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ABSTRACT 
This paper evaluates the learning capabilities of a new Case Based Reasoning based scheme for 
pure reactive navigation. The system only relies on sensor readings and goal direction at a given 
time instant. It acquires knowledge about how other systems, human or algorithms, handle 
reactive behaviors and also learns from its own experience. It has been successfully tested how 
the system learns from different sources and how it adapts to different situations.  

 
KEYWORDS: Case Based Reasoning Reactive Navigation Learning . 
 

1. INTRODUCTION 
Autonomous robotic navigation has been widely studied in the last decades. Much 

research has focused on navigation in dynamic environments, where changes are difficult to 
model and predict. When no information is available about an environment, navigation becomes 
mostly reactive. One of the best known reactive schemes is the potential fields method. Potential 
fields are simple and efficient, but they also present some drawbacks [5]: i) it is difficult to move 
between close obstacles (i.e. doors); ii) they tend to present oscillations when the robot is close to 
obstacles; iii) they may converge to local minima. Thus, sometimes they can not move safely 
through packed areas. Some approaches to resolve these problems have also been proposed: the 
Vector Field Histogram [11], the Elastic Bands method [9] or the Dynamic Window Approach 
[3]. The main drawback of all these approaches is that they depend on many parameters that are 
difficult to optimize for all cases. Consequently, algorithms capable of learning are more efficient 
in dynamic environments, instead of providing a single analytical solution to all problems. 

Case-Based Reasoning (CBR) is a learning and adaptation technique to solve current 
problems by retrieving and adapting past experiences [1]: CBR systems become more efficient by 
remembering old solutions for similar problems and adapting them to new ones rather than 
solving them from scratch. Each new problem together with its new solution becomes a new case 
that can also be stored and used later. A CBR cycle consists of the following steps: i) retrieve the 
most similar stored case; ii) adapt the retrieved case information to fit the current case; iii) 
evaluate results for feedback about the suitability of the solution; iv) learn from the new 
experience to use it for future problem solving. 

CBR has been used in robotic autonomous navigation schemes before, usually for global 
path planning in static environments [2], global planning in a priori known dynamic environments 
[4][7] and non pure reactive navigation [8][10] relying on accumulating experience over a time 
window. However, no CBR based method has been used for pure reactive navigation where 
decisions are taken regarding information available only at a given time instant. The authors 
proposed in [12] such an strategy to teach the robot how humans react given a punctual situation 
along a trajectory. The input data for the pure reactive scheme was only the sensor readings at a 
given time instant, the direction to the goal and the current heading of the robot. The target was, 
obviously, to reach the goal but also to achieve a short, safe and smooth trajectory. 



It was stated in [12] that the system worked better if some knowledge was injected to the 
system a priori, in that case by manually driving the robot through some routes to seed the 
casebase with some cases. However, it was evaluated how the system performed in a real 
environment and not evaluated how it progressively learnt. In this paper, the learning process in 
our CBR reactive system, briefly described in section 2, is tested and evaluated in section 3. 
Section 4 presents some results and conclusions. 

 
2. A CBR STRATEGY FOR AUTONOMOUS NAVIGATION 
In a pure reactive scheme, a case should be defined basically by the sensor readings and 

the goal. However, to avoid storing too many cases derived from small perception differences, we 
discretize sonar readings into 5 intervals: i) critical (0-20 cm); ii) near (20-50 cm); iii) medium  
(50-100 cm); iv) far (100-150 cm); and v) no influence (150-800 cm). Using this information, the 
system must return a new heading direction for the robot to safely reach the goal in that particular 
situation. In order to adapt to dynamic environments, the solution to a case can not be judged 
good or bad in terms of arriving to a goal because most trajectories involve several cases, good or 
bad. Thus, we evaluate solutions by using three simple local criteria. In order to provide some 
temporal inertia against sonar noise and to prevent slippage as much as possible, we try to 
minimize curvature changes in the robot trajectory. The second evaluation factor is the angle 
between the robot-goal vector and the heading direction, so that the robot avoids getting too far 
from its partial goal. Finally, to avoid getting too close to obstacles, the smaller sonar reading is 
also included as an evaluation factor. Fig. 1 shows how a case is defined for a robot equipped 
with 5 sensors and heading to the direction marked by the black arrow. The case includes the 
sensors readings plus the goal direction, marked with a gray arrow. The evaluated criteria are the 
shortest distance to obstacle dmin, the curvature variation α1 and the angle formed by the heading 
direction and the goal direction α2. 

Using the CBR scheme proposed in [12], the robot tries to reach goals in a straight way 
but as soon as obstacles are detected nearby, the most similar case in the casebase to the current 
situation is retrieved and the robot heading changes accordingly. However, if the retrieved case is 
too different from the current situation, the solution may mutate by correcting the returned 
heading with repulsors from the closest obstacles detected. These mutated cases can also be 
stored to help in future situations. Several cases concatenated plus a goal-attraction behavior in 
absence of obstacles nearby finally make the robot reach the goal. 

 
3. REACTIVE LEARNING FOR AN AUTONOMOUS ROBOT 
According to the proposed scheme, a robot can either learn from scratch, from an off-line 

supervised training stage or from its own experience. In this section, we present several 
experiments to evaluate the impact of all learning strategies. All experiments have been 
performed with a simulator for two main reasons: i) to keep exactly the same training conditions 

 
Fig. 1A case parameters and evaluation factors. 



in all cases for the sake of comparison; and ii) to avoid sonar effects so that it can be clearly 
understood how the system behaves in absence of sonar errors. All tests have been performed 
with one, two and three obstacles in the way of the robot. 

 
3.1 Off-line learning from a human driver 

Our first set of experiments consisted of manually driving the robot around a single 
obstacle through four different routes (Fig. 2). It can be observed that some of these routes were 
purposefully jerky to test if the robot was actually capable of choosing the best option to navigate 
on its own after training was complete. 

Fig. 3.a shows how the robot perform on its own in a very similar situation after only the 
trajectories in Figs. 2.a-b have been learnt by the robot. White circles over the trajectory show 
where the CBR reactive layer is triggered and black ones show where cases are mutated.  It can 
be observed that the robot tries to avoid jerky behavior, even though purposefully included in 
training. It can be appreciated that even for this known situation, the robot decides that some 
cases are not good, specifically because we purposefully drove the robot close to the obstacle in 
the learning stage. Thus, it can be observed that cases where the robot is too close to obstacles are 
mutated. Nevertheless, we did not include these mutated cases in the CBR yet to test how the 
robot performs in more complex situations when its knowledge is still poor. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.b shows the robot performance after training in Figs.2.a-b when there is also a 
single obstacle in the way. However, it must be noted that this time the obstacle is left on the right 
side of the robot, because leaving it on the left would mean a much longer trajectory. The 
interesting point about this is that the robot never learnt how to leave an obstacle on the right. 
Nevertheless, the CBR promptly adapts to the new situation by mutating most cases where the 
robot is turning. Again, we do not include these cases for tests in Figs. 3.c-d, where we can 
observe how the robot deals with two and three obstacles respectively. As expected, situations 
where the robot finds obstacles on both sides or on the right, cases are mutated. Despite the need 
for mutations, it can be observed that the resulting trajectories are mildly smooth, short and safe. 
However, in order to test how good these trajectories are, it is better to compare them with those 
returned by a well known method in the same conditions. We have implemented and adjusted a 

 
Fig. 2: a-d) Trajectories guided by a human around a single obstacle. 

 
Fig. 3:robot trajectory after training in Figs. 2.a and b with: a) obstacle on the left; b) obstacle on 

the right; c)  obstacles at both sides; d) three obstacles in the way. 



standard potential fields method and its results for the same four situations are presented in 
Figs.4.a-d. It can be observed that the resulting trajectories are mostly smooth and short, even 
though they tend to present oscillations, as expected. The experiments in Figs.3.a-d had less 
oscillations, but since the robot had learnt to move close to obstacles, they still presented sharp 
trajectory changes when obstacles were very close.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Since potential fields tend to return smooth trajectories unless at specific situations, a new 

set of experiments consisted of training the CBR only with potential fields. After the robot learnt 
cases during the trajectory in Fig. 4.a., we repeated all the experiments in Fig. 3 (Figs. 4.e-f). 
Again, some cases were mutated during these tests, but we purposefully avoided updating the 
casebase to test how the robot performs when training is not heavy. It can be observed that this 
time the robot does not get so close to obstacles and, hence, trajectories are smoother. Fig. 4.f 
shows an interesting case. The robot should leave the obstacle on the right to achieve a shorter 
trajectory, but since its training did not cover this situation, it chooses to stick to its knowledge 
and leave in on the left. When a human trained the robot, though, mutations made the robot work 
in other way (Fig. 3.b). This shows that the robot does not always learn the same. 

Thus far, no knowledge has been injected to the robot farther than a trajectory leaving an 
obstacle on the left, either given by a human or by potential fields. Thus, our next experiment 
aims at testing how much further training improves the global performance of the agent. Fig. 5.a 
shows a trajectory after the robot has learnt all cases during the human guided training in Figs. 
2.a-d. It can be observed that after all that training only a few new cases, marked in white, are 
acquired during this experiment, when the robot moves close to the first obstacle, mostly because 
human drivers tend to move close to obstacles, forcing the robot under its safety threshold and 
provoking mutations of the unwanted cases. It can be observed in Fig. 5.b, where the robot learnt 
its cases from a potential field approach, that almost no new cases are acquired when the safety 
threshold is kept. It can also be observed that in this case the trajectory presents less oscillations 
not only that the one returned by potential fields but also less than the one provided by CBR after 
training a single potential fields trajectory. Fig. 5.c shows the trajectory returned by the robot 
when it learns both potential field and human trained trajectories. In this case, black circles 
correspond to retrieved cases learnt from potential fields and white ones to those learnt from 
human drivers. It can be observed that the robot mostly prefers potential fields cases except when 
it needs to get really close to obstacles. It can also be observed that in this case the initial 
curvature change is smoother than in the previous ones. 

 

 
Fig. 4.a-d) robot trajectories returned by potential fields; e-f) robot trajectories returned by CBR 

trained with trajectory in Fig.4.a. 



 
 
 

 
 
 
 
 
 
 
 
 

Thus far, it has been tested that the trajectories returned by our CBR reactive scheme tend 
to be shorter and smoother than those returned by potential fields, but it is still necessary to test if 
the scheme can deal with cases which can not be solved by conventional purely reactive 
strategies. To this purpose, Fig. 6 present a new obstacle layout that has been constructed to 
prevent potential fields from finding a way through the corridor by moving obstacles 
progressively closer. Fig. 6.a shows how the potential field approach makes the robot stops at the 
beginning of the corridor. Similarly, Fig. 6.b shows the proposed scheme response when no cases 
are available at all. In this case, the robot reaches no equilibrium and instead keeps moving 
around looking for an entry in the corridor. Figs. 6.c-d show the trajectories returned by the 
proposed scheme after the human training if Fig.  2 and potential field based training in Figs. 4.a-
d. In both cases, the robot moves through the corridor, even though no human training has 
prepared it for this specific test and potential fields could provide no trajectory to learn. 
Furthermore, if no training is available at all but we allow acquisition of new cases during the 
experiment in Fig. 6.b, the robot manages to find a way in on its own after a few turns (Fig. 6.e). 
It can be noted that the smoothest trajectory is returned after learning from potential fields but it 
is interesting to note that the trajectory returned when the robot learns on its own is also smoother 
than the one returned by the human trained robot. This occurs because the robot learns to move 
very close to obstacles from its human trainer and, hence, when the obstacle layout differs from 
the one in the training stage, in some cases it needs to change its trajectory in a sharp way to 
adapt itself to the current situation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
Fig. 6. Trajectories returned by: a) potential fields; and CBR with b) no training; c) 

human training; d) potential fields training; e) auto-training. 

 
 Fig. 5. Trajectory in a 3-obstacle environment when the robot has learnt all cases in: a) tests in 

Fig.2; b) tests in Fig. 4.a-d; c) tests in Figs.2 and 4.a-c. 



4. CONCLUSIONS AND FUTURE WORK 
 
This paper has evaluated the learning capacities of a new CBR based pure reactive scheme for 
autonomous navigation. To keep a controlled environment for objective evaluation of the results, 
all tests have been performed under simulation. The system can acquire knowledge from human 
drivers, other reactive or non reactive navigation approaches and also from its own experience. 
Trajectories returned by the proposed system tend to be smooth, short and safe depending on the 
knowledge acquired by the robot: if the robot is taught to get close to obstacles, it does if 
necessary. It has been observed that the system acquires progressively less and less cases even if 
moving in different layouts. Also, a few cases are usually enough to provide efficient trajectories 
to a goal. Learnt cases tend to be adequate even when training involves bad cases as well. The 
scheme is capable of adapting to unexpected situations and also of improving the performance of 
the systems it used to learn new cases. Future work will focus on evaluating the performance of 
the scheme in real environments to test the effect of sonar errors. 
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