Recall the most usual queries

Let $\mathcal{X} = E \cup Q \cup Z$, where E are the evidence variables, e are the observed values, Q are the variables of interest, Z are the rest of the variables.

- **Probability of Evidence ($Q = \emptyset$):**
 \[
 Pr(e) = \sum_Z Pr(e, Z)
 \]

- **Prior Marginals ($E = \emptyset$):**
 \[
 Pr(Q) = \sum_Z Pr(Q, Z)
 \]

- **Posterior Marginals ($E \neq \emptyset$):**
 \[
 Pr(Q \mid e) = \sum_Z Pr(Q, Z \mid e)
 \]

- **Most Probable Explanation (MPE) ($E \neq \emptyset$, $Z = \emptyset$):**
 \[
 q^* = \arg \max_Q Pr(Q \mid e)
 \]

- **Maximum a Posteriori Probability (MAP):**
 \[
 q^* = \arg \max_Q Pr(Q \mid e) = \arg \max_Q \sum_Z Pr(Q, Z \mid e)
 \]
In this session

We are going to see a generic algorithm for inference (inference = query answer)

It is called Variable Elimination because it eliminates one by one those variables which are irrelevant for the query.

- It relies on some basic operations on a class of functions known as factors.
- It uses an algorithmic technique called dynamic programming

We will illustrate it for the computation of prior and posteriors marginals,

\[
P(Y) = \sum_Z P(Y, Z)
\]

\[
P(Y|e) = \sum_Z P(Y, Z|e)
\]

- It can be easily extended to other queries.
A factor f is a function over a set of variables $\{X_1, X_2, \ldots, X_k\}$, called scope, mapping each instantiation of these variables to a real number \mathcal{R}.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>$f(X, Y, Z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Observation: Condition Probability Tables (CPTs) are factors.

We define three operations on factors:

- **Product:** $f(X, Y, Z) \times g(Q, Y, R)$
- **Conditioning:** $f(X, y, Z)$
- **Marginalization:** $\sum_{y \in Y} f(X, y, Z)$
Factors: Product

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$f(X, Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>Z</th>
<th>$g(Y, Z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>$f(X, Y) \times g(Y, Z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Factor multiplication is commutative and associative. It is time and space exponential in the number of variables in the resulting factor.
Factors: Conditioning

\[
\begin{array}{ccc}
X & Y & f(X, Y) \\
0 & 0 & 1 \\
0 & 1 & 3 \\
1 & 0 & 2 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
Y & f(0, Y) \\
0 & 1 \\
1 & 3 \\
\end{array}
\]
Factor marginalization is commutative. It is time exponential in the number of variables in the original factor, and space exponential in the number of variables in the resulting factor.
Given the following BN:

compute: \(Pr(S \mid I) \times Pr(I) \), \(Pr(G \mid i^1, D) \), \(\sum_G Pr(L \mid G) \), \(\sum_L Pr(L \mid G) \)
The basic property: distributivity

When dealing with integers, we know that:

\[\sum_{i=1}^{n} K \times i = K \times \sum_{i=1}^{n} i \]

The same happens when dealing with factors (e.g., \(D(X) = \{x^0, x^1\} \)):

\[\sum_{X} f(Z) \times g(X, Y) = f(Z) \times g(x^0, Y) + f(Z) \times g(x^1, Y) = \]

\[= f(Z) \times (g(x^0, Y) + g(x^1, Y)) = f(Z) \times \sum_{X} g(X, Y) \]
VE: prior marginal on a chain

We will illustrate VE in the simplest case (a chain with no evidence):

- Boolean variables X_i
- The BN is a chain:

$$P(X_1, X_2, X_3, X_4) = \Pr(X_1)\Pr(X_2 \mid X_1)\Pr(X_3 \mid X_2)\Pr(X_4 \mid X_3)$$

- We have no evidence ($E = \emptyset$)
- The only variable of interest is X_4

Thus, we want to compute:

$$\Pr(X_4) = \sum_{X_1} \sum_{X_2} \sum_{X_3} \Pr(X_1)\Pr(X_2 \mid X_1)\Pr(X_3 \mid X_2)\Pr(X_4 \mid X_3)$$
Elimination of X_1:

$$Pr(X_4) = \sum_{X_1} \sum_{X_2} \sum_{X_3} Pr(X_1)Pr(X_2 \mid X_1)Pr(X_3 \mid X_2)Pr(X_4 \mid X_3) =$$

$$= \sum_{X_2} \sum_{X_3} \sum_{X_1} Pr(X_1)Pr(X_2 \mid X_1)Pr(X_3 \mid X_2)Pr(X_4 \mid X_3) =$$

$$= \sum_{X_2} \sum_{X_3} Pr(X_3 \mid X_2)Pr(X_4 \mid X_3)\left(\sum_{X_1} Pr(X_1)Pr(X_2 \mid X_1)\right) =$$

$$= \sum_{X_2} \sum_{X_3} Pr(X_3 \mid X_2)Pr(X_4 \mid X_3)\lambda_1(X_2)$$

where $\lambda_1(X_2) = \sum_{X_1} Pr(X_1)Pr(X_2 \mid X_1)$
Elimination of X_2:

$$P(X_4) = \sum_{X_2} \sum_{X_3} Pr(X_3 \mid X_2) Pr(X_4 \mid X_3) \lambda_1(X_2)$$

$$= \sum_{X_3} \sum_{X_2} Pr(X_3 \mid X_2) Pr(X_4 \mid X_3) \lambda_1(X_2) =$$

$$= \sum_{X_3} Pr(X_4 \mid X_3)(\sum_{X_2} Pr(X_3 \mid X_2) \lambda_1(X_2)) =$$

$$= \sum_{X_3} Pr(X_4 \mid X_3) \lambda_2(X_3) =$$

where $\lambda_2(X_3) = \sum_{X_2} Pr(X_3 \mid X_2) \lambda_1(X_2)$
VE: prior marginal on a chain

Elimination of X_3:

$$P(X_4) = \sum_{X_3} Pr(X_4 \mid X_3) \lambda_2(X_3) = \lambda_3(X_4)$$

Question:

What would be the time and space complexity of this execution?
Joint probability distribution: \(P(C, D, I, G, L, S, H, J) = P(H|G, J)P(J|L, S)P(L|G)P(S|I)P(I)P(G|D, I)P(D|C)P(C) \)

Goal: \(P(G, L, S, H, J) \)

Elimination order: \(C, D, I \)
VE: prior marginal on general networks

Elimination of C:

$$\sum_{I,D,C} P(H|G,J)P(J|L,S)P(L|G)P(S|I)P(I)P(G|D,I)P(D|C)P(C) =$$

$$= \sum_{I,D} P(H|G,J)P(J|L,S)P(L|G)P(S|I)P(I)P(G|D,I)(\sum_C P(D|C)P(C))$$

$$= \sum_{I,D} P(H|G,J)P(J|L,S)P(L|G)P(S|I)P(I)P(G|D,I)\lambda_C(D)$$
VE: prior marginal on general networks

Elimination of D:

\[
\sum_{I,D} P(H|G, J)P(J|L, S)P(L|G)P(S|I)P(I)P(G|D, I)\lambda_C(D) = \sum_I P(H|G, J)P(J|L, S)P(L|G)P(S|I)P(I)\left(\sum_D P(G|D, I)\lambda_C(D)\right) = \sum_I P(H|G, J)P(J|L, S)P(L|G)P(S|I)P(I)\lambda_D(G, I)
\]
VE: prior marginal on general networks

Elimination of I:

$$
\sum_I P(H|G,J)P(J|L,S)P(L|G)P(S|I)P(I)\lambda_D(G,I) \\
P(H|G,J)P(J|L,S)P(L|G)(\sum_I P(S|I)P(I)\lambda_D(G,I)) = \\
P(H|G,J)P(J|L,S)P(L|G)\lambda_I(S,G)
$$
Given the joint probability:

\[P(C, D, I, G, L, S, H, J) = \]
\[P(H|G, J)P(J|L, S)P(L|G)P(S|I)P(I)P(G|D, I)P(D|C)P(C) \]

and evidence \(\{I = i, H = h\} \), we want to compute:

\[P(J, S, L \mid i, h) = \frac{P(J, S, L, i, h)}{P(i, h)} = \frac{\sum_{C,D,G} P(C, D, i, G, L, S, h, J)}{\sum_{J,S,L,C,D,G} P(C, D, i, G, L, S, h, J)} \]

using elimination order \(C, D, G \).

Trick

Compute \(P(J, S, L, i, h) \) and normalize.
VE: posterior marginal on general networks

Elimination of C:

\[
\sum_{C,D,G} P(h|G,J)P(J|L,S)P(L|G)P(S|i)P(i)P(G|D,i)P(D|C)P(C) = \\
\sum_{D,G} P(h|G,J)P(J|L,S)P(L|G)P(S|i)P(i)P(G|D,i)(\sum_{C} P(D|C)P(C)) = \\
\sum_{D,G} P(h|G,J)P(J|L,S)P(L|G)P(S|i)P(i)P(G|D,i)\lambda_C(D)
\]
VE: posterior marginal on general networks

Elimination of D:

$$\sum_{D,G} P(h \mid G, J) P(J \mid L, S) P(L \mid G) P(S \mid i) P(i) P(G \mid D, i) \lambda_C(D) =$$

$$\sum_{G} P(h \mid G, J) P(J \mid L, S) P(L \mid G) P(S \mid i) P(i) \left(\sum_{D} P(G \mid D, i) \lambda_C(D) \right) =$$

$$\sum_{G} P(h \mid G, J) P(J \mid L, S) P(L \mid G) P(S \mid i) P(i) \lambda_D(G)$$
Elimination of G:

$$\sum_{G} P(h|G, J)P(J|L, S)P(L|G)P(S|i)P(i)\lambda_D(G) =$$

$$P(J|L, S)P(S|i)P(i)(\sum_{G} P(h|G, J)P(L|G)\lambda_D(G)) =$$

$$P(J|L, S)P(S|i)P(i)\lambda_G(J, L)$$
Summary

- **Condition** all factors on evidence.

- **Eliminate/marginalize** each non-query variable X:
 - Move factors mentioning X towards the right.
 - Push-in the summation over X towards the right.
 - Replace expression by λ function.

- **Normalize** to get distribution.
Given the following BN:

Eliminate Letter and Difficulty from the network.
Given a BN and a set of query nodes Q, and a set of evidence variables E:

- **Pruning edges**: the effect of conditioning is to remove any edge from a node in E to its parents.

- **Pruning nodes**: we can remove any leaf node (with its CPT) from the network as long as it does not belong to variables in $Q \cup E$.

Complexity and Elimination Order

\[
P(C, X_1, \ldots, X_n) = P(C)P(X_1|C)P(X_2|C) \ldots P(X_n|C)
\]

- **Eliminate** \(X_n\) first:
 \[
 \sum_{C, X_1, X_2, \ldots, X_{n-1}} P(C)P(X_1|C)P(X_2|C) \ldots P(X_{n-1}|C)(\sum_{X_n} P(X_n|C)) = \\
 \sum_{C, X_1, X_2, \ldots, X_{n-1}} P(C)P(X_1|C)P(X_2|C) \ldots P(X_{n-1}|C)\lambda_{X_n}(C)
 \]

- **Eliminate** \(C\) first:
 \[
 \sum_{X_1, X_2, \ldots, X_n} \left(\sum_{C} P(C)P(X_1|C)P(X_2|C) \ldots P(X_n|C)\right) \\
 \sum_{X_1, X_2, \ldots, X_n} \lambda_{C}(X_1, X_2, \ldots, X_n)
 \]