Intelligent Agents

Michael Wooldridge

1.1

Introduction

Computers are not very good at knowing what to do: every action a computer
performs must be explicitly anticipated, planned for, and coded by a programmer. If
a computer program ever encounters a situation that its designer did not anticipate,
then the result is not usually pretty — a system crash at best, multiple loss of life
at worst. This mundane fact 1s at the heart of our relationship with computers. It
is so self-evident to the computer literate that it is rarely mentioned. And yet it
comes as a complete surprise to those encountering computers for the first time.

For the most part, we are happy to accept computers as obedient, literal,
unimaginative servants. For many applications (such as payroll processing), it is
entirely acceptable. However, for an increasingly large number of applications, we
require systems that can decide for themselves what they need to do in order
to satisfy their design objectives. Such computer systems are known as agents.
Agents that must operate robustly in rapidly changing, unpredictable, or open
environments, where there is a significant possibility that actions can fail are known
as intelligent agents, or sometimes autonomous agents. Here are examples of recent
application areas for intelligent agents:

® When a space probe makes its long flight from Earth to the outer planets, a
ground crew is usually required to continually track its progress, and decide how
to deal with unexpected eventualities. This is costly and, if decisions are required
quickly, it 1s simply not practicable. For these reasons, organisations like NASA
are seriously investigating the possibility of making probes more autonomous —
giving them richer decision making capability and responsibilities.

® Searching the Internet for the answer to a specific query can be a long and tedious
process. So, why not allow a computer program — an agent — do searches for
us? The agent would typically be given a query that would require synthesising
pieces of information from various different Internet information sources. Failure
would occur when a particular resource was unavailable, (perhaps due to network
failure), or where results could not be obtained.

This chapter is about intelligent agents. Specifically, it aims to give you a thorough

2 Intelligent Agents

introduction to the main issues associated with the design and implementation of
intelligent agents. After reading it, I hope that you will understand:

" why agents are perceived to be an important new way of conceptualising and
implementing certain types of software application;

= what intelligent agents are (and are not), and how agents relate to other software
paradigms — in particular, expert systems and object-oriented programming;

® the main approaches that have been advocated for designing and implementing
intelligent agents, the issues surrounding these approaches, their relative merits,
and the challenges that face the agent implementor;

® the characteristics of the main programming languages available for building
agents today.

The chapter is structured as follows. First, in section 1.2, I describe what T mean
by the term agent. In section 1.3, I present some abstract architectures for agents.
That is, T discuss some general models and properties of agents without regard
to how such agents might be implemented. In section 1.4, T discuss concrete
architectures for agents. The various major design routes that one can follow in
implementing an agent system are outlined in this section. In particular, logic-
based architectures, reactive architectures, belief-desire-intention architectures, and
finally, layered architectures for intelligent agents are described. Finally, section 1.5
introduces some prototypical programming languages for agent systems.

Comments on notation

This chapter makes use of simple mathematical notation in order to make ideas
precise. The formalism used that of discrete maths: a basic grounding in sets and
first-order logic should be quite sufficient to make sense of the various definitions
presented. In addition: if S is an arbitrary set, then p(.S) is the powerset of S, and
S* is the set of sequences of elements of .S; the symbol = is used for logical negation
(so —p is read “not p”); A is used for conjunction (so p A ¢ is read “p and ¢”); V is
used for disjunction (so pV ¢q is read “p or ¢”); and finally, = is used for material
implication (so p = ¢ is read “p implies ¢”).

1.2 What are Agents?

An obvious way to open this chapter would be by presenting a definition of the term
agent. After all, this is a book about multi-agent systems — surely we must all agree
on what an agent is? Surprisingly, there is no such agreement: there is no universally
accepted definition of the term agent, and indeed there is a good deal of ongoing
debate and controversy on this very subject. Essentially, while there is a general
consensus that autonomy is central to the notion of agency, there is little agreement
beyond this. Part of the difficulty is that various attributes associated with agency

1.2 What are Agents? 3

AGENT

Sensor

input action

output

ENVIRONMENT

Figure 1.1 An agent in its environment. The agent takes sensory input from
the environment, and produces as output actions that affect it. The interaction is
usually an ongoing, non-terminating one.

are of differing importance for different domains. Thus, for some applications, the
ability of agents to learn from their experiences is of paramount importance; for
other applications, learning is not only unimportant, it is undesirable.

Nevertheless, some sort of definition is important — otherwise, there 1s a danger
that the term will lose all meaning (cf. “user friendly”). The definition presented
here is adapted from [71]: An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in this environment in order
to meet its design objectives.

There are several points to note about this definition. First, the definition refers to
“agents” and not “intelligent agents”. The distinction is deliberate: it is discussed
in more detail below. Second, the definition does not say anything about what
type of environment an agent occupies. Again, this is deliberate: agents can occupy
many different types of environment, as we shall see below. Third, we have not
defined autonomy. Like agency itself, autonomy is a somewhat tricky concept to
tie down precisely, but T mean it in the sense that agents are able to act without
the intervention of humans or other systems: they have control both over their own
internal state, and over their behaviour. In section 1.2.3, we will contrast agents with
the objects of object-oriented programming, and we will elaborate this point there.
In particular, we will see how agents embody a much stronger sense of autonomy
than do objects.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can
see the action output generated by the agent in order to affect its environment. In
most domains of reasonable complexity, an agent will not have complete control over
its environment. It will have at best partial control, in that it can influence it. From
the point of view of the agent, this means that the same action performed twice in
apparently identical circumstances might appear to have entirely different effects,
and in particular, 1t may fail to have the desired effect. Thus agents in all but the

Intelligent Agents

most trivial of environments must be prepared for the possibility of failure. We can
sum this situation up formally by saying that environments are non-determinastic.

Normally, an agent will have a repertoire of actions available to it. This set of
possible actions represents the agents effectoric capability: its ability to modify its
environments. Note that not all actions can be performed in all situations. For
example, an action “lift table” is only applicable in situations where the weight
of the table is sufficiently small that the agent can lift it. Similarly, the action
“purchase a Ferrari” will fail if insufficient funds area available to do so. Actions
therefore have pre-conditions associated with them, which define the possible
situations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it should
perform in order to best satisfy its design objectives. Agent architectures, of which
we shall see several examples later in this article, are really software architectures for
decision making systems that are embedded in an environment. The complexity of
the decision-making process can be affected by a number of different environmental
properties. Russell and Norvig suggest the following classification of environment
properties [59, p46]:

® Accessible vs inaccessible.
An accessible environment is one in which the agent can obtain complete, ac-
curate, up-to-date information about the environment’s state. Most moderately
complex environments (including, for example, the everyday physical world and
the Internet) are inaccessible. The more accessible an environment is, the simpler
it is to build agents to operate in it.

m Deterministic vs non-deterministic.
As we have already mentioned, a deterministic environment is one in which any
action has a single guaranteed effect — there is no uncertainty about the state
that will result from performing an action. The physical world can to all intents
and purposes be regarded as non-deterministic. Non-deterministic environments
present greater problems for the agent designer.

® FEpisodic vs non-episodic.
In an episodic environment, the performance of an agent is dependent on a
number of discrete episodes, with no link between the performance of an agent
in different scenarios. An example of an episodic environment would be a mail
sorting system [60]. Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to perform based only on
the current episode — it need not reason about the interactions between this
and future episodes.

® Static vs dynamic.
A static environment is one that can be assumed to remain unchanged except
by the performance of actions by the agent. A dynamic environment is one that
has other processes operating on it, and which hence changes in ways beyond
the agent’s control. The physical world is a highly dynamic environment.

1.2 What are Agents?

o

Discrete vs continuous.

An environment is discrete if there are a fixed, finite number of actions and
percepts in it. Russell and Norvig give a chess game as an example of a discrete
environment, and taxi driving as an example of a continuous one.

As Russell and Norvig observe [59, p46], if an environment is sufficiently complex,

then the fact that it is actually deterministic is not much help: to all intents and

purposes, it may as well be non-deterministic. The most complex general class

of environments are those that are inaccessible, non-deterministic, non-episodic,

dynamic, and continuous.

1.2.1 Examples of Agents

At this point, it is worth pausing to consider some examples of agents (though not,

as yet, intelligent agents):

Any control system can be viewed as an agent. A simple (and overused) example
of such a system is a thermostat. Thermostats have a sensor for detecting room
temperature. This sensor is directly embedded within the environment (i.e., the
room), and it produces as output one of two signals: one that indicates that the
temperature is too low, another which indicates that the temperature is OK. The
actions available to the thermostat are “heating on” or “heating off”. The action
“heating on” will generally have the effect of raising the room temperature, but
this cannot be a guaranteed effect — if the door to the room is open, for example,
switching on the heater may have no effect. The (extremely simple) decision
making component of the thermostat implements (usually in electro-mechanical
hardware) the following rules:

too cold —> heating on
temperature OK — heating off

More complex environment control systems, of course, have considerably richer
decision structures. Examples include autonomous space probes, fly-by-wire
aircraft, nuclear reactor control systems, and so on.

Most software daemons, (such as background processes in the UNIX operating
system), which monitor a software environment and perform actions to modify
it, can be viewed as agents. An example is the X Windows program xbiff. This
utility continually monitors a user’s incoming email, and indicates via a GUI
icon whether or not they have unread messages. Whereas our thermostat agent
in the previous example inhabited a physical environment — the physical world
— the xbiff program inhabits a software environment. It obtains information
about this environment by carrying out software functions (by executing system
programs such as 1s, for example), and the actions it performs are software
actions (changing an icon on the screen, or executing a program). The decision
making component is just as simple as our thermostat example.

Intelligent Agents

To summarise, agents are simply computer systems that are capable of autonomous
action in some environment in order to meet their design objectives. An agent will
typically sense its environment (by physical sensors in the case of agents situated
in part of the real world, or by software sensors in the case of software agents),
and will have available a repertoire of actions that can be executed to modify the
environment, which may appear to respond non-deterministically to the execution
of these actions.

1.2.2 Intelligent Agents

We are not used to thinking of thermostats or UNIX daemons as agents, and certainly
not as intelligent agents. So, when do we consider an agent to be intelligent? The
question, like the question what is intelligence? itself, is not an easy one to answer.
But for me, an intelligent agent is one that is capable of flexible autonomous action
in order to meet its design objectives, where by flexible, T mean three things [71]:

" reactivity: intelligent agents are able to perceive their environment, and respond
in a timely fashion to changes that occur in it in order to satisfy their design
objectives;

" pro-actiweness: intelligent agents are able to exhibit goal-directed behaviour by
taking the initiative in order to satisfy their design objectives;

® social ability: intelligent agents are capable of interacting with other agents (and
possibly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at first appear. To see why,
let us consider them in turn. First, consider pro-activeness: goal directed behaviour.
It is not hard to build a system that exhibits goal directed behaviour — we do it
every time we write a procedure in PASCAL, a function in ¢, or a method in JAVA.
When we write such a procedure, we describe it in terms of the assumptions on
which it relies (formally, its pre-condition) and the effect it has if the assumptions
are valid (its post-condition). The effects of the procedure are its goal: what the
author of the software intends the procedure to achieve. If the pre-condition holds
when the procedure is invoked, then we expect that the procedure will execute
correctly: that it will terminate, and that upon termination, the post-condition will
be true, i.e., the goal will be achieved. This is goal directed behaviour: the procedure
is simply a plan or recipe for achieving the goal. This programming model is fine
for many environments. For example, its works well when we consider functional
systems — those that simply take some input x, and produce as output some some
function f(z) of this input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal directed programming
is not acceptable, as it makes some important limiting assumptions. In particular, it
assumes that the environment does not change while the procedure is executing. If
the environment does change, and in particular, if the assumptions (pre-condition)
underlying the procedure become false while the procedure is executing, then the

1.2 What are Agents? 7

behaviour of the procedure may not be defined — often, it will simply crash. Also,
it is assumed that the goal, that is, the reason for executing the procedure, remains
valid at least until the procedure terminates. If the goal does not remain valid, then
there is simply no reason to continue executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in
domains that are too compler for an agent to observe completely, that are mult:-
agent (i.e., they are populated with more than one agent that can change the
environment), or where there is uncertainty in the environment, these assumptions
are not reasonable. In such environments, blindly executing a procedure without
regard to whether the assumptions underpinning the procedure are valid is a poor
strategy. In such dynamic environments, an agent must be reactive, in just the way
that we described above. That is, it must be responsive to events that occur in its
environment, where these events affect either the agent’s goals or the assumptions
which underpin the procedures that the agent is executing in order to achieve its
goals.

As we have seen, building purely goal directed systems is not hard. As we shall
see later in this chapter, building purely reactive systems — ones that continually
respond to their environment — is also not difficult. However, what turns out to be
hard is building a system that achieves an effective balance between goal-directed
and reactive behaviour. We want agents that will attempt to achieve their goals
systematically, perhaps by making use of complex procedure-like patterns of action.
But we don’t want our agents to continue blindly executing these procedures in an
attempt to achieve a goal either when it is clear that the procedure will not work,
or when the goal is for some reason no longer valid. In such circumstances, we want
our agent to be able to react to the new situation, in time for the reaction to be of
some use. However, we do not want our agent to be continually reacting, and hence
never focussing on a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance
between goal directed and reactive behaviour is hard. After all, it is comparatively
rare to find humans that do this very well. How many of us have had a manager who
stayed blindly focussed on some project long after the relevance of the project was
passed, or it was clear that the project plan was doomed to failure? Similarly, how
many have encountered managers who seem unable to stay focussed at all, who flit
from one project to another without ever managing to pursue a goal long enough
to achieve anything? This problem — of effectively integrating goal-directed and
reactive behaviour — is one of the key problems facing the agent designer. As we
shall see, a great many proposals have been made for how to build agents that can
do this — but the problem is essentially still open.

Finally, let us say something about social ability, the final component of flexible
autonomous action as defined here. In one sense, social ability is trivial: every
day, millions of computers across the world routinely exchange information with
both humans and other computers. But the ability to exchange bit streams is not
really social ability. Consider that in the human world, comparatively few of our
meaningful goals can be achieved without the cooperation of other people, who

Intelligent Agents

cannot be assumed to share our goals — in other words, they are themselves
autonomous, with their own agenda to pursue. To achieve our goals in such
situations, we must negotiate and cooperate with others. We may be required to
understand and reason about the goals of others, and to perform actions (such as
paying them money) that we would not otherwise choose to perform, in order
to get them to cooperate with us, and achieve our goals. This type of social
ability 1s much more complex, and much less well understood, than simply the
ability to exchange binary information. Social ability in general (and topics such
as negotiation and cooperation in particular) are dealt with elsewhere in this book,
and will not therefore be considered here. In this chapter, we will be concerned with
the decision making of individual intelligent agents in environments which may be
dynamic, unpredictable, and uncertain, but do not contain other agents.

1.2.3 Agents and Objects

Object-oriented programmers often fail to see anything novel or new in the idea of
agents. When one stops to consider the relative properties of agents and objects,
this is perhaps not surprising. Objects are defined as computational entities that
encapsulate some state, are able to perform actions, or methods on this state, and
communicate by message passing.

While there are obvious similarities, there are also significant differences between
agents and objects. The first is in the degree to which agents and objects are
autonomous. Recall that the defining characteristic of object-oriented programming
is the principle of encapsulation — the idea that objects can have control over their
own internal state. In programming languages like JAVA, we can declare instance
variables (and methods) to be private, meaning they are only accessible from
within the object. (We can of course also declare them public, meaning that they
can be accessed from anywhere, and indeed we must do this for methods so that
they can be used by other objects. But the use of public instance variables is
usually considered poor programming style.) In this way, an object can be thought
of as exhibiting autonomy over its state: it has control over it. But an object does
not exhibit control over it’s behaviour. That is, if a method m is made available for
other objects to invoke, then they can do so whenever they wish — once an object
has made a method public, then it subsequently has no control over whether or
not that method is executed. Of course, an object must make methods available to
other objects, or else we would be unable to build a system out of them. This is not
normally an issue, because if we build a system, then we design the objects that go
in it, and they can thus be assumed to share a “common goal”. But in many types
of multi-agent system, (in particular, those that contain agents built by different
organisations or individuals), no such common goal can be assumed. It cannot be
for granted that an agent ¢ will execute an action (method) a just because another
agent j wants it to — @ may not be in the best interests of . We thus do not think
of agents as invoking methods upon one-another, but rather as requesting actions
to be performed. If j requests ¢ to perform a, then ¢ may perform the action or it

1.2 What are Agents? 9

may not. The locus of control with respect to the decision about whether to execute
an action is thus different in agent and object systems. In the object-oriented case,
the decision lies with the object that invokes the method. In the agent case, the
decision lies with the agent that receives the request. I have heard this distinction
between objects and agents nicely summarised in the following slogan: Objects do
it for free; agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented
techniques. For example, we can build some kind of decision making about whether
to execute a method into the method itself, and in this way achieve a stronger
kind of autonomy for our objects. The point is that autonomy of this kind is not a
component of the basic object-oriented model.

The second important distinction between object and agent systems is with
respect to the notion of flexible (reactive, pro-active, social) autonomous behaviour.
The standard object model has nothing whatsoever to say about how to build
systems that integrate these types of behaviour. Again, one could object that we
can build object-oriented programs that do integrate these types of behaviour.
But this argument misses the point, which is that the standard object-oriented
programming model has nothing to do with these types of behaviour.

The third important distinction between the standard object model and our
view of agent systems is that agents are each considered to have their own thread
of control — in the standard object model, there is a single thread of control in
the system. Of course, a lot of work has recently been devoted to concurrency
in object-oriented programming. For example, the JAvA language provides built-
in constructs for multi-threaded programming. There are also many programming
languages available (most of them admittedly prototypes) that were specifically
designed to allow concurrent object-based programming. But such languages do
not capture the idea we have of agents as autonomous entities. Perhaps the closest
that the object-oriented community comes is in the idea of active objects:

An active object is one that encompasses its own thread of control [...]. Active
objects are generally autonomous, meaning that they can exhibit some behaviour
without being operated upon by another object. Passive objects, on the other hand,
can only undergo a state change when explicitly acted upon. [5, p91]

Thus active objects are essentially agents that do not necessarily have the ability
to exhibit flexible autonomous behaviour.

To summarise, the traditional view of an object and our view of an agent have
at least three distinctions:

® agents embody stronger notion of autonomy than objects, and in particular,
they decide for themselves whether or not to perform an action on request from
another agent;

m agents are capable of flexible (reactive, pro-active, social) behaviour, and the
standard object model has nothing to say about such types of behaviour;

® 3 multi-agent system is inherently multi-threaded, in that each agent is assumed

10

Intelligent Agents

to have at least one thread of control.
1.2.4 Agents and Expert Systems

Expert systems were the most important AT technology of the 1980s [31]. An expert
system is one that is capable of solving problems or giving advice in some knowledge-
rich domain [32]. A classic example of an expert system is MYCIN, which was
intended to assist physicians in the treatment of blood infections in humans. MYCIN
worked by a process of interacting with a user in order to present the system with
a number of (symbolically represented) facts, which the system then used to derive
some conclusion. MYCIN acted very much as a consultant: it did not operate directly
on humans, or indeed any other environment. Thus perhaps the most important
distinction between agents and expert systems is that expert systems like MYCIN are
inherently disembodied. By this, we mean that they do not interact directly with any
environment: they get their information not via sensors, but through a user acting as
middle man. In the same way, they do not act on any environment, but rather give
feedback or advice to a third party. In addition, we do not generally require expert
systems to be capable of co-operating with other agents. Despite these differences,
some expert systems, (particularly those that perform real-time control tasks), look
very much like agents. A good example is the ARCHON system [33].

Sources and Further Reading

A view of artificial intelligence as the process of agent design is presented in [59],
and in particular, Chapter 2 of [59] presents much useful material. The definition
of agents presented here is based on [71], which also contains an extensive review
of agent architectures and programming languages. In addition, [71] contains a
detailed survey of agent theories — formalisms for reasoning about intelligent,
rational agents, which is outside the scope of this chapter. This question of “what
is an agent” 1s one that continues to generate some debate; a collection of answers
may be found in [48]. The relationship between agents and objects has not been
widely discussed in the literature, but see [24]. Other readable introductions to the
idea of intelligent agents include [34] and [13].

1.3 Abstract Architectures for Intelligent Agents

We can easily formalise the abstract view of agents presented so far. First, we will
assume that the state of the agent’s environment can be characterised as a set
S = {s1,89,...} of environment states. At any given instant, the environment is
assumed to be in one of these states. The effectoric capability of an agent is assumed
to be represented by a set A = {ay,as,...} of actions. Then abstractly, an agent

1.3

Abstract Architectures for Intelligent Agents 11

can be viewed as a function
action : S* — A

which maps sequences of environment states to actions. We will refer to an agent
modelled by a function of this form as a standard agent. The intuition is that an
agent decides what action to perform on the basis of its history — its experiences
to date. These experiences are represented as a sequence of environment states —
those that the agent has thus far encountered.

The (non-deterministic) behaviour of an an environment can be modelled as a
function

env : S x A= p(9)

which takes the current state of the environment s € S and an action ¢ € A
(performed by the agent), and maps them to a set of environment states env(s, a)
— those that could result from performing action a in state s. If all the sets in the
range of env are all singletons, (i.e., if the result of performing any action in any
state is a set containing a single member), then the environment is deterministic,
and its behaviour can be accurately predicted.

We can represent the interaction of agent and environment as a history. A history
h is a sequence:
hisg 2% g Mgy 22y g, 2oy Tund g Guy
where sq is the initial state of the environment (i.e., its state when the agent starts
executing), a, is the u’th action that the agent chose to perform, and s, is the u’th
environment state (which is one of the possible results of executing action a,_; in
state sy—1). If action : S* — A is an agent, env : S x A — (S) is an environment,
and sq is the initial state of the environment, then the sequence
hisg 2% s by 5y 2255 28 T g By
will represent a possible history of the agent in the environment iff the following
two conditions hold:

Yu € IN, a, = action((so, s1,-.-,54))
and
Vu € IN such that u > 0, s, € env(sy_1, au_1).

The characteristic behaviour of an agent action : S* — A in an environment
env : S x A = p(S) is the set of all the histories that satisfy these properties. If
some property ¢ holds of all these histories, this this property can be regarded
as an invariant property of the agent in the environment. For example, if our
agent is a nuclear reactor controller, (i.e., the environment is a nuclear reactor),
and in all possible histories of the controller/reactor, the reactor does not blow
up, then this can be regarded as a (desirable) invariant property. We will denote

12

Intelligent Agents

by hist(agent, environment) the set of all histories of agent in environment.
Two agents ag; and ags are said to be behaviourally equivalent with respect
to environment env iff hist(ag:,env) = hist(aga, env), and simply behaviourally
equivalent iff they are behaviourally equivalent with respect to all environments.

In general, we are interested in agents whose interaction with their environment
does not end, i.e., they are non-terminating. In such cases, the histories that we
consider will be infinite.

1.3.1 Purely Reactive Agents

Certain types of agents decide what to do without reference to their history. They
base their decision making entirely on the present, with no reference at all to the
past. We will call such agents purely reactive, since they simply respond directly
to their environment. Formally, the behaviour of a purely reactive agent can be
represented by a function

action : S — A.

It should be easy to see that for every purely reactive agent, there is an equivalent
standard agent; the reverse, however, is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without
loss of generality, that the thermostat’s environment can be in one of two states
— either too cold, or temperature OK. Then the thermostat’s action function is
simply

action(s) =

heater off if s = temperature OK
heater on otherwise.

1.3.2 Perception

Viewing agents at this abstract level makes for a pleasantly simply analysis.
However, it does not help us to construct them, since it gives us no clues about
how to design the decision function action. For this reason, we will now begin
to refine our abstract model of agents, by breaking it down into sub-systems in
exactly the way that one does in standard software engineering. As we refine our
view of agents, we find ourselves making design choices that mostly relate to the
subsystems that go to make up an agent — what data and control structures will
be present. An agent architecture is essentially a map of the internals of an agent —
its data structures, the operations that may be performed on these data structures,
and the control flow between these data structures. Later in this chapter, we will
discuss a number of different types of agent architecture, with very different views
on the data structures and algorithms that will be present within an agent. In
the remainder of this section, however, we will survey some fairly high-level design
decisions. The first of these is the separation of an agent’s decision function into
perception and action subsystems: see Figure 1.2.

1.3

Abstract Architectures for Intelligent Agents 13

(= (=]

AGENT

ENVIRONMENT

Figure 1.2 Perception and action subsystems.

The idea is that the function see captures the agent’s ability to observe its
environment, whereas the action function represents the agent’s decision making
process. The see function might be implemented in hardware in the case of an
agent situated in the physical world: for example, it might be a video camera or
an infra-red sensor on a mobile robot. For a software agent, the sensors might be
system commands that obtain information about the software environment, such as
1s, finger, or suchlike. The output of the see function is a percept — a perceptual
input. Let P be a (non-empty) set of percepts. Then see is a function

see : S — P
which maps environment states to percepts, and action is now a function
action : P* — A

which maps sequences of percepts to actions.

These simple definitions allow us to explore some interesting properties of agents
and perception. Suppose that we have two environment states, s; € S and s3 € 5,
such that s; # sa, but see(s1) = see(s2). Then two different environment states are
mapped to the same percept, and hence the agent would receive the same perceptual
information from different environment states. As far as the agent is concerned,
therefore, s; and so are indistinguishable. To make this example concrete, let us
return to the thermostat example. Let x represent the statement

“the room temperature 1s OK”
and let y represent the statement
“John Major is Prime Minister”.

If these are the only two facts about our environment that we are concerned with,

14

Intelligent Agents

then the set S of environment states contains exactly four elements:

S={{-z,~y}, {-z, v}, {z. ~y}, {z,y}}
S—— —— —— Y~
s1 S2 53 S4
Thus in state s, the room temperature is not OK, and John Major is not Prime
Minister; in state s, the room temperature is not OK, and John Major s Prime
Minister. Now, our thermostat is sensitive only to temperatures in the room. This
room temperature is not causally related to whether or not John Major is Prime
Minister. Thus the states where John Major is and is not Prime Minister are literally
indistinguishable to the thermostat. Formally, the see function for the thermostat
would have two percepts in its range, p1 and p-, indicating that the temperature is
too cold or OK respectively. The see function for the thermostat would behave as
follows:

p1 if s =s1 or s = sy
see(s) =]
ps 1f s = s3 or s = s4.

Given two environment states s € S and s’ € S, let us write s = s if
see(s) = see(s’). It is not hard to see that = is an equivalence relation over
environment states, which partitions S into mutually indistinguishable sets of
states. Intuitively, the coarser these equivalence classes are, the less effective is
the agent’s perception. If | = | = |S|, (i.e., the number of distinct percepts is equal
to the number of different environment states), then the agent can distinguish every
state — the agent has perfect perception in the environment; it is omniscient. At
the other extreme, if | = | = 1, then the agent’s perceptual ability is non-existent —
it cannot distinguish between any different states. In this case, as far as the agent
is concerned, all environment states are identical.

1.3.3 Agents with State

We have so far been modelling an agent’s decision function action as from sequences
of environment states or percepts to actions. This allows us to represent agents
whose decision making is influenced by history. However, this is a somewhat
unintuitive representation, and we shall now replace it by an equivalent, but
somewhat more natural scheme. The idea is that we now consider agents that
maintain state — see Figure 1.3.

These agents have some internal data structure, which is typically used to record
information about the environment state and history. Let I be the set of all internal
states of the agent. An agent’s decision making process i1s then based, at least in
part, on this information. The perception function see for a state-based agent is
unchanged, mapping environment states to percepts as before:

see: S — P

1.3

Abstract Architectures for Intelligent Agents 15

@ AGENT h
[
next state
—_
o /

ENVIRONMEN

Figure 1.3 Agents that maintain state.

The action-selection function action is now defined a mapping
action : I — A

from internal states to actions. An additional function next i1s introduced, which
maps an internal state and percept to an internal state:

next : I x P— 1

The behaviour of a state-based agent can be summarised as follows. The agent
starts in some initial internal state ig. It then observes its environment state s,
and generates a percept see(s). The internal state of the agent is then updated
via the next function, becoming set to newt(ig, see(s)). The action selected by the
agent is then action(next(ig, see(s))). This action is then performed, and the agent
enters another cycle, perceiving the world via see, updating its state via next, and
choosing an action to perform via action.

It is worth observing that state-based agents as defined here are in fact no more
powerful than the standard agents we introduced earlier. In fact, they are identical
in their expressive power — every state-based agent can be transformed into a
standard agent that is behaviourally equivalent.

Sources and Further Reading

The abstract model of agents presented here is based on that given in [25, Chapter
13], and also makes use of some ideas from [61, 60]. The properties of perception
as discussed in this section lead to knowledge theory, a formal analysis of the
information implicit within the state of computer processes, which has had a
profound effect in theoretical computer science. The definitive reference is [14],
and an introductory survey is [29].

16

Intelligent Agents

1.4 Concrete Architectures for Intelligent Agents

Thus far, we have considered agents only in the abstract. So while we have examined
the properties of agents that do and do not maintain state, we have not stopped
to consider what this state might look like. Similarly, we have modelled an agent’s
decision making as an abstract function action, which somehow manages to indicate
which action to perform — but we have not discussed how this function might be
implemented. In this section, we will rectify this omission. We will consider four
classes of agents:

" Jogic based agents — in which decision making is realised through logical deduc-
tion;

" reactive agents — in which decision making i1s implemented in some form of
direct mapping from situation to action;

® belief-desire-intention agents — in which decision making depends upon the
manipulation of data structures representing the beliefs, desires, and intentions
of the agent; and finally,

® Jayered architectures — in which decision making is realised via various software
layers, each of which is more-or-less explicitly reasoning about the environment
at different levels of abstraction.

In each of these cases, we are moving away from the abstract view of agents, and
beginning to make quite specific commitments about the internal structure and
operation of agents. In each section, I will try to explain the nature of these
commitments, the assumptions upon which the architectures depend, and the
relative advantages and disadvantages of each.

1.4.1 Logic-based Architectures

The “traditional” approach to building artificially intelligent systems, (known as
symbolic AT) suggests that intelligent behaviour can be generated in a system by
giving that system a symbolic representation of its environment and its desired
behaviour, and syntactically manipulating this representation. In this section, we
focus on the apotheosis of this tradition, in which these symbolic representations are
logical formulae, and the syntactic manipulation corresponds to logical deduction,
or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some theory
of agency — some theory that explains how an intelligent agent should behave.
This theory might explain, for example, how an agent generates goals so as to
satisfy 1ts design objective, how it interleaves goal-directed and reactive behaviour
in order to achieve these goals, and so on. Then this theory ¢ can be considered
as a spectfication for how an agent should behave. The traditional approach to
implementing a system that will satisfy this specification would involve refining the

1.4 Concrete Architectures for Intelligent Agents 17

specification through a series of progressively more concrete stages, until finally an
implementation was reached. In the view of agents as theorem provers, however, no
such refinement takes place. Instead, ¢ is viewed as an executable specification: it
is directly executed in order to produce the agent’s behaviour.

To see how such an idea might work, we shall develop a simple model of logic-
based agents, which we shall call deliberate agents. In such agents, the internal state
is assumed to be a database of formulae of classical first-order predicate logic. For
example, the agent’s database might contain formulae such as:

Open(valve221)
Temperature(reactord726,321)
Pressure(tank776, 28)

It 1s not difficult to see how formulae such as these can be used to represent the
properties of some environment. The database is the information that the agent
has about its environment. An agent’s database plays a somewhat analogous role to
that of belief in humans. Thus a person might have a belief that valve 221 1s open
— the agent might have the predicate Open(valve221) in its database. Of course,
just like humans, agents can be wrong. Thus I might believe that valve 221 is open
when it is in fact closed; the fact that an agent has Open(valve221) in its database
does not mean that valve 221 (or indeed any valve) is open. The agent’s sensors
may be faulty, its reasoning may be faulty, the information may be out of date, or
the interpretation of the formula Open(valve221) intended by the agent’s designer
may be something entirely different.

Let L be the set of sentences of classical first-order logic, and let D = (L) be
the set of L databases, i.e., the set of sets of L-formulae. The internal state of an
agent is then an element of D. We write A, Ay, ... for members of . The internal
state of an agent is then simply a member of the set D. An agent’s decision making
process is modelled through a set of deduction rules, p. These are simply rules of
inference for the logic. We write A F, ¢ if the formula ¢ can be proved from the
database A using only the deduction rules p. An agents perception function see
remains unchanged:

see : S — P.
Similarly, our next function has the form
next : D x P — D

It thus maps a database and a percept to a new database. However, an agent’s
action selection function, which has the signature

action : D — A

is defined in terms of its deduction rules. The pseudo-code definition of this function
is as follows.

18

Intelligent Agents

1. function action(A: D) : A

2. begin

3. for each a € A do

4, if A+, Do(a) then
5. return a

6. end-if

7. end-for

8. for each a € A do

9. if At/, =Do(a) then
10. return a

11. end-if

12. end-for

13. return null

14. end function action

The idea is that the agent programmer will encode the deduction rules p and
database A in such a way that if a formula Do(a) can be derived, where a is a
term that denotes an action, then a is the best action to perform. Thus, in the first
part of the function (lines (3)—(7)), the agent takes each of its possible actions a in
turn, and attempts to prove the form the formula Do(a) from its database (passed
as a parameter to the function) using its deduction rules p. If the agent succeeds
in proving Do(a), then a is returned as the action to be performed.

What happens if the agent fails to prove Do(a), for all actions @ € A? In this case,
it attempts to find an action that is consistent with the rules and database, i.e.,
one that is not explicitly forbidden. In lines (8)-(12), therefore, the agent attempts
to find an action a € A such that —Do(a) cannot be derived from its database
using its deduction rules. If it can find such an action, then this is returned as the
action to be performed. If, however, the agent fails to find an action that is at least
consistent, then it returns a special action null (or noop), indicating that no action
has been selected.

In this way, the agent’s behaviour is determined by the agent’s deduction rules
(its “program”) and its current database (representing the information the agent
has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum
cleaning world example of [59, p51]). The idea is that we have a small robotic agent
that will clean up a house. The robot 1s equipped with a sensor that will tell it
whether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt.
In addition, the robot always has a definite orientation (one of north, south, east,
or west). In addition to being able to suck up dirt, the agent can move forward one
“step” or turn right 90°. The agent moves around a room, which is divided grid-like
into a number of equally sized squares (conveniently corresponding to the unit of
movement of the agent). We will assume that our agent does nothing but clean —
it never leaves the room, and further, we will assume in the interests of simplicity
that the room is a 3 x 3 grid, and the agent always starts in grid square (0, 0) facing

1.4 Concrete Architectures for Intelligent Agents 19

- .‘..-
.f..- 3 A
. o @
dirt : dirt
,,,,,,,,,,,,,,,,,, O, . .E L ED
o v O
,,,,,,,,,,,,,,,,,, o L En L&D
0.0): (1.0): 2.0

Figure 1.4 Vacuum world

north.

To summarise, our agent can receive a percept dirt (signifying that there is dirt
beneath it), or null (indicating no special information). It can perform any one of
three possible actions: forward, suck, or turn. The goal is to traverse the room
continually searching for and removing dirt. See Figure 1.4 for an illustration of the
vacuum world.

First, note that we make use of three simple domain predicates in this exercise:

In(z,y) agent is at (z,y)
Dirt(z,y) there is dirt at (z,y)
Facing(d) the agent is facing direction d

Now we specify our next function. This function must look at the perceptual
information obtained from the environment (either dirt or null), and generate a
new database which includes this information. But in addition, it must remove old
or irrelevant information, and also, it must try to figure out the new location and
orientation of the agent. We will therefore specify the next function in several parts.
First, let us write old(A) to denote the set of “old” information in a database, which
we want the update function next to remove:

old(A) = {P(t1,...,t,) | P € {In, Dirt, Facing} and P(t1,...,t,) € A}

Next, we require a function new, which gives the set of new predicates to add to
the database. This function has the signature

new: D x P —= D

The definition of this function is not difficult, but it is rather lengthy, and so we
will leave it as an exercise. (It must generate the predicates In(...), describing the
new position of the agent, Facing(...) describing the orientation of the agent, and
Dirt(...) if dirt has been detected at the new position.) Given the new and old

20

Intelligent Agents

functions, the next function is defined as follows:
next(A,p) = (A\ old(A)) Unew(A,p)

Now we can move on to the rules that govern our agent’s behaviour. The deduction
rules have the form

$(..) — 9(...)

where ¢ and i are predicates over some arbitrary list of constants and variables.
The idea being that if ¢ matches against the agent’s database, then i can be
concluded, with any variables in 1 instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will take
priority over all other possible behaviours of the agent (such as navigation).

In(z,y) A Dirt(z,y) — Do(suck) (1.1)

Hence if the agent is at location (z,y) and it perceives dirt, then the prescribed
action will be to suck up dirt. Otherwise, the basic action of the agent will be to
traverse the world. Taking advantage of the simplicity of our environment, we will
hardwire the basic navigation algorithm, so that the robot will always move from
(0,0) to (0,1) to (0,2) and then to (1,2), (1,1) and so on. Once the agent reaches
(2,2), it must head back to (0,0). The rules dealing with the traversal up to (0, 2)
are very simple.

In(0,0) A Facing(north) A ~Dirt(0,0) — Do(forward) (1.2)
In(0,1) A Facing(north) A ~Dirt(0,1) — Do(forward) (1.3)
In(0,2) A Facing(north) A =Dirt(0,2) — Do(turn) (1.4)

In(0,2) A Facing(east) — Do(forward) (1.5)

Notice that in each rule, we must explicitly check whether the antecedent of rule
(1.1) fires. This is to ensure that we only ever prescribe one action via the Do(...)
predicate. Similar rules can easily be generated that will get the agent to (2, 2), and
once at (2,2) back to (0,0). It is not difficult to see that these rules, together with
the next function, will generate the required behaviour of our agent.

At this point, it is worth stepping back and examining the pragmatics of the
logic-based approach to building agents. Probably the most important point to
make is that a literal, naive attempt to build agents in this way would be more or
less entirely impractical. To see why, suppose we have designed out agent’s rule set
p such that for any database A, if we can prove Do(a) then a is an optimal action
— that 1s, a is the best action that could be performed when the environment is as
described in A. Then imagine we start running our agent. At time ¢, the agent has
generated some database A, and begins to apply its rules p in order to find which
action to perform. Some time later, at time ¢5, it manages to establish Aq -, Do(a)
for some @ € A, and so a is the optimal action that the agent could perform at time
t1. But if the environment has changed between 1 and ¢5, then there is no guarantee

1.4 Concrete Architectures for Intelligent Agents 21

that a will still be optimal. It could be far from optimal, particularly if much time
has elapsed between ¢; and ¢5. If 3 —¢; is infinitesimal — that 1s, if decision making
is effectively instantaneous — then we could safely disregard this problem. But in
fact, we know that reasoning of the kind our logic-based agents use will be anything
but instantaneous. (If our agent uses classical first-order predicate logic to represent
the environment, and its rules are sound and complete, then there is no guarantee
that the decision making procedure will even terminate.) An agent is said to enjoy
the property of calculative rationality if and only if its decision making apparatus
will suggest an action that was optimal when the decision making process began.
Calculative rationality is clearly not acceptable in environments that change faster
than the agent can make decisions — we shall return to this point later.

One might argue that this problem is an artifact of the pure logic-based approach
adopted here. There is an element of truth in this. By moving away from strictly
logical representation languages and complete sets of deduction rules, one can build
agents that enjoy respectable performance. But one also loses what is arguably
the greatest advantage that the logical approach brings: a simple, elegant logical
semantics.

There are several other problems associated with the logical approach to agency.
First, the see function of an agent, (its perception component), maps its environ-
ment to a percept. In the case of a logic-based agent, this percept is likely to be
symbolic — typically, a set of formulae in the agent’s representation language. But
for many environments, it is not obvious how the mapping from environment to
symbolic percept might be realised. For example, the problem of transforming an
image to a set of declarative statements representing that image has been the object
of study in Al for decades, and is still essentially open. Another problem is that
actually representing properties of dynamic, real-world environments is extremely
hard. As an example, representing and reasoning about temporal information —
how a situation changes over time — turns out to be extraordinarily difficult. Fi-
nally, as the simple vacuum world example illustrates, representing even rather
simple procedural knowledge (i.e., knowledge about “what to do”) in traditional
logic can be rather unintuitive and cumbersome.

To summarise, in logic-based approaches to building agents, decision making
is viewed as deduction. An agent’s “program” — that is, its decision making
strategy — 1s encoded as a logical theory, and the process of selecting an action
reduces to a problem of proof. Logic-based approaches are elegant, and have a clean
(logical) semantics — wherein lies much of their long-lived appeal. But logic-based
approaches have many disadvantages. In particular, the inherent computational
complexity of theorem proving makes it questionable whether agents as theorem
provers can operate effectively in time-constrained environments. Decision making
in such agents i1s predicated on the assumption of calculative rationality — the
assumption that the world will not change in any significant way while the agent
is deciding what to do, and that an action which is rational when decision making
begins will be rational when it concludes. The problems associated with representing
and reasoning about complex, dynamic, possibly physical environments are also

22

Intelligent Agents

essentially unsolved.
Sources and Further Reading

My presentation of logic based agents is based largely on the discussion of deliberate
agents presented in [25, Chapter 13], which represents the logic-centric view of Al
and agents very well. The discussion is also partly based on [38]. A number of more-
or-less “pure” logical approaches to agent programming have been developed. Well-
known examples include the CONGOLOG system of Lespérance and colleagues [39]
(which is based on the situation calculus [45]) and the METATEM and Concurrent
METATEM programming languages developed by Fisher and colleagues [3, 21] (in
which agents are programmed by giving them temporal logic specifications of the
behaviour they should exhibit). Concurrent METATEM is discussed as a case study
in section 1.5. Note that these architectures (and the discussion above) assume
that if one adopts a logical approach to agent-building, then this means agents
are essentially theorem provers, employing explicit symbolic reasoning (theorem
proving) in order to make decisions. But just because we find logic a useful tool
for conceptualising or specifying agents, this does not mean that we must view
decision-making as logical manipulation. An alternative is to compile the logical
specification of an agent into a form more amenable to efficient decision making.
The difference is rather like the distinction between interpreted and compiled
programming languages. The best-known example of this work is the situated
automata paradigm of Leslie Kaelbling and Stanley Rosenschein [58]. An review
of the role of logic in intelligent agents may be found in [70]. Finally, for a detailed
discussion of calculative rationality and the way that it has affected thinking in Al

see [60].
1.4.2 Reactive Architectures

The seemingly intractable problems with symbolic/logical approaches to building
agents led some researchers to question, and ultimately reject, the assumptions
upon which such approaches are based. These researchers have argued that minor
changes to the symbolic approach, such as weakening the logical representation
language, will not be sufficient to build agents that can operate in time-constrained
environments: