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ABSTRACT
This paper presents a new reactive layer using Case-Based
Reasoning (CBR) for a hybrid navigation architecture al-
ready including a deliberative layer that performs all global
planning. Thus, the reactive layer only relies on immediate
information about sensors readings, robot heading and re-
lative position to the goal. The proposed layer allows effi-
cient navigation in cluttered environments without signifi-
cant oscillations. It can easily be trained to deal with hard
situations like navigating between two close obstacles. The
layer has been succesfully tested in real environments.
KEY WORDS
reactive navigation, autonomous robot, case-based reaso-
ning

1 Introduction

Autonomous robotic navigation consists of finding and
tracking a safe path from a departure point to a goal. This
problem has been widely studied during the last decades
and its solutions range from high-level planning methods
to reactive control strategies. High level planning methods
require extensive world knowledge so the robot can act in
a predictable efficient way. These methods typically rely in
a classical sense − model − plan − act cycle known as
horizontal decomposition [7]. Deliberative schemes are of-
ten criticized for their inability to react rapidly. Also, they
strongly depend on a world model. Thus, they are not ef-
ficient in partially or totally unknown environments nor in
dynamic ones. Alternatively, reactive control methods rely
on directly coupling sensors and actuators [3]. Combina-
tions of reactive behaviours produce emergent actions. Re-
active schemes are fast and they can easily deal with several
sensors and goals. Besides, they are flexible and quite ro-
bust against sensor errors and noise. Unfortunately, emer-
ging behaviours may be very unpredictable and, in some
cases, non-efficient. Reactive systems are also prone to fall
into local traps. Hybrid systems combine deliberative and
reactive schemes to achieve a better performance. Low le-
vel control is performed in a reactive way whereas high
level processing follows a deliberative pattern [1]. Hybrid
systems are supported by biological evidence and they can
achieve efficient navigation in dynamic and totally or par-
tially unknown environments.

The authors proposed a layered hybrid navigation
architecture in [15]. The main novelty of this architec-

ture was a deliberative layer based on a new topological-
geometrical representation of the environment that provi-
ded a set of partial goals to reach a destination point in
an efficient way. It included a reactive layer based on po-
tential fields [16] to safely move the robot between partial
goals. The deliberative layer granted that the path between
two consecutive partial goals would be free of obstacles
and could be tracked with mimimum curvature variations
as long as the available representation was valid and no
unexpected changes occurred. Otherwise, potential fields
provided a way to avoid collisions. The main advantage of
the architecture regarding its reactive layer is that this la-
yer does not require any knowledge about the global layout
of the environment because all high level planning is per-
formed by the deliberative layer. However, potential fields
present some drawbacks (see next section). The most im-
portant one in our architecture is that they can not be fine-
tuned. Hence, this paper presents a new Case-Based Reaso-
ning (CBR [8]) based pure reactive layer to replace the one
in [15]. Section 2 presents an introduction to reactive na-
vigation techniques and CBR based navigation techniques.
The new reactive layer is presented in section 3. Section
4 presents some experiments in real environments using a
Pioneer robot yielding 8 Polaroid sonar sensors at -90, -50,
-30, -10, 10, 30, 50 and 90 degrees respectively. Finally,
conclusions and future works are presented in section 5.

2 Previous works

Reactive systems tend to directly couple sensors and ac-
tuators to decompose overall actions by behaviors rather
than by a deliberative process [1]. Overall system behavior
emerges from the interactions that take place between the
individual behaviors, sensor readings and the world.

The potential fields method is probably one of the
most popular ones for reactive navigation both in dyna-
mic and static environments [16]. This method consists
of creating an artificial repulsion field around obstacles in
the environment plus an attraction field around the goal so
that the robot moves towards that goal and away from the
obstacles. Despite their simplicity and efficiency, poten-
tial fields also present some drawbacks. First, it is difficult
to move between close obstacles (i.e. doors). They also
tend to present oscillations when the robot is close to obsta-
cles. Besides, they may converge to local minima. Some of
these problems have already been solved. However, poten-



Figure 1. Case definition

tial fields do not act differently in situations where the robot
must avoid an imminent collision and in those where it is
necessary to navigate close to obstacles. Thus, sometimes
they can not move safely through packed areas. Some non-
purely reactive approaches based in a world model have
also been proposed. The Vector Field Histogram [14] re-
presents the obstacle density in the environment by means
of a local histogram depending on the robot direction so
that the robot can move in the direction where there are
less obstacles. The Elastic Bands method [12] modifies the
trajectory of the robot by using artificial forces depending
on the layout of the obstacles in the way. The Dynamic
Window Approach [5] models the robot dynamics and the
environment into a goal function which is maximized to ex-
tract moving commands. The main drawback of all these
approaches is that they depend on many parameters that are
difficult to optimize for all cases.

In this paper we propose a pure reactive layer based
on Case-Based Reasoning (CBR). CBR is a learning and
adaption technique that helps to solve current problems by
retrieving and adapting past experiences, which are stored
in the casebase in the form of cases. A case consists of a
description of a problem, the solution to that problem and
the outcome of problem solving. Basically, using a CBR
based reactive layer we can teach the robot how to operate
in different situations instead of providing a single analyti-
cal solution to all problems. The advantage of CBR com-
pared to black-box techniques such as neural networks is
that cases in the database are explicitly stored. Hence, we
can have a clear idea of what the robot has learnt and why
it comes to one or another conclusion.

CBR has been used in navigation before, usually for
global path planning in static environments [4] [2]. There
are also approaches for global planning in dynamic envi-
ronments based on a topological map of an a-priori known
environment [6]. However, in [6] new opportunities can not
be discovered when the environment changes unless the to-
pological map is reorganized regularly. Kruusmaa [9] pro-
poses a grid based CBR global path planning method to
overcome the aforementioned problem. However, she con-
cludes that CBR-based global navigation is beneficial when
obstacles are large and dense and only few solution exists.

Otherwise, the solution space may become too large. Other
CBR based methods focus on reactive navigation [10] [13].
Since they are meant to operate without higher level con-
trol, they basically rely on accumulating experience over a
time window while navigating in a given environment to
obtain an emergent global goal seeking behaviour. The no-
velty of our approach is that our CBR-based layer is meant
to be integrated into the hybrid architecture in [15]. It does
not require any knowledge about a particular environment
because it is simply meant to efficiently avoid unexpected
obstacles in the way by modulating the path calculated by
a deliberative layer. Thus, it is valid for any environment.
The deliberative layer also prevents the reactive layer from
falling into local minima.

3 A CBR based reactive layer

3.1 Case definition

A case can be regarded as a vector in an N-dimensional
space. When a potentially interesting situation is detected,
a CBR cycle consists of four steps: i) retrieve the most si-
milar stored case; ii) adapt its solution to the current case;
iii) evaluate the results; iv) learn from the new experience.
In order to define a case, it is necessary to define which at-
tributes conform the vector, how solutions can be adapted
and how results are evaluated.

A pure reactive layer is basically defined by the sensor
readings and the goal. If no deliberative layer is available,
either a time sequence of sensor readings [13] or a explicit
model of the environment [9] is required. In our case, we
simply operate with the current readings of 8 on-board Po-
laroid sonar sensors. Sonars can detect obstacles as far as
6-8 meters away. However, they also present a wide uncer-
tainty arc. Thus, far obstacles can not be precisely located
unless statistical techniques are used to combine informa-
tion in time and space. We achieve some space integration
by evaluating the readings of all 8 sensors. We also pro-
vide some time integration by pondering negatively sharp
trajectory changes in our evaluation function. Besides, in
our case, far obstacles are not important because the delibe-
rative layer provides a global way of avoiding them to reach
the goal. We only react to close obstacles, which are either
unexpected, moving or, simply, close to the robot path.

The case library we use is organised as a flat struc-
ture. This kind of structure makes easier to test and try
several strategies to tune the CBR system to obtain the best
results. However, in a near future, other kind of formalisms
can be studied. In this type of case library structure, the re-
trieval step relies on a nearest neighbour algorithm (k-NN)
to obtain the most similar case to the local situation of the
robot to be used in the next adaption step. Similarity as-
sessment is a key point in the process of finding out the
best case to be adapted. There are some measures com-
monly used in the CBR field such as Euclidean distance,
Manhattan distance, normalised measures, heterogeneous
measures or probabilistic measures. In some preliminary



Figure 2. Training stage

work [11] it has been empirically proven that L’Eixample
measure outperforms the accuracy of most measures if the
attribute relevance is well defined, either by domain experts
or by automatic feature weighting techniques. For this re-
ason, it has been adopted in the experimental evaluation of
our approach. The performance of this measure is good
because it exploits the domain knowledge about attribute
relevance in order to compute similarities in a more accu-
rate way, combining discrete and continuous attributes in
CBR applications. We have empirically tested that small
differences in sonar readings are not too significant to cha-
racterise a given situation. Thus, we discretize those rea-
dings into 5 intervals: i) critical (0-20 cm); ii) near (20-50
cm); iii) medium(50-100 cm); iv) far (100-150 cm); and v)
no influence (150-800 cm). It must be noted that the first
three intervals are smaller because the robot needs to be
specially cautious when obstacles are so close. It is also
important to note that these values are only valid for a typi-
cal indoor environment. As aforementioned, we also need
to include the goal in the case attributes. Since we do not
use a model of the environment, we can not represent the
goal by means of coordinates. Instead, we represent it by
means of a vector joining our current position to the goal.
The current implementation works only with the direction
of the vector. Using all this information, the system must
return the direction that the robot must follow to safely re-
ach the goal given its current situation.

Since the proposed scheme is a purely reactive one,
solutions can not be evaluated in a global way. Thus, the
solution to a single case can not be judged good or bad
in terms of reaching the goal. Instead, we use three sim-
ple local criteria. In order to provide some temporal inertia
against sonar noise and to prevent slippage as much as pos-
sible, we evaluate curvature changes in the robot trajectory.
Hence, the robot tends not to change its direction abrup-
tly. The second evaluation factor is the angle between the

robot-goal vector and the advance direction, so that the ro-
bot do not move very far from its goal point. Also, in order
not to get too close to obstacles, the smallest sonar reading
is also included in the evaluation. Fig. 1 shows how a case

is defined for a robot equipped with 5 sensors. The attribu-
tes of the case are the readings of the 5 sensors plus the goal
direction (long grey arrow). The evaluated factors are the
shortest distance to obstacle dmin, the curvature variation
α1 and the angle between the resulting heading direction
(short grey arrow) and the goal direction α2.

3.2 Training stage

Before the robot starts to operate on its own, we have per-
formed a supervised trained stage to adquire a basic case

base. This stage basically consisted of manually guiding
the robot towards a goal blocked by a single obstacle. The
robot was freely guided by three different persons through
two different routes, leaving the obstacle on the right and
on the left of the robot. Fig. 2 shows the learning envi-
ronment. The departure and arrival points are marked with
white tape. Two examples of possible training trajectories
are marked with discontinuous lines. A new case is inclu-
ded in the data base each time a significant sensor confi-
guration is detected. We consider that a given sensor con-
figuration is significant when its distance to the previously
stored one is larger than a fixed threshold. Our goal was to
ultimately let the robot choose the best chain of cases to
reach a goal by combining different guides and routes. It
must be noted that the robot does not learn complete rou-
tes, but adequate actions for a given sensor configuration.
It can be observed that the robot basically stores immediate
solutions to immediate problems. No solution on its own
is enough to reach the goal. During this learning stage, the
robot made 6 different routes and stored 160 cases. It must
be noted that we explicitly avoided adquiring information
in cluttered environments to test how flexible the system is
against unexpected situations.

3.3 Adaptation stage

The adaptation step is a domain-dependent process, so it
has to be designed accordingly for each domain. Some
strategies have been tested, mainly based in mathematical
adjustments through interpolation techniques between the
most similar case and the current one. However, if the dis-
tance between those cases is too large, the solution can not
be correctly adapted. We have detected that critical pro-
blems usually occur when obstacles are significantly closer
to the robot in the problem at hand than in the stored case.
In these cases, the robot usually collides with obstacles.
To avoid this, those situations are easily detected by com-
paring the shortest distance to obstacle in the stored case

dmin (Fig. 1) with the current shortest distance to obs-
tacle. In those detected cases, we substract the direction
of the sonar detecting this shortest distance from the hea-



ding suggested by the stored case. The resulting heading
plus the rest of the case parameters in those particular si-
tuations are stored in the case base as a new case. Thus,
if no similar case is available and an obstacle is near in a
given situation, the robot corrects its heading to move away
from the obstacle.

When the learning stage is finished, the robot can ope-
rate on its own. When a goal is set, the robot changes its
heading to reach it in a straight way. If no obstacles are
within the reactive layer perception range, the robot tries to
change its curvature as little as possible. In the best case,
it follows a straight line. Otherwise, the reactive layer is
triggered. Then, the most similar learnt situation is extrac-
ted from the case base and the trajectory of the robot is
changed to avoid collisions. It must be noted that the reac-
tive layer changes the deliberative trajectory not only when
there is an obstacle in the way but also when there are ob-
tacles close to the path. Each time the robot changes its tra-
jectory, new cases may appear and the reactive layer can
be retriggered. Thus, the final emerging trajectory to reach
the goal is a composition of several discrete cases that are
not necessarily related to a single training trajectory. This
emergent behaviour is a combination of the best cases pre-
viously learnt according to the current chain of events.

4 Experimental results

After the six routes in the learning stage were learnt (sec-
tion 3.2), we performed a set of tests in a laboratory. Since
this paper focuses on the reactive layer, we disabled the de-
liberative layer in our architecture. Thus, the robot always
tried to reach a goal in a direct way. When no obstacles
were found in the reactive range, the robot arrived to the
goal by following a straight path. Since the laboratory is
not a large environment, we set the reactive range to a ra-
dius of 0.5 meters around the robot to consider only critical
and near obstacles because walls were at medium range.
Obstacles farther than 0.5 m. did not trigger the reactive
layer. Nevertheless, when the layer is triggered all detected
obstacles have influence in the resulting solution.

4.1 Emergent behaviours

In situations with a single obstacle, where there were only
small variations from the learning stage layout, the robot
easily reached the goal in a smooth way. Thus, we perfor-
med some experiments where two obstacles were put in the
environment. First, these obstacles were separated enough
to allow the robot to perceive them sequentially and not
at the same time. Fig. 3 shows one of these tests. The
trajectory is extracted from the robot odometry. However,
since no map was constructed, the position of the obstacles
overimposed to the trajectory is not exact. Thus, we also
include a picture of the experiment layout for a better un-
derstanding of the problem. Initially, the robot is aligned
with the x axis and turns 13 degrees left to head the goal.

Figure 3. Test with two separated obstacles

At the beginning, the closest obstacle is approximately 1 m.
away. Thus, the reactive layer is not triggered until the obs-
tacle on the left is detected ”near” by sensor 3 at 30 degrees.
The reactive layer recalls that driver 2 faced a a similar case

in his route 1 and suggests to turn right. It can be observed
that there is no sharp curvature change. However, this turn
makes sensor 2 detect the obstacle as well at 50 degrees.
The closest case in the case base is related to obstacles not
closer than 1.2 m (”far”) (driver 3, route 2). Hence, the out-
put heading direction is corrected and the robot turns left to
move away from the closest obstacle. In this case, the turn
can be clearly detected because curvature is not preserved
when these corrections are made. This change puts the ro-
bot out of the area of influence of the right obstacle. Thus,
the robot tries to gain the goal in a straight way once more
until the obstacle on the left is perceived again at 43.9 cm
(”near”). The reactive layer suggests to turn slightly right
until the robot is out of the area of influence of the left obs-
tacle as well (driver 2, route 1). Finally, when the robot is
out of the area of influence of the obstacles, it turns right
again to reach the goal in a straight way. It can be observed
that the emergent behaviour of the robot is mainly based
on the first route of driver 2, where the robot moved on the
right of a single obstacle.

To test how the robot behaves when obstacles are de-
tected at both sides at the same time, we forced it to move
in a straight line between two obstacles and learn 40 extra
cases. Potential fields tend to fail in these cases, so we
compared their performance with the proposed reactive la-
yer. Fig. 4 shows one of these tests. We put both obstacles



Figure 4. Test with two close obstacles

closer and closer until potential fields failed and a collision
was detected (continuous line). Then, we ran the same test
using our reactive layer and keeping the same obstacle la-
yout (discontinuous line). Basically, the robot moved in a
straight line until both obstacles were detected with sonars
1 and 5 at 39.3 (”near”) and 53.1 cm (”medium”) respecti-
vely. The reactive layer had a similar case stored and re-
commended a very soft turn left (3 degrees) (driver 2, route
1) that can barely be appreciated in Fig. 4. The potential
fields, though, made the robot move away from the closest
obstacle on the left and into the one on the right. Of course,
potential fields can be adjusted so that the robot does not
get so close to the obstacles to minimize the risk of colli-
sions. However, in such a case the robot would not have
moved between both obstacles. Extracting cases from the
last trained route, our reactive layer kept telling the robot to
follow a straight line until the narrowest area between both
obstacles was reached. In this case, obstacles are at 20.8
(”near”) and 19.2 cm (”critical”) respectively. Then, the re-
active layer suggested to turn softly to the right. It must be
noted that curvature tends to be preserved and hence these
inflection points are not very noticeable.

Finally, we also ran some tests were three obstacles
were randomly set in the environment. Fig. 5 shows one of
these tests. In this case, it can be observed that the potential
fields also converge to a correct solution (continuous line).
However, in cluttered areas potential fields oscillate more
than the proposed layer (discontinuous line). In this case,
the robot moves ahead to the goal until the reactive layer
is triggered by a ”near” obstacle on the left. In the clo-

Figure 5. Test with three obstacles

sest case in the base, obstacles were in the ”no influence”
area. Hence, the ”turn left” order is corrected into a ”turn
right one”. However, in this case no sharp curvature va-
riation appears. The robot moves even nearer to the obs-
tacle and further corrections are required. When the robot
detects the left and right obstacles at 27.7 cm and 46 cm
respectively, the ”corridor mode” is recalled and the reac-
tive layer makes the robot move in parallel with the left
obstacle. When the right obstacle gets significantly farther
than the left one, the reactive layer returns to its favorite
”driver 2 route 1” routine to leave the obstacle on the left.
However, it soon detects the final obstacle in the front at
”near” range. No similar situation is available and the case

returned is corrected to avoid the obstacle on the right. In
this case, the correction provokes a sharp curvature change.
From this point on, the reactive layer combines the routes
proposed by drivers 1 and 2 to leave an obstacle on the right
until obstacles are out of the detection range and the robot
can safely reach the goal.

5 Conclusions

This paper has presented a new CBR based pure reactive
layer for autonomous navigation. The layer does not re-
quire global knowledge about the environment. Instead, it
only learns how to deal with unexpected situations both in
a supervised and unsupervised way. The proposed reac-
tive layer may fall in local traps but, since it is meant to
operate with a deliberative one, the system can efficiently



solve such a problem. The main advantages of the pro-
posed layer are: i) it can be supervisedly trained to solve
difficult situations; ii) training a few significant paths in
simple environments is enough to unsupervisedly operate
in more complex ones in an efficient way; and iii) it pro-
vides paths between close obstacles and does not oscillate
much in cluttered areas. The main drawbacks of the propo-
sed layer are that: i) the adaptation stage is still very simple
and new cases are only adquired when obstacles are very
close; ii) when a new case is learnt, curvature is not ne-
cessarily preserved; iii) since the layer input only relies on
instant sonar readings, the system is sensitive to repeated
multiple echoes. Further work will focus on improving the
adaptation stage, filtering multiple echoes, including a non
supervised training stage and integrating the layer with our
hybrid architecture.
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