Solving ’Still life’ with Soft Constraints and
Bucket Elimination *

Javier Larrosa and Enric Morancho

Universitat Politecnica de Catalunya, Barcelona, Spain,
larrosa@lsi.upc.es, enricm@ac.upc.es

Abstract. In this paper we study the applicability of bucket elimination
(BE) to the problem of finding still-life patterns. Very recently, it has
been tackled using integer programming and constraint programming,
both of them being search-based methods. We show that BE, which is
based on dynamic programming, provides an exponentially lower worst-
case time complexity than search methods. Unfortunately, BE requires
exponential space, which is a disadvantage over the polynomial space
requirement of depth-first search.

With our experiments, we show that BE is quite competitive with search-
based approaches. It clearly outperforms simple encodings and it is com-
parable with dedicated methods. While the best current search approach
solves the n = 14 instance in about 6 cpu days, BE solves it in about
1 day. BE cannot solve the n = 15 instance due to space exhaustion
(this instance is solved by search in 8 days). Finally, we show how BE
can be adapted to exploit the problem symmetries, with which in sev-
eral cases we outperform previous results in a relaxation of the problem
which restrict solutions to symmetric patterns, only.

1 Introduction

The game of life was invented in the late 60s by John Horton Conway and was
later popularized by Martin Gardner [6]. Given an infinite checkerboard, the only
player places checkers on some of its squares. Each square is a cell. If there is a
checker on it, the cell is alive, else it is dead. Each cell has eight neighbors: the
eight cells that share one or two corners with it. The state of the board evolves
iteratively according to three rules: () if a cell has exactly two living neighbors
then its state remains the same in the next iteration, (i) if a cell has exactly
three living neighbors then it is alive in the next iteration and (i) if a cell has
fewer than two or more than three living neighbors, then it is dead in the next
iteration.

While conceptually simple, the game has proven mathematically interesting
and has attracted a lot of curiosity, as can be seen in,

home.interserv.com/ mniemiec/lifepage.htm

* The first author is supported by the REPLI project TIC-2002-04470-C03.

Mazimum density stable patterns (also called still lifes) are board configu-
rations with a maximal number of living cells which do not change along time.
They can be seen as an academic simplification of a standard issue in discrete
dynamic systems. [5] has shown that for the infinite board the maximum density
is 1/2. In this paper we are concerned with finite patterns. In particular, we con-
sider n x n still lifes, for which no polynomial method is known. This problem
has been recently included in the CSPlib' repository of challenging constraint
satisfaction problems.

In [3] still life is solved using integer programming and constraint program-
ming, both of them being search-based methods. Their best results were ob-
tained with a hybrid approach which combines the two techniques and exploits
the problem symmetries to reduce the search space. With their algorithm, they
solved the n = 15 case in about 8 days of cpu with a modern computer. An-
other interesting work can be found in [11] where pure constraint programming
techniques are used, and the problem is solved in its dual form. Although not
explicitly mentioned, these two works use algorithms with worst-case time com-
plexity 0(2("2)) and polynomial space.

In this paper we find still lifes using dynamic programming. We model the
problem as a weighted constraint satisfaction problem (WCSP) [10,2] and solve
it with bucket elimination (BE) [4]. BE is a generic algorithm suitable for many
automated reasoning and optimization problems. It is often overlooked due to
its exponential space complexity. Here we show that for the still life problem it
is highly competitive. In the theoretical side, we show that its time complexity
is ©(n? x 23"), which means an exponential improvement over search-based
methods. Regarding space, the complexity is @(n x 227). In the practical side we
show that plain BE is much faster than basic search algorithms and comparable
to sophisticated search methods. Our implementation of BE solves the n = 14
case in less than 30 hours. The n = 15 case cannot be solved with our computer
due to space exhaustion. A nice feature of BE is that it can compute, with no
extra cost, the number of optimal solutions. Thus, we report, for the first time,
the number of still lifes up to n = 14.

An additional contribution of this paper is that we have adapted BE to
exploit some of the problem symmetries, with which the speed is nearly doubled
and the space requirement is halved (the n = 14 case is solved in about 15 hours,
but we still could not solve the n = 15 case).

When n is too large to solve optimally with current methods, some authors
[3,11] find symmetric optimal solutions. We have also adapted BE to solve the
problem subject to a vertical reflection symmetry and have solved the n = 28
case for the first time.

Although the space complexity seems to be a critical limitation of our method,
it is not necessarily so. There are ways to trade space by time within the BE
algorithm (see [7-9]), which give room to our approach to scale up and make it
very promising. We discuss this in detail in Section 6.

b ww. csplib.org

The structure of this paper is as follows: In Section 2 we give preliminary
definitions. In Section 3 we show how the still life problem is modelled as a WCSP
and solved with BE. In Section 4 we adapt BE to exploit problem symmetries. In
Section 5 we modify BE to find symmetrical solutions. In Section 6 we highlight
our ongoing work. Finally, Section 7 summarizes the conclusions of our work.

2 Preliminaries

A Constraint satisfaction problem (CSP) [12] is defined by a tuple (X, D, C),
where X = {z1,...,2,} is a set of variables taking values from their finite
domains (D; € D is the domain of x;). C is a set of constraints, which prohibit
the assignment of some combinations of values. A constraint ¢ € C' is a relation
over a subset of variables var(c), called its scope. For each assignment ¢ of all
variables in var(c), t € c iff ¢ is allowed by the constraint. A solution to the
CSP is an complete assignment that satisfies every constraint. Constraints can
be given explicitly as tables of permitted tuples, or implicitly as mathematical
expressions or computing procedures.

Weighted constraint satisfaction problems (WCSP) [2] and [10] augment the
CSP model by letting the user express preferences among solutions. In WCSP,
constraints are replaced by cost functions (also called soft constraints). Forbid-
den assignments receive cost co. Permitted assignments receive finite costs that
express their degree of preference. The valuation of an assignment ¢ is the sum
of costs of all functions whose scope is assigned by t. A solution to the WCSP is
a complete assignment with a finite valuation. The task of interest is to find the
solution with the lowest valuation.

A WCSP instance is graphically depicted by means of its interaction or
constraint graph, which has one node per variable and one edge connecting any
two nodes whose variables appear in the same scope of some cost function.

Bucket elimination (BE) [4,1] is a generic algorithm that can be used for
WCSP solving. It is based upon two operators over functions. For the WCSP
case they are:

— The sum of two functions f and g denoted (f + g) is a new function with
scope var(f) Uvar(g) which returns for each tuple the sum of costs of f and
9,

(f+9)@) = f(t) +9(t)

— The elimination of variable z; from f, denoted f | 4, is a new function
with scope var(f) — {z;} which returns for each tuple ¢ the minimum cost
extension of ¢ to z;,

(£ 4 0)(8) = mip {£(t- (@1,)}

where t-(z;, a) means the extension of ¢ to the assignment of a to z;. Observe
that when f is a unary function (i.e., arity one), eliminating the only variable
in its scope produces a constant.

Example 1 Let f(z1,22) = 1 + 22 and g(z1,23) = z123. The sum of f and g
is (f + 9)(z1,22,23) = 1 + 22 + T123. If domains are integers in the interval
[1..10], the elimination of x1 from f is (f § 1))(z2) = 1+ z2. The subsequent
elimination of x2, produces constant 2 (i.e, ((f 4 1) 2) =2).

In the previous example, resulting functions were expressed intensionally for
clarity reasons. Unfortunatelly, in general, the result of summing functions or
eliminating variables cannot be expressed intensionally by algebraic expressions.
Therefore, BE collects intermediate results extensionally in tables, which causes
its high space complexity.

BE (Figure 1) uses an arbitrary variable ordering o that we assume, without
loss of generality, lexicographical (i.e, o0 = (x1,%3,...,%,)). BE works in two
phases. In the first phase (lines 1-5), the algorithm eliminates variables one by
one, from last to first, according to o. In the second phase, the optimal assignment,
is computed processing variables from first to last. The elimination of variable z;
is done as follows: C' is the set of current constraints. The algorithm stores the
so called bucket of x;, noted B;, which contains all cost functions in C' having
x; in their scope (Line 2). Next, BE computes a new function g; by summing
all functions in B; and subsequently eliminating x; (line 3). Then, C is updated
by removing the functions in B; and adding g; (line 4). The new C does not
contain z; (all functions mentioning x; were removed) but preserves the value
of the optimal cost. The elimination of the last variable produces an empty-
scope function (i.e., a constant) which is the optimal cost of the problem. The
second phase (lines 6-10) generates an optimal assignment of variables. It uses
the set of buckets that were computed in the first phase. Starting from an empty
assignment ¢ (line 6), variables are assigned from first to last according to 0. The
optimal value for z; is the best value regarding the extension of ¢ with respect
to the sum of functions in B; (lines 8,9). We use the non standard notation
argmin,{f(a)} to denote the value a producing minimum f(a).

BE can also compute the number of optimal solutions with not additional
overhead. More than that, all optimal solutions can be easily retrieved from the
buckets computed during the process (see [4] for details).

The complexity of BE depends on the problem structure, as captured by its
constraint graph G, and the ordering o. The induced graph of G relative to o,
noted G*(0), is obtained by processing the nodes in reverse order of 0. When
considering node i, new edges are added in order to form a clique with all its
adjacent nodes, appearing before ¢ in the ordering o. Given a graph and an
ordering of its nodes, the width of a node is the number of edges connecting it
to nodes lower in the ordering. The induced width of a graph along ordering o,
denoted w*(0), is the maximum width of nodes in the induced graph.

Theorem 1 [}] The complexity of BE along ordering o is time O(Q X n x
d®*(O+1) and space O(n x d¥" (), where d is the largest domain size and Q is
the cost of evaluating cost functions (usually assumed O(1)).

function BE(X, D, C)
1. for i = n downto 1 do

2 B; :={f € C| z; € var(f)}

3 9i = (ZfeBif)UiQ

4 C:=(CU{gi}) — Bi;

5. endfor

6. t:=0;

7. fori=1ton do

8. i argminggp {(5ep, £)(¢- (21,0))}
9. t:=t-(zi,v);

10. endfor

11. return(C, t);

endfunction

Fig. 1. Bucket Elimination. (X, D, C) is the WCSP instance to be solved. The algo-
rithm returns the optimal cost in C' and one optimal assignment in ¢.

3 Finding still lifes with BE

3.1 Modelling still life as a WCSP

The still life problem consist of finding a n xn stable pattern of maximum density
in the game of life, where all cells outside the pattern are assumed to be dead.
Considering the rules of the game, it is clear that in stable patterns all living
cells must have exactly two or three living neighbors in order to remain alive, and
dead cells must not have three living neighbors in order to remain dead. Besides,
boundary rows and columns must not have more than two adjacent living cells,
since three consecutive cells would produce a new living cells outside the n x n
region. Figure 2 (left) shows a 3 x 3 still life.

Still life can be easily modelled as a WCSP. We use a compact formulation
with n variables, one for every row. Variable z; is associated to the i-th row. Its
domain D; is the set of sequences of n bits. The j-th bit of value a, noted aj,
indicates the state of the j-th cell of the row. If a; takes value 1 the corresponding
cell is alive, else it is dead. Let a, b and ¢ be domain values. We define Z(a) as
the number of zeroes in a. S(a,b,c) is a boolean predicate satisfied iff all cells
of b are stable cells being a the row above b and ¢ the row below b (S(a, b, c) is
false if there is some unstable cell in b).

The problem has n cost functions f; (withi=1,..,n). Fori=2..n—1, f;
is ternary, with scope var(f;) = {z;—1,%;, ;y1}- If the arguments represent an
unstable configuration it returns oo, else it returns the number of zeroes in the
middle row. Formally,

=-S(a,b,c)
a; = b1 =C = 1
a,=b,=c,=1
otherwise

888

fi((l,b,C) =

N
—~
o
S—r

Fig. 2. Left: A 3 x 3 still life pattern. Right: Constraint graph of still life.

Functions f; and f,, are binary. They are equivalent to the ternary cost func-
tions, but assuming dead cells above the top row and below the bottom row,
respectively. The scope of f; is {z1,z2} and it is defined as,

_ o ﬁS(07 b: C)
fi(bye) = {Z(b) . otherwise

where O denotes the all zeroes string of bits. Similarly, the scope of f,, is
{Zn-1,2n} and it is defined as,

. o _‘S(a7 b: 0)
fn(a,b) = {Z(b) : otherwise

Note that computing f;(a,b,c), fi(b,c) and f,(a,b) is O(n).

3.2 BE for still life

The constraint graph of our still life formulation is a sequence of size 3 cliques
(Figure 2, right). The induced graph G*(o) with o = (x1,x>,...,2,) does not
have new edges (i.e, G*(0) = G). Consequently, the induced width is w*(0) =
2. Since domains have size 2", by Theorem 1, the complexity of BE is time
O(n? x 2°™) and space O(n x 227).

The sequential structure of the constriant graph makes the implementation
of BE very simple (see Figure 3). Sequences of bits of size n are represented
by integers in the interval [0..2" — 1]. In the first phase, we process variables
from last to first. Buckets are implicitly computed. The bucket of z,, is B, =
{fn, fn—1} (these are the only cost function having z,, in their scope). By, is used

function BE(n)

1. for a,b €[0.2" —1] do

2. gn(a,b) == mince[o..2"—1]{fn—1 (a,b,¢) + fa(b, C)};

3. endfor

4. for 1 =n—1 downto 3 do

5. for a,b € [0..2" — 1] do

6. gi(a,b) :==mingepo. an —11{fi-1(a,b,¢) + gi+1(b,c) };
7. endfor

8. endfor

9. (z1,®2) = argmin, yco on_17{93(a,) + fi(a,b)};

10. opt := gs(z1,T2) + fi(z1,T2);

11. for i =3 ton—1 do

12. T; := argmin, (o on_1{fi-1(Ti-2, Ti—1,¢) + git1(zi-1,0) };
13. endfor

4. zn = argmince[o.z"—u{fnfl($n72: Tn-1,6) + fn(@n-1,0)}
15. return(opt, (x1,T2,...,%x4));

endfunction

Fig. 3. Bucket Elimination for the still life problem. The algorithm returns the optimal
value in opt and the optimal assignment in (z1, z2,...,2Zxs)

to compute a new binary cost function g, with scope {2, 2,1} (lines 1-3). By
construction, g, (a, b) is the cost of the best extention of (z,_2 = a, ,—1 = b) to
the eliminated variable z,,. The bucket of z,_1 is Bp_1 = {gn, fn—2}. It is used
to compute g1 with scope {Zn_3,2,—2} (lines 5-7, first iteration). g,—1(a, b) is
the cost of the best extension of (z,—3 = a, Tp—2 = b) to the eliminated variables
Tn—1 and z,. Subsequent iterations of the loop eliminate subsequent variables.
In the last iteration variable z3 is eliminated. When the algorithm reaches line 9,
the current problem contains two cost functions: g3, which contains the optimal
extensions of each potential assignment of 1 and x5 to the rest of variables, and
f1. Instead of continuing the elimination of variables, we found it to be more
efficient to solve the current problem with a brute-force exhaustive search (line
9). Variables 1 and x, are assigned with their optimal values (line 9) and the
optimal cost is assigned to opt (line 10).

In the second phase (lines 11-14), we process variables from first to last. We
assign to each variable the best value according to its bucket and previously
assigned variables.

It is easy to verify the complexity of the algorithm. Regarding space it is
O(n x 227), due to the space required to store functions g; extensionally, which
have 22" entries each. Regarding time, the critical part of the algorithm is the
execution of lines 4-8. Line 6 has complexity ©(n x 2") (finding the minimum of
2™ alternatives, the computation of each one being ©(n)). It has to be executed
O(n x 2?") times, which makes a global complexity of @(n? x 237). Observe that

the complexity of BE in the still life problem is an exponential improvement over
search algorithms.

There is a simple average-case time optimization that we found very effective.
Observe that lines 2 and 6 require the evaluation of f;(a,b,c) with a and b fixed
and varying c. All values of ¢ such that f;(a,b,c) = oo are irrelevant because
they cannot provide the minimum valuation. Let u,; be the smallest value such
that fi(a,b,usp) # 00. Clearly line 6 (similarly line 2) can be replaced by:

g9i(a,b) :==mincepy,, 2 11{fi-1(a,b,¢) + gi+1(b,c)};

which in many cases reduces the interval size drastically. Since all f; in the
original problem are essentially equal (the only difference is their scope) value
Ugp is common to all f; (with ¢ = 2..n —1). For each a, b, we compute u,p during
a pre-process and store it in a table that is used to speed up every variable
elimination. Note that this table has 227. Thus, it does not affect the space
complexity of the algorithm.

3.3 Experimental Results

ncost n.sol. BE CP IP CP/IP-sym

5 16 1 0 0 1 0
6 18 48 0 1 23 0
7 28 2 0 10 7 0
8 36 1 1 189 65 2
9 43 76 4 > 1500 > 1500 51

10 54 3590 27 * * 147

11 64 73 210 * * 373

12 76 129126 1638 * * 30360

13 90 1682 13788 * * 30729

14 104 11 10° * * 5 x 10°

15 119 ? * * * 7 x 10°

Fig. 4. Experimental results of four different algorithms on the still life problem. Times
are in seconds.

Table 4 reports the results that we obtained with a 1 Ghz Pentium III ma-
chine with 1 Gb of memory. From left to right, the first three columns report:
problem size, solution cost (as the number of living cells) and number of optimal
solutions (most of them have never been reported before). We count as different
two solutions even if one can be transformed to the other through a problem
symmetry. The fourth column reports the CPU time of our executions (BE) in
seconds. For comparison purposes, the fifth, sixth and seventh columns show
times obtained in [3] with basic constraint programming (CP), integer program-
ming (IP), and a sophisticated hybrid algorithm (CP/IP-sym) which exploits the

Fig. 5. A 14 x 14 still life pattern.

problem symmetries (see Section 4). In their experiments, they used a 650 Mhz
Pentium ITT with 196 Mb of memory. Time comparison should be done with cau-
tion, because machines are different. Note as well that times in [3] were obtained
using a commercial solver, while our times have been obtained with our ad-hoc
implementation. On the one side, our implementation was made specifically for
the still life problem, which has the advantage of optimizing the use of space and
specializing some parts of the code. On the other side, our implementation is a
prototype, inplemented in a few weeks, which is in disadvantage with respect to
commercial solvers, developed during months or years. Having said that, it can
be observed that BE clearly outperforms basic CP and IP by orders of magni-
tude. While CP and IP algorithms cannot solve the problem beyond n = 8 in
less than half an hour, BE can solve the n = 12 case subject to the same time
limit. The n = 14 case is the largest instance that we could solve due to space
exhaustion (see Figure 5). As a matter of fact, the original code could not be
executed for the n = 14 case. We solved it by disabling the counting solutions
feature which deallocates some memory. We computed the number of solutions
in a different execution with a slower machine with more memory space. Com-
paring BE with the CP/IP hybrid we observe that both algorithms give very
similar times (BE is faster, but within the same order of magnitude). Given the
simplicity of the BE algorithm we consider it a very satisfactory result. An addi-
tional observation is that BE scales up very regularly, each execution requiring
roughly eight times more time and four times more space than the previous,
which is in clear accordance with the algorithm complexity.

4 Exploiting problem symmetries

Still life is a highly symmetric problem. For any stable pattern, it is possible to
create an equivalent pattern by: () rotating the board by 90, 180 or 270 degrees,
(4t) reflecting the board horizontally, vertically or along one diagonal or (i)
doing any combination of rotations and reflections. Search methods proposed in
[3] and [11] exploit that fact by cutting off some search paths that only contain
solutions that are symmetric of previously processed ones.

In the following we show how BE can also be adapted to take advantage of
some of the symmetries.

Let’s assume that n is an even number (the odd case is similar). Consider
the algorithm of Figure 3 and assume that we stop the execution after the
elimination of variable zz 5. The elimination of zz 12 produces gz s, with
scope {x% , x%_l,_l}. At this point supose that we change the order of elimination
of the remaining variables to z1,za,... 1. The elimination z; produces a
new function g; with scope {z2,z3}. Due to the 180 rotation symmetry it is
the same to eliminate x; or rotate the board by 180 degrees and eliminate x,,.
Therefore, for all a and b it holds that

91 (a7 b) = gn (b7 Zl)
Where a (respectively, b) is the reflection of value a (respectively, b). In addition,
due to the vertical reflection symmetry we have that,

gn(ba d) = gn(ba a)

Therefore, it follows that,
5 (aa b) = gn(b7 a)

In general, the elimination of variable z; (with 1 <4 < § — 1) produces a new
function g; with scope {Z;11,Zit2}. Due to the problem symmetries, we have
that,

gi(a,b0) = gn_iy1(b,a)

Therefore, variables z1,¥s,...,7z -1 do not have to be eliminated, because the
effect of the elimination can be inferred. At this point, the current problem
contains only two variables (2= and 2= 1) and one cost function between them
(9z241(z2,2241) +9241(x2y1,22)). This problem can be solved by exhaustive
exploration. It is clear that the savings from avoiding the elimination of half of
the variables reduces the time and space requirements to one half.

The previous idea is illustrated by Algorithm BE-sym (Figure 6). In lines
1-6 the elimination of @, %p—1,...,T242 is performed as in BE. In line 7,
the optimal cost is computed where g%+1(x%,m%+1) provides the effect of the
performed elimination of %, Zn_1,...,%7242 and the inferred elimination of
T1,%2,...,Tz 1. In line 8 the optimal assignment of zz and zz 1 is computed.
Lines 9-12 compute the optimal assignment of z,,Zn_1,...,Z242 as in the BE

algorithm. Lines 13-16 compute the optimal assignment of 1, 22,...,z2_1. The

optimal assignment of x; without exploiting the simmetries would be,

i = argmin,cg gn_1){fi+1(C; Tit1, Tit2) + gim1(c; Tit1)}

however, since g;—1(a, b) = gn—;(b,a), it can be computed as,

i := argmin.cig on_ 1) {fit1(C, Tit1, Tir2) + gn-i(Tit1,0)}

function BE-sym(n)

1. for a,b €[0.2" — 1] do

2 gn(a7 b) = mince[o..2"—1]{fn—1 (a’ b, C) + fn(b, C)};

3. for i =n—1 downto n/2 + 2 do

4. for a,b € [0..2" — 1] do

5. gi(a: b) = mincE[O..2"—1]{fi—1 (U/, ba C) + gi+1(b, C)},
6. endfor

7. opt :=ming pefo..2n-11{g92 +2(a,b) + gz 12(b,a)};

8. (zg,Tg41) = argming e on_11{92+2(a,0) + 9212(b,a)};

9. fori=3+2ton—1do

10. mi:=argmin g on_y{fi-1(Ti-2,®i-1,0) + gita1(zi-1,0)};
11. endfor

12. x, 1= argmince[o__2n_1]{fn—1(wn—z, Tn-1,¢) + fu(Tn-1,0)};
13. fori=% —1to2do

14. Ti := argmin, (o on 1 {fit1(C, Tiv1, Tiv2) + gn-i(Tit1,0)};
15. endfor

16. z1 := argmin ¢y on_q{f2(c, T2, 23) + fi(c, 22) };

17. return(opt, (z1,T2,...,Ts));

endfunction

Fig. 6. Bucket Elimination exploiting symmetries (assume n even).

Table 7 reports the results obtained with BE-sym. The first column tells the
size of the problem. The second column indicates times obtained with BE-sym.
To facilitate comparison, the third column reports results obtained with BE
and the fourth column reports the best times obtained by [3] with their hybrid
CP/IP algorithm which also exploits symmetries (again, be aware of the different
machines). Comparing BE vs. BE-sym, the experiments confirm that BE-sym is
twice as fast as BE. Although BE-sym requires less memory than BE, we still
could not execute the n = 15 case. Comparing it with the CP/IP hybrid, it can
be observed that BE-sym seems to be systematically faster.

5 Restricting to symmetric still life

When n is too large to solve optimally with current methods, previous authors
proposed finding symmetric optimal solutions. In [3] optimal horizontally sym-

n BE-sym BE CP/IP-sym

9 2 4 51
10 14 27 147
11 120 210 373
12 813 1638 30360
13 7223 13788 30729
14 6 x 10* 10° 5 x 10°
15 * * 7 x 10°

Fig. 7. Experimetal results of three algorithms on the still life problem.

metric solutions for n = 18 are found, and in [11] optimal 90 degrees rotational
symmetric solutions for n = 18 are also found.

We followed the same approach and adapted BE to consider vertically sym-
metric patterns. With our formulation, changes are straightforward: we only
need to reduce domains to symmetrical values. Lets assume that n is an even
number (the odd case is similar). We represent symmetric sequences of bits of
length n by considering the left side of the sequence (clearly, the symmetrical
right part can be obtained by reversing the left part), which can be implemented
as integers in the interval [0..2% — 1]. Tt is easy to see that the complexity of BE
is now time ©(n? x 23"/2) and space ©(n x 2™), which means that the size of
problems that we can solve should be doubled. Observe that this problem has
exactly the same symmetries as the original problem. Consequently, we can still
use the BE-sym algorithm.

Figure 9 reports the results that we obtained with BE-sym. The first column
contains the problem size (we only solved even values of n), the second column
reports the optimal value as number of living cells, the third column reports the
number of solutions and the fourth column reports CPU time obtained with the
BE-sym algorithm. As predicted, we solve up to the n = 28 case (Figure 8). The
n = 30 case could not be execute due to space exhaustion. These results improve
significatively over the previous works of [3,11].

6 Future Work

We have shown that BE provides an efficient solver approach to the still life
problem, although it has the fundamental limitation of its exponential space
complexity which makes impossible with current computers to solve the prob-
lem beyond n = 14. Fortunately, some authors [7-9] suggest ways to overcome
space exhaustion when executing BE. These approaches propose parameterized
algorithms, where the parameter indicates the amount of space the user is will-
ing to use. The algorithms dynamically switch to search each time BE cannot
carry out the solving process. BE is resumed as soon as the space-costly part of
the problem has been solved. We are currently exploring these ideas. Hopefully
we will be reporting new results in the near future.

Fig. 8. A 28 x 28 symmetric still life. The optimal value is 406 living cells.

7 Conclusion

Bucket Elimination is often believed to be an algorithm of little practical interest
due to its exponential space complexity. In this paper we showed that it is
extremely competitive for the still life problem. We showed that it provides a
much lower worst-case time complexity than search-based methods which makes
it systematically faster in practice. The space complexity drawback comes to
the fore where search methods fail due to their exponential time complexity. We
reported some results, which we think are new: the number of optimal solutions
up to n = 14 and the optimal cost and the number of solutions of vertically
symmetric still lifes up to n = 28.

As far as we know, there is no previous work on how to adapt BE to exploit
symmetries. We enhanced the performance of our BE implementation by con-
sidering some of the problem symmetries. We belive that it is a preliminary step
towards a wider (although possibly limited) practical applicability of BE.

n opt. cost n. sol. BE-sym

10 52 133 0
12 76 8 0
14 104 1 0
16 136 3 0
18 170 4 10
20 208 1813 81
22 252 635 633

24 300 5363 4620
26 350 55246 37600
28 406 12718 1.7 x 10°

Fig. 9. Experimental results on for finding vertical reflection symmetric still lifes with
BE.

References

9.

Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, Lon-
don, 1972.

Bistarelli, S., Montanari, U., Rossi, F.: Semiring-Based Constraint Satisfaction and
Optimization. Journal of the ACM. 44(2) (1997) 201-236.

Bosch, R., Trick, M.: Constraint programming and hybrid formulations for three life
designs. Proceedings of the International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
CP-AI-OR’02 (2002), 77-91.

Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial In-
telligence. 113 (1999) 41-85.

Elkies, N.D.: The still-life density problem and its generalisations. Voronoi’s impact
on modern science, Book 1 (1998) 228-253. Institute of Math. Kyiv.

Gardner, M.: The fantastic combinations of John Conway’s new solitary game. Sci-
entific American. 223 (1970) 120-123.

. Larrosa, J., Dechter, R.: Boosting Search with Variable Elimination. In Proceed-

ings of Principles and Practice of Constraint Programming, CP-2000 (Singapore,
Singapore, 2000), 291-305.

. Larrosa, J.: Boosting Search with Variable Elimination in Constraint Optimization

and Constraint Satisfaction Problems. Constraints: an International Journal. To
appear.

Dechter, R., El Fattah, Y.: Topological Parameters for Time-Space Tradeoff. Arti-
ficial Intelligence. To appear.

10. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:

hard and easy problems. In Proceedings of the 14th. International Join Conference
on Artificial Intelligence, IJCAI-1995 (Montreal, Canada, 1995), 631-637.

11. Smith, B.: A dual graph translation of a problem in life. In Proceedings of Principles

and Practice of Constraint Programming, CP-2002 (Ithaca, USA, 2002).

12. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London, 1993.

