

Algorithm 4: Processing received WCLs.

• Cj
∅ [k] is the inherent cost due to the variable xi at level k. It is computed and distributed

by Aj together with an explaining view.

• Ci
xj

[k] is the currently accumulated cost of all agents for assigning xj to any of its values

Asynchronous B & B and A* for DisWCSPs 11

procedure local-W-AC* (t) do
update C i

xi
[t] and C i

∅[t]; C∅ ←
∑

j C
j
∅ [t];

until convergence;
4.1 for every variable xv achieve NC for xv in φi[t];

for every active value u of xv do
if value u in xv has no support on a variable than create support for xv=u, transfering
φi[t] tuple weights unto K i

xv [t][u];
Ki
xi

[t][u] propagates to C i
xi

[t][u];
4.2 enforce NC* of xi by reducing C i

xi
[t][u] unto C i

∅;
4.3 reinforce NC on xv considering weight increments

of K i
xv [k];

end do
return set of modified pairs (K i

xu [k],V i
u [k]);

end do.
Algorithm 5: Local W-AC* computation.

in the current search branch at level k. It is summed up and distributed by Aj together
with an explaining view.

• C∅[k], is the global cost used during local W-AC* computations at level k.

Each agent Ai locally enforces W-AC* at each level k, where C∅ is given by the sum
between all received Cj

∅ [k] and a C i
∅[k] that can be extracted from summing learned vectors

Kj
xi

[k] for each j. For this each agent computes the sum of all K j
xi

[k] that she learns and
decomposes it into a C i

∅[k] and a C i
xi

[k] by enforcing NC*.
Ci
∅[k] and C i

xi
[k] must be recomputed on each relevant change. Each agent Ai computes

its C i
∅[k] by applying NC* only on xi. All other variables are made consistent with NC. Also,

each agent Ai sends with WCLs for xi, C i
xi

[k], while for other variables xj it sends K i
xj

[k].
The improvement suggested at line 4.3 allows to avoid need of communication for propagat-
ing locally prunnings of a foreign variable detected by an agent. WCNs are exchanged via a
new type of messages, propagate, and a pseudocode of the described technique is proposed
in Algorithm 4.

Remark 2. When the value transfered by AC from the weights of a constraint φi[k] to C i
x[v]

is∞, then all the weights of φi[k] for x=v can be set to 0 (this changes nothing as they are
anyhow removed by NC).

Lemma 2. Distributed W-AC* for a subproblem defined by a given set of assignments V
converges in finite time.

Proof Distributed W-AC* only sends a propagate message if:

• An infinite weight of φi is reduced to 0, to increase an element of a vector C i
x (see Re-

mark 2).

• A non-infinite weight of φi is reduced to increase an element of a vector C i
x.

• If weights of C i
x are transfered to C i

∅.

12 M. C. Silaghi and J. Landwehr and J. B. Larrosa

Since the sum of non-infinite weights of each φi is finite, the total number of such op-
erations that is possible is finite, therefore the distributed W-AC* terminates in finite time.
q.e.d.

Theorem 3. DisWMAC4 is correct, complet and terminates.

Proof Correctness (at quiescence without detecting failure the valuation is a solution):
As in Theorem 1, from Lemma 1 it results that if no failure is detected then each agent is
consistent with predecessors and all constraints are satisfied at quiescence.
Completeness (no failure can be detected if a solution exists): All value removals and needs
of assignment changes in each subproblem are based on logical inference. Therefore, if a
solution exists no failure can be inferred.
Termination: Similarly to Theorem 1, recursively it can be shown that in finite time after
agentsAj, j<i no longer change their assignments,Ai will stop receiving propagate messages
as the distributed W-AC* is known to converge. Then either Ai generates a valid nogood
leading to detection of failure, or one of its proposals will never be rejected with nogoods.
The removal of additional values from domains can only speed up termination. q.e.d.

Example 3. Two possible runs of DisWMAC4 for a DisWCSP with two agentsA1 andA2 and
a single constraint (between x1 and x2) enforced by A2 is shown in Figure 2. The constraint
of A2 is the one in Figure 1. The traces differ by the order in which local-W-AC* enforces AC
on its variables. Here we do not detail the way in which an agent S can detect the solution,
as several such techniques are well known. The first found solution has cost 2, and after this
bound is added as a constraint by everybody, the next found solution has cost 1. When the
bound 1 is added, A2 can immediately detect that there is no better solution than this.

6 Discussion

DisWMAC3 The DisWMAC3 algorithm needs slightly more structures as each agent must
store all Kj

x[k] of each other agent. It also requires that each change of K i
xj

[k] be sent to
all other agents At, t≥k, while DisWMAC4 does so only for changes in C i

∅[k] (see lines 3.7
and 3.6). Nevertheless, DisWMAC3 is simpler, not having to communicate anyC i

∅[k], as each
agent detects them locally. Moreover, the communication delay can be reduced by half due
to the fact that no intemediary agent stays in the middle of a communication.

A* Recently, another technique, called Adopt [8], shows how A* value ordering heuristic
can be introduced in ABT. The Maintaining Consistency technique proposed here acts in
DisWMAC as a heuristic estimator in each node. When the algorithm works in A* mode,
namely abandoning each node when its heuristic value is higher than the value of another
alternative, then the theory of A* applies. In this case, a dominant heuristic expands a strictly
smaller search space.

Definition 7. In asynchronous A* search, a heuristic function h1 is dominant over h2 if at
anytime, the value it estimates is higher or equal to h2, and still admissible (optimistic).

Using a powerful technique for estimating the heuristic function is dominant only as far
as it performs constantly better. In practice it is seldom that two search techniques can be
compared in this way. Experimentation is therefore required to verify which one works better,
but one expects that a technique that in general is better in search, is also better as a heuristic.

Asynchronous B & B and A* for DisWCSPs 13

First scenario:

1: A1 ok?〈x1, 0, 1〉〈xc1 , 0, 1〉 → A2

2: A2 –propagate(A2,x1,0,(2,2,1,1),0,∅)– → A1

3: A2 –propagate(A2,x2,0,(0,1,1,2),0,∅)– → A1

4: A2 –propagate(A2,x1,1,(,2, ,),0,〈x1, 0, 1〉)–→ A1

5: A2 –propagate(A2,x2,1,(0,2,3,2),0,〈x1, 0, 1〉)–→ A1

6: S solution(2) → everybody
7: A2 nogood(〈x1, 0, 1〉) → A1

8: A1 ok?〈x1, 1, 2〉〈xc1 , 0, 2〉 → A2

9: A2 nogood(〈x1, 1, 2〉) → A1

10: A1 ok?〈x1, 2, 3〉〈xc1 , 0, 3〉 → A2

11: A2 –propagate(A2,x1,1,(, ,1,),0,〈x1, 2, 3〉)–→ A1

12: A2 –propagate(A2,x2,1,(0,4,4,6),0,〈x1, 2, 3〉)–→ A1

13: S solution(1) → everybody
14: A2 nogood(fail) → everybody

Second scenario:

1: A1 ok?〈x1, 0, 1〉〈xc1 , 0, 1〉 → A2

2: A2 –propagate(A2,x2,0,(0,1,1,3),1,∅)– → A1

3: A2 –propagate(A2,x1,0,(1,1,0,0),1,∅)– → A1

4: A2 –propagate(A2,x2,1,(1,4,3,2),2,〈x1, 0, 1〉)–→ A1

5: A2 –propagate(A2,x1,1,(,0, ,),2,〈x1, 0, 1〉)–→ A1

6: S solution(2) → everybody
7: A2 nogood(〈x1, 0, 1〉) → A1

8: A1 ok?〈x1, 1, 2〉〈xc1 , 0, 2〉 → A2

9: A2 nogood(〈x1, 1, 2〉) → A1

10: A1 ok?〈x1, 2, 3〉〈xc1 , 0, 3〉 → A2

11: A2 –propagate(A2,x2,1,(0,4,4,6),1,〈x1, 2, 3〉)–→ A1

12: A2 –propagate(A2,x1,1,(, ,0,),1,〈x1, 2, 3〉)–→ A1

13: S solution(1) → everybody
14: A2 nogood(fail) → everybody

Figure 2: For different orders of variables in W-AC*, two traces of DisWMAC4 when the constraint in the first
example is the only one in the problem with two agents, A1 and A2, where the solution is detected by some
agent S.

7 Conclusions

Distributed optimization is an expensive task. Most approaches use hill-climbing and ap-
proximate techniques [7]. Several other synchronous Branch & Bound and A* techniques
appeared last decade mainly in work reported by Dr. Yokoo’s team. Preliminary tests that
we performed on ABT/AAS based B & B have shown the technique to be prohibitively ex-
pensive on a simple real-world problem. While it is not yet known how the two existing
asynchronous optimization techniques compare (namely asynchronous A* vs asynchronous
Branch & Bound), here we have shown a powerful heuristic that can be used with both of
them. In as much as consistency maintenance dominates forward checking, the new heuristic
promises to dominate the ones used so far.

The main new ideas proposed in this article are that:

1. Consistency achievement or maintenance in Weighted DisCSPs can be performed if ABT-
cL-BB is enriched to a more general concept: The Weighted Consistency Label (WCL).

2. An asynchronous equivalent of the best available centralized technique, B & B with W-

14 M. C. Silaghi and J. Landwehr and J. B. Larrosa

AC*, is obtained by mixing the aforementioned consistency maintenance with Branch &
Bound.

3. The feedback that A* needs about low bounds on constraints of successor agents, can be
extracted using cost attached to labels in WCLs and detected by the previously mentioned
’local’ consistency process.

In this paper we outlined the steps required for asynchronizing B & B with W-AC for
Distributed Weighted CSPs.

References

[1] J. Denzinger, M. Silaghi, and M. Yokoo. Distributed constraint reasoning. In IJCAI Tutorial SP3, 2003.

[2] Boi Faltings. Incentive compatible open constraint optimization. In Electronic Commerce, 2003.

[3] Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-consistency within dy-
namic backtracking. In CP’2000, Singapore, 2000. Springer.

[4] J. Larrosa. Node and arc consistency in weighted csp. In AAAI-2002, Edmonton, 2002.

[5] Javier Larrosa, Pedro Meseguer, and Thomas Schiex. Maintaining reversible DAC for Max-CSP. AI,
107:149–163, 1999.

[6] Javier Bondia Larrosa. Algorithms and Heuristics for Total and Partial Constraint Satisfaction. PhD
thesis, IIIA,Bellaterra,Spain, 1998.

[7] Michel Lemaı̂tre and Gérard Verfaillie. An incomplete method for solving distributed valued constraint
satisfaction problems, 1997.

[8] Pragnesh Jay Modi, Milind Tambe, Wei-Min Shen, and Makoto Yokoo. A general-purpose asynchronous
algorithm for distributed constraint optimization. In Distributed Constraint Reasoning, Proc. of the AA-
MAS’02 Workshop, Bologna, July 2002. AAMAS.

[9] T. Petit, J.C. Régin, and Bessière C. Range-based algorithm for max-csp. In Proceedings of CP, pages
280–294, Ithaca, September 2002.

[10] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach. Prentice Hall, 2nd edition, 2002.

[11] M.-C. Silaghi, D. Sam-Haroud, and B.V. Faltings. Consistency maintenance for ABT. In Proc. of
CP’2001, pages 271–285, Paphos,Cyprus, 2001.

[12] Marius-Călin Silaghi. Asynchronously Solving Distributed Problems with Privacy Requirements. PhD
Thesis 2601, (EPFL), June 27, 2002. http://www.cs.fit.edu/˜msilaghi/teza.

[13] Marius-Călin Silaghi and Boi Faltings. Openness in asynchronous constraint satisfaction algorithms. In
3rd DCR-02 Workshop, pages 156–166, Bologna, July 2002.

[14] R. Wallace and M.C. Silaghi. Using privacy loss to guide decisions in distributed CSP search. In
FLAIRS’04, 2004.

[15] R.J. Wallace and E.C. Freuder. Constraint-based multi-agent meeting scheduling: Effects of agent hetero-
geneity on performance and privacy loss. In DCR, pages 176–182, 2002.

[16] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction problem:
Formalization and algorithms. IEEE TKDE, 10(5):673–685, 1998.

