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Abstract. The visualization of models is essential for user-friendly
human-machine interactions during Process Mining. A simple graphical
representation contributes to give intuitive information about the behav-
ior of a system. However, complex systems cannot always be represented
with succinct models that can be easily visualized. Quality-preserving
model simplifications can be of paramount importance to alleviate the
complexity of finding useful and attractive visualizations.
This paper presents a collection of log-based techniques to simplify pro-
cess models. The techniques trade off visual-friendly properties with
quality metrics related to logs, such as fitness and precision, to avoid
degrading the resulting model. The algorithms, either cast as optimiza-
tion problems or heuristically guided, find simplified versions of the initial
process model, and can be applied in the final stage of the process mining
life-cycle, between the discovery of a process model and the deployment
to the final user. A tool has been developed and tested on large logs, pro-
ducing simplified process models that are one order of magnitude smaller
while keeping fitness and precision under reasonable margins.

1 Introduction

The understandability of a process model can be seriously hampered by a poor vi-
sualization. Many factors may contribute to this, being complexity a crucial one:
models that are unnecessarily complex (incorporating redundant components, or
components with limited importance) are often not useful for understanding the
process behind. On the other hand, process models are expected to satisfy cer-
tain quality metrics when representing an event log: fitness, precision, simplicity
and generalization [1]. In this paper we present techniques to simplify a pro-
cess model while retaining the aforementioned quality metrics under reasonable
margins. We focus on the simplification of Petri nets, a general formalism onto
which several other process models can be essentially mapped.

Given a complex process model, one can simply remove arcs and nodes un-
til a nice graphical object is obtained. However, this naive technique has two
main drawbacks. First, the capability of the simplified model to replay the pro-
cess executions may be considerably degraded, thus deriving a highly unfitting
model. Second, the model components, arcs and places in a Petri net, are not
equally important when replaying process executions, and therefore one may be
interested in keeping those components that provide more insight into the real
boundaries on what is allowed by the process (i.e., its precision).

Given a Petri net and an event log, this paper first ranks the importance of
places and arcs using a simple simulation of the log by the Petri net, and then
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(a) Initial process model.
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(b) Simplified fitting proc. model.
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(c) Simplified series-parallel process model.

Fig. 1. Log-based simplification of an spaghetti-like process model.

simplifies the model by retaining those arcs and places that are important in
restricting the behavior allowed by the model. Several alternatives are presented,
which render the preservation of fitness as a user decision, or extract certain Petri
net subclasses (State Machines, Free-Choice) or structural subclasses (Series-
Parallel graphs). The goal of these techniques is similar to that of [2]. However
the techniques presented in this paper require a lower computational cost and
exhibit better scalability when managing large problems, while producing results
of competitive quality, as shown by the experimental results.

1.1 Motivating Example

We will illustrate one of the techniques presented in this paper with the help
of an example. We have used the general-purpose tool dot [3] to render all the
examples. Figure 1a reports a process model that has been discovered by the
ILP miner from a real-life log, a well-known method for process discovery [4].
This miner guarantees perfect fitness (i.e., the model is able to reproduce all the
traces in the log), but its precision value is low (31.5%) which indicates that the
model may generate many traces not observed in the log.

Clearly, this model does not give any insight about the executions of the
process behind. Hence, although it is a model having perfect fitness, some of
the other quality metrics (precision, simplicity) are not satisfactory. Applying
the simplification techniques of this paper, a process model can be transformed
with the objective of improving its understandability. The process models at the
bottom of Fig. 1 are the result of applying two of the techniques proposed in
this paper. In Figure 1b the model is simplified while preserving as much as
possible the quality metrics of the original model. The model has 6 times fewer
places and arcs, making it much easier to understand. The resulting fitness is
still perfect, but the precision has been reduced to 22.5%.

In Figure 1c we reduce the model to a series-parallel graph, further improving
its simplicity and understandability. The fitness has been reduced to 64.1%, but
on the other hand its precision has improved considerably (now 48.7%).



The paper is organized as follows. Section 2 introduces the required back-
ground of the paper. Section 3 gives an overview of the proposed simplification
algorithms. In Section 4, a log-based technique to estimate the importance of arcs
and places is described, which is used by some of the simplification algorithms,
detailed in Section 5. Section 6 describes the remaining, non log-based simpli-
fication techniques. All techniques are evaluated in Section 7. Finally, related
work and conclusions are discussed in Sections 8 and 9, respectively.

2 Preliminaries

2.1 Process Models

Process models are formalisms to represent the behavior of a process. Among the
different formalisms, Petri nets are perhaps the most popular, due to its well-
defined semantics. In this paper we focus on visualization of Petri nets, although
the work may be adapted to other formalisms like BPMN, EPC or similar.

A Petri Net [5] is a 4-tuple N = 〈P, T,F ,m0〉, where P is the set of places, T
is the set of transitions, F : (P × T ) ∪ (T × P )→ {0, 1} is the flow relation, and
m0 is the initial marking. A marking is an assignment of a non-negative integer
to each place. If k is assigned to place p by marking m (denoted m(p) = k), we
say that p is marked with k tokens. Given a node x ∈ P ∪ T , its pre-set and
post-set are denoted by •x and x• respectively.

A transition t is enabled in a marking m when all places in •t are marked.
When t is enabled, it can fire by removing a token from each place in •t
and putting a token to each place in t•. A marking m′ is reachable from m
if there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted
by m[t1t2 . . . tn〉m′. A sequence t1t2 . . . tn is feasible if it is firable from m0. A
Petri net N is a: Marked graph if ∀p ∈ P : |•p| = |p•| = 1, State machine
if ∀t ∈ T : |•t| = |t•| = 1 and Free-Choice if ∀p1, p2 ∈ P : p•1 ∩ p•2 6= ∅
⇒ |p•1| = |p•2| = 1.

2.2 Process Mining

A trace is a word σ ∈ T ∗ that represents a finite sequence of events. An event
log L ∈ B(T ∗) is a multiset of traces1. Event logs are the starting point to apply
process mining techniques, guided towards the discovery, analysis or extension
of process models. Process discovery is one of the most important disciplines in
process mining, concerned with learning a process model (e.g., a Petri net) from
an event log. Although a novel discipline, there are several discovery techniques
that have appeared in the last decade, most of them summarized in [1].

The second family of techniques in process mining is conformance checking,
i.e., comparing observed and modeled behavior. There are four quality dimen-
sions for comparing model and log: (1) replay fitness, (2) simplicity, (3) precision,
and (4) generalization [1]. A model has a perfect replay fitness if all traces in the
log can be replayed by the model from beginning to end. The simplest model
that can explain the behavior seen in the log is the best model, a principle known

1 B(A) denotes the set of all multisets over A.



as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the
quality of a discovered process model. For example, it is very easy to construct
an extremely simple Petri net (“flower model”) that is able to replay all traces
in an event log (but also any other event log referring to the same set of ac-
tivities). Similarly, it is undesirable to have a model that only allows for the
exact behavior seen in the event log. A model is precise if it does not contain
“too much” behavior that has not been observed in the log. A model that is not
precise is “underfitting”[6]. In contrast to precision, a model should generalize
and not restrict behavior to just the examples seen in the log.

In this paper, we consider simplifications that may preserve replay fitness
which we will simply refer to as fitness. Metrics for fitness have been defined as
indicators of how every trace in the log fits a model [7]. Likewise, metrics for
precision exist in the literature [6].

Definition 1 (Fitting Trace and Log). A trace σ ∈ T ∗ fits a Petri net N if
σ is a feasible sequence in N . An event log L fits N if for all σ ∈ L, σ fits N .

3 Overview of Proposed Simplification Techniques

In this section, we introduce the 3 different approaches to the simplification
problem that are the main contributions of this work. Figure 3 illustrates these
approaches by applying each one to the input model shown in Fig. 2a. The first
approach reduces the input to a Petri net that is visually close to a series-parallel
graph [8] by removing the least important arcs and places (Fig. 2b). However,
it has the greatest computational cost. We introduce a second approach that
reduces the simplification problem to an Integer Linear Programming (ILP) op-
timization problem that is more efficient and optionally guarantees the preser-
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Fig. 2. Overview of the different simplification techniques.



vation of fitness (Fig. 2c and d). These two techniques require an estimation of
the importance of arcs and places. In Section 4 we explain how this scoring is
computed, while Section 5 describes the techniques in more detail.

The third technique, however, does not consider any information from the
log. Instead, the Petri net is projected into different structural classes: free choice
(Fig. 2e) and state machine (2f). This approach is described in Section 6.

4 Log-based Arc Scores

Given a Petri net and an event log, in this section we introduce a technique to
obtain a scoring of the arcs (and, indirectly, places) of the net with respect to
their importance in describing the behavior underlying in the log.

The idea of the proposed technique is simple: when a Petri net replays a
particular trace in the log, some arcs may have more importance than others
for that particular trace. Hence, triggering and utilization scores will be defined
to provide an estimation of the importance of the arcs in replaying the log.
Arcs F(p, t) 6= 0 with high trigger score correspond to frequent situations in the
model where more behavior should not be allowed (i.e., the arc, and therefore p, is
frequently disabling certain transitions to occur). By keeping these arcs/places
in the model, one aims at deriving a model where precision is not degraded.
Conversely, an arc F(t, p) 6= 0 with high utilization score denotes a situation
where transition t is frequently fired (thus frequently adding tokens to p), and
therefore should not be removed to avoid degrading fitness.

Definition 2 (Trigger Arc). Let N = 〈P, T,F ,m0〉 be a Petri net, σ a fitting
trace for N , and t′ ∈ σ a transition represented by firing m[t′〉m′ in N . For any
pair p ∈ P, t ∈ T , an arc F(p, t) 6= 0 is trigger in m[t′〉m′ iff t is not enabled in
m but enabled in m′ and m(p) < F(p, t) but m′(p) ≥ F(p, t).

Intuitively, an arc F(p, t) 6= 0 is trigger at every transition t′ ∈ σ in which t
becomes enabled and p is in the set of places which, in that transition t′, received
the last tokens required for enabling t. Thus, a frequently-trigger arc indicates
p is important in restricting the behavior allowed by the model, and that p or
F(p, t) cannot be removed without sacrificing precision. Note that for a single
transition t there may be more than one trigger arc, even in the same transition
t′ ∈ σ. To use this information, we define a trigger score which characterizes the
frequency of an arc in playing the trigger role. In the following definition, we
include the score for arcs between transitions and places, the utilization score,
which is based on the frequency of firing:

Definition 3 (Trigger/Utilization Score of an Arc). Given a Petri net
N = 〈P, T,F ,m0〉 and fitting log L, the trigger score of an arc F(p, t) 6= 0,
denoted by T (p, t), is the number of transitions from L in which F(p, t) is trigger.
The utilization score of an arc F(t, p) 6= 0, denoted by U(t, p), is the number of
times transition t is fired in L.

Given a log and a Petri net, obtaining the trigger/utilization scores can be
done by replaying all traces in the log. Algorithm 1 shows how to compute trigger



Algorithm 1: TriggerScores

Input: An event log L and a Petri net N = 〈P, T,F ,m0〉
Output: A score T (p, t) for every arc F(p, t) 6= 0

1 for σ ∈ L do
2 Let m0[t1〉m1[t2〉 . . . [tn〉mn = σ
3 for i← 1 to n do
4 for t ∈ T do
5 if t is enabled in mi ∧ t was not enabled in mi−1 then
6 for p ∈ •t do

// t is enabled in mi =⇒ mi(p) ≥ F(p, t)
7 if mi−1(p) < F(p, t) then T (p, t)← T (p, t) + 1

8 return T
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(b) Petri net with trigger/utilization scores

Fig. 3. Trigger and utilization score computation for an example trace and model.

scores: for every transition in the log, the scores are updated by comparing the
markings from the predecessor places of all newly enabled transitions.

Figure 3 shows the results of computing, on an example trace and model,
both trigger and utilization scores. Utilization scores are shown in italics.

Finally, notice that in the definitions of this section we consider fitting traces.
Given an unfitting trace (i.e., a trace that cannot be replayed by the model), an
alignment between the trace and the model will provide a feasible sequence that
is closest to the trace [7]. This allows widening the applicability of the scoring
techniques of this section to any pair (log, model).

5 Simplification Techniques using Log-based Scores

5.1 Simplification to a Series-Parallel Net

A series-parallel net is one obtained by the recursive series or parallel composition
of smaller nets. Series-parallel Petri nets are amongst the most comprehensible
types of models. In a series-parallel net, forks and choices (and thus concurrency)
are immediately visible. In fact, existing documentation often uses series-parallel
nets as examples to illustrate concepts related to Petri nets.

For this reason, one of the main contributions in this work is a heuristic
that reduces a complex Petri net into an almost series-parallel net. The algo-
rithm iteratively removes the least important edges until the graph is either
strictly series-parallel, or no additional reduction can be applied without losing
the connectedness of the net. The importance of every arc is determined by their
trigger score T (p, t), for place-transition arcs, and their utilization score U(t, p)
for transition-place arcs. The approach is grounded in the notion of a set of
reduction rules, explained below.
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Fig. 4. Applying a transformation and transformation cost.

Reduction rules. In [5] a set of reduction rules used for the analysis of large
Petri net systems is introduced. Each of the transformations preserves liveness,
safeness and boundedness of a Petri net. Thus, verification of these properties can
be done in the simplified net instead of the original one. The transformations pro-
posed are: fusion of series places/transitions, fusion of parallel places/transitions
and elimination of self-loop places/transitions. A rule can be applied only when
its preconditions are satisfied. An example of the fusion of parallel places rule
can be seen in Fig. 4a.

Because of the construction of a series-parallel Petri net, it is possible to
reduce such a net to a single place or transition by recursive application of
these transformations. Therefore, every violation of the preconditions of a rule
indicates a subnet which is not series-parallel.

To reduce a Petri net to a series-parallel skeleton, this work uses these re-
duction rules in an indirect way. We do not use the transformed Petri net that
results from the application of the rules. Instead, the proposed method removes
those arcs and places which prevent the rules from being applied. For every one of
the reduction rules, a transformation cost is defined: the sum of the trigger and
utilization scores of all the arcs that would need to be removed in order to apply
such transformation. The transformation cost therefore models the importance
of the arcs that would need to be removed.

Figure 4 shows an example rule, the computation of its transformation cost,
and the resulting graph after applying the transformation rule. This rule can
only be applied in this input Petri net if two arcs (dashed lines in Fig. 4b) are
removed. Thus, the transformation cost is equal to the trigger score of arc (1)
and utilization score of arc (2).

Algorithm. Algorithm 2 describes the main iteration of the method. Function
ApplicableTransformations identifies all possible applications of the reduction
rules, and computes the transformation cost for each of the possible applications.

At every iteration we select the transformation m with the least cost, that
is, the one that requires removing the least amount of important arcs in order
to be applied. Function ApplyTransformation applies such transformation m.
If applying the transformation breaks the net into more than one connected
component, the next best transformation is selected instead. Otherwise, function
PreconditionViolatingArcs enumerates all the arcs that had to be removed in
order to satisfy the preconditions of transformation m. Those arcs are removed
them from the original Petri net N0. The next iteration repeats the process on
the transformed net N ′, finding new ApplicableTransformations only around
the nodes that were changed on the previous iteration.



Algorithm 2: Series-Parallel algorithm

Input: A Petri net N0 = 〈P, T,F ,m0〉, a trigger score T (p, t) for every (p, t) arc, and a
utilization score U(t, p) for every (t, p) arc

Output: A simplifed Petri net
1 N ← N0

2 M ← ApplicableTransformations(N)
3 while |M | > 0 do
4 m← transformation with least cost from M
5 N ′ ← ApplyTransformation(N, m)
6 if N ′ is disconnected then
7 M ←M \ {m}
8 continue

9 N0 ← N0 \ PreconditionViolatingArcs(N, m)
10 N ← N ′

11 M ← ApplicableTransformations(N)

12 return N0

Once no additional reduction rules can be applied (e.g. because the net is
now a single place or transition), the algorithm stops. The currently transformed
graph is discarded, and the result of the algorithm is the simplified Petri net N0.
A final postprocessing step removes unneeded places (e.g. without incident arcs).

The nets generated by this heuristic are not necessarily fully series-parallel,
since we never remove any arc that would result into an unconnected graph. This
is the only method from this work that presents such a global guarantee, with
the other methods providing weaker connectivity constraints. It is also possible
to configure the method to generate strictly series-parallel models.

5.2 Simplification Using ILP Models

In this section we show a different approach to simplify a Petri net for visualiza-
tion. The selection of which arcs to remove is seen as an optimization problem,
and modeled as an Integer Linear Program (ILP). The use of ILP allows for
highly efficient solving strategies. On the other hand, some constraints cannot
be modeled using ILP. For example, the models attempt to preserve connectiv-
ity of the net at a localized level (i.e. ensuring transitions maintain at least one
predecessor and successor place), but cannot guarantee global net connectivity.

The aim of the ILP model is to reduce the number of arcs as much as pos-
sible. The inputs are a Petri net N = 〈P, T,F ,m0〉, trigger scores T (p, t) and
utilization scores U(t, p). We define a binary variable S(p) for every p ∈ P , and a
binary variable A(p, t) or A(t, p) for every arc in N . In a solution of this model,
variable S(p) is 0 when place p is to be removed from the input graph (similarly
for arc variables A(p, t) and A(t, p)). Below we describe the ILP model in detail.

The objective function, Eq. 1, minimizes the number of preserved arcs. Con-
straint 2 encodes the relationship between A and S variables. A place is retained
in the output net iff at least one predecessor or successor arc is retained.

The model ensures that the most important arcs, according to the trigger
scores T , are preserved. To implement this, constraint 3 imposes a minimum
number of preserved arcs: where Γ can be configured as a percentage of the
combined trigger score from all place transition arcs. A similar threshold constant
Φ is imposed using the utilization score U for transicion place arcs (Eq. 4).



min
∑

F(p,t)>0

A(p, t) +
∑

F(t,p)>0

A(t, p) (1)

s.t. ∀p ∈ P : S(p) ⇐⇒
∑
t∈p•

A(p, t) > 0 ∧
∑
t∈•p

A(t, p) > 0 (2)

∑
F(p,t)>0

T (p, t)A(p, t) >= Γ (3)

∑
F(t,p)>0

U(t, p)A(t, p) >= Φ (4)

∀t ∈ T :
∑
p∈t•

A(t, p) > 0 ∧
∑
p∈•t

A(p, t) > 0 (5)

∀p ∈ P : M(p) > 0 =⇒ S(p) (6)

∀t ∈ T, p ∈ P : F(t, p) > 0 ∧ S(p) =⇒ A(t, p) (7)

A fully connected graph cannot be guaranteed by the ILP model. Instead,
Eq. 5 models a weaker constraint: every transition will preserve at least one
predecessor and successor arc. In addition, every place marked in m0 is always
preserved, to avoid deriving a structurally deadlocked model (Eq. 6).

Preserving fitness (optional). The ILP model as described so far does not
guarantee preservation of fitness from the original Petri net. A simple modifica-
tion can ensure that the existing fitness is preserved, at the cost of being able to
remove only a reduced number of arcs from the model. Following a well-known
result in Petri net theory, removing only F(t, p) arcs never reduces the fitness of
a model for any given log. Constraint 7 implements this restriction.

6 Simplification by Projection into Structural Classes

In this section we present ILP models to reduce Petri nets to two types of struc-
tural classes: free choice and state machines [5]. These methods do not require a
log as they do not use trigger or utilization scores. Therefore, these proposals can
be used to simplify Petri nets for visualization even when logs are not available,
albeit their results may be of lower quality since scoring information is not used.

Note that [4] can also be configured to generate state machines or marked
graphs, but this approach requires having a log. In addition, the models extracted
may still be complex because of the requirement to preserve fitness.

6.1 Free Choice

In this method, we simplify Petri nets by converting them into free choice nets.
This method preserves the fitness of the model, but reduces precision. While this
reduction does not necessarily result in models simple enough for visualization,
complexity is reduced while mantaining most structural properties. Thus, reduc-
ing a dense net into free choice both opens the door to efficient analysis and to
further decomposition (state machine or marked graph covers) techniques [9].



We encode this definition as a set of constraints and create a ILP problem
which maximizes the number of arcs. For every p ∈ P, t ∈ T , we define a binary
variable A(p, t) which indicates whether arc F(p, t) is preserved.

max
∑

F(p,t)>0

A(p, t) (8)

s.t.

∀p ∈ P : |p•| > 1 ∧ |•(p•)| > 1 =⇒∑
t∈p•

A(p, t) = 1 ∨ ∀t ∈ p•, p′ ∈• t : p 6= p′ =⇒ ¬A(p′, t) (9)

Equation 9 guarantees a free choice net. If |p•| > 1 (it is a choice) and •|p•| >
1 (it is not free), then p contains a non-free choice, and one of the conditions must
be removed. Either only one of the successor arcs of p is preserved, eliminating
the choice, or it is turned free by removing every predecessor arc of p• except for
the ones originating from p itself. Because F(t, p) arcs are never being removed,
this simplification preserves fitness.

6.2 State Machine

In a state machine Petri net, every transition has exactly one predecessor arc
and one successor arc. To encode this requirement into an ILP model, we again
define a binary variable A(p, t) or A(t, p) for every arc in N .

max
∑

F(p,t)>0

A(p, t) +
∑

F(t,p)>0

A(t, p) (10)

s.t. ∀t ∈ T :
∑

F(p,t)>0

A(p, t) = 1 (11)

∀t ∈ T :
∑

F(t,p)>0

A(t, p) = 1 (12)

Constraints 11 and 12 encode the definition of a state machine. However,
note that this method may reduce the fitness of the model. A similar ILP model
can be created to extract a marked graph.

7 Experimental Evaluation

The methods proposed in this work have been implemented in C++. The ILP-
based methods have been implemented using a commercial ILP solver, Gurobi [10].
To obtain the input models, the ILP miner [4] available in ProM 6.4 was used
over a set of 10 complex logs. The publicly available dot utility [3] has been used
to generate the visualizations of all the models of the paper. The measurements of
fitness and precision have been done using alignment-based conformance check-
ing techniques [7]. Both the logs and our implementation are publicly available
at http://www.cs.upc.edu/~jspedro/pnsimpl/.



7.1 Comparison of the Different Simplification Techniques

In Section 5 (Fig. 3), an artificial model was used to illustrate the different
simplification techniques presented in this work. Table 1 shows the details for
each one of the simplified models.

Several metrics are used to evaluate the results from the simplification tech-
niques. To evaluate the understandability and simplicity of a model, we use the
size of the graph, in number of nodes and arcs, as well as the number of cross-
ings. This is the number of arcs that intersect when the graph is embedded on a
plane. Thus, a planar graph has no crossings. A graph with many crossing arcs
is clearly a spaghetti that is poorly suited for visualization. To approximate the
number of crossings, the mincross algorithm from dot [3] is used.

Table 1. Simplicity, precision and fitness comparison for models in Fig. 3.

Nodes Arcs Crossings Fitness Precision
(a) Original net 13 35 7 100% 43.1%
(b) Series-parallel 13 17 0 100% 37.9%
(c) ILP model 12 16 0 68% 75.4%
(d) ILP (fitting) 11 21 0 100% 40.7%
(e) Free choice 13 24 1 100% 31.3%
(f ) State machine 13 13 0 49.2% 81.3%

To measure how much the simplified Petri nets model the behavior of the
original process we use fitness and precision, as defined in [7]. In this example,
the series-parallel reduction offers perfect fitness, and only 5% loss of precision
while removing half of the arcs and all crossings. However, the other methods
also remain interesting. For example, the state machine simplification offers the
best reduction in simplicity and increases the precision of the model to 80%, at
the cost of reducing the fitness by 50%.

Figure 5 shows the Petri nets produced by the different techniques on a real-
life log that is more spaghetti -like. The high number of crossings in the original
model make it unsuitable for visualization. In this example, the series-parallel
method no longer offers perfect fitness but still shows a good trade-off between
complexity and fitness/precision. The other methods may be used if for example
strict fitness preservation is required, at the cost of more complex models.

In Fig. 6, we compare numerically the techniques of this paper for the 10 logs.
For most of the logs, the series-parallel reduction and the ILP-based techniques
are able to reduce the number of crossing edges by several orders of magnitude
(note the logarithmic scale), creating small visualizable graphs from models that
would otherwise be impossible to layout. On the other hand, the simplification to
free choice results in very large and complex models. As mentioned, the benefits
of deriving free choice models come from the ability to apply additional reduc-
tion strategies. Simplifying to state machines generally produces poorly fitting
models, but they tend to have very few crossings and high precision.

Figure 6 also includes a comparison with some of the previous work in the
area: the Inductive Miner (IM) [11] and a unfolding-based method [2]. The IM is
a miner guided towards discovering block-structured models and which we see as
a promising technique (see Section 8) since it can be tunned to guarantee perfect
fitness. Generally, models generated by the IM contain fewer crossings, caused
by the addition of a significant number of silent transitions2 which increase the

2 A silent activity in the model is not related to any event in the log.



P1

OAW1872306522+complete

QHV982065527+complete

K9A995327264+complete

JZS-1738885018+complete

C21932980207+complete

UGZ-1854677940+complete

HZ8657803113+complete

P2

J9I-1489021432+complete

ITT1947172537+complete

P3

SKJ-1582087462+complete

KPY-2049066653+complete

P4

RVU-1215386969+complete

P5

P6

GMW1907676204+complete

P7

PJZ-1767437764+completeEAK1148507974+complete

P8

P9

P10

W4T-1499512068+complete I24-1415397453+completeDLW1136107366+complete LHG921145733+complete NM9-1399672618+complete9P0-1097608587+complete

P11

P12P13

P14

OLI454917581+complete

P15

P16

P17P18

P19P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

P32

(a) Original Petri net.

G

F

Q

V

S

P

T

R

E

AHJ KM U

C

D

B

I

L

O

N

(b) Simplified to Free Choice.

SP

E

CI TV

R

AH J K M

U

B

F

L

N

D

G

Q

O

(c) Using ILP model, 60% threshold.

Q

S

P

C

I

T V

R

E

B

F LN

D

G

O

A HJ KM U

(d) Using ILP model (fitting), 60% thresh-
old.

RS

B

P

I

C

A H J K MU F N

Q

D

T

E

G

O L

V

(e) Simplified to Series-parallel.

Nodes Arcs Crossings Fitness Precision
(a) 54 448 9805 100% 31.5%
(b) 54 320 5069 100% 19.4%
(c) 44 93 76 76.7% 42.2%
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(f) Fitness and precision results.

Fig. 5. Running all methods on real-life log (incidenttelco).

size of the model. For example, in the incidenttelco example the number of
transitions of the model derived by the IM is 37, whilst the original model (and,
correspondingly, those generated by the simplification techniques) has 22. The
addition of silent activities can be beneficial for visualization, specially if the
underlying process model is meant to be block-structured.

On the other hand, the unfolding procedure is more closely related to the
methods proposed in this work. This technique uses an unfolding process to
simplify an existing Petri net, and has been evaluated using the same nets as
with our proposed methods. In general, it produces better results in terms of
fitness and precision with respect to the ILP models, at the expense of longer
computation time. When compared with the series-parallel method, the results
in fitness and precision are comparable, but the unfolding method requires more
computation time and the results are worst in terms of visualization.

In Fig. 7 we compare the runtimes of the different methods. The ILP solver
resolved all the ILP simplification models in less than 1 minute, even for the
largest of the input Petri nets from the test set (25K nodes and arcs). The
series-parallel simplification, which is not ILP based, has a lower performance.
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However, there are many parts where the algorithm could be optimized. Still,
the total execution runtime for the largest graph (25 minutes) was less than the
1 hour required for the miner in [4] to generate the input Petri net from the
log, and significantly less than the 5 hours required by the unfolding technique
presented in [2] (also shown in the plot).

The experiments presented in this section show the proposed simplification
ILP models to be highly efficient and able to generate models that are orders
of magnitude simpler than the original models. If additional simplification is
required, the series-parallel method can be used with an increased runtime.

7.2 Effect of the Threshold Parameter on the ILP Model
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Fig. 8. Simplicity and fitness comparison using different thresholds for the ILP model.

The ILP simplification model presented in Section 5.2 contains a threshold
parameter (Γ and Φ) which can be used to tune the complexity and size of
the simplified models. In previous experiments and figures, a threshold was set
manually so that models with approximately 2|T | arcs were generated (where T
is the set of transitions from the input Petri net).

To illustrate how varying these thresholds affects the model complexity and
quality, the ILP simplification model was executed for each of the input logs,
with varying threshold parameters. Fig. 8 shows the number of crossings and the
fitness for each combination. Generally the fitness decreases with the threshold
parameter, but there are some models where the trend reverses. This is because
nothing in the model ensures that a log with a given threshold Γ will strictly
capture all the behavior of a log simplified using Γ ′ with Γ > Γ ′.



8 Related Work

The closest work to the methods of this paper is [2], where a technique was
presented for the simplification of process models that controls the degree of
precision and generalization. It applies several stages. First, a log-based unfold-
ing of the model is computed, deriving a precise unfolded model. Second, this
unfolding is then filtered, retainning only the frequent parts. Finally, a folding
technique is applied which controls the generalization of the final model. Fur-
ther simplifications can be applied, which help on alleviating the complexity of
the derived model. There are significant differences between the two approaches:
while in our case, the techniques rely on light methods and can be oriented
towards different objectives, the approach in [2] requires the computation of un-
foldings, which can be exponential on the size of the initial model [12]. Also, the
filtering on the unfolding is done on simple frequency selection on the unfolding
elements, while in this paper the importance of model elements is assessed with
the frequency but also triggering information, which is related to the precision
dimension. On the other hand, the techniques of this paper may need to verify
model connectedness at each iteration. In conclusion, both techniques can be
combined to further improve the overall simplification of a model.

The simplification of a process model should be done with respect to quality
metrics, and in this paper we have focused on fitness and precision. An alterna-
tive to this approach would be to include these quality metrics in the discovery,
a feature that has only been considered in the past by the family of genetic
algorithms for process discovery [13,14,15]. All these techniques include costly
evaluations of the metrics in the search for an optimal process model, in or-
der to discard intermediate solutions that are not promising. This makes these
approaches extremely inefficient in terms of computing time.

Furthermore, there exist discovery techniques that focus on the most frequent
paths [16,17]. These approaches are meant to be resilient to noise, but on the
other hand give no guarantees on the quality of the derived model. Additionally,
these approaches are oriented towards less expressive models, which makes the
simplification task easier than the one considered in this paper. A recent tech-
nique that is guided towards the discovery of block-structured models (process
trees) and that addresses these issues may be a promising direction [11]. However,
this technique is guided towards a particular class of Petri nets (workflow and
sound), describing a very restricted type of behaviors. Finally, the techniques of
this paper can be combined with abstraction mechanisms to further improve the
visualization of the underlying process model.

9 Conclusions

A collection of techniques for the simplification of process models using log-
based information has been presented in this paper. The techniques proposed
tend to improve significantly the visualization of a process model while retain-
ing its main qualities in relation with an event log. This contribution may be
used on the model derived by any discovery technique, as an intermediate step
between discovery and visualization. Also, the analysis of simplified models may



be considerably alleviated (e.g., if deriving a free-choice net). The experiments
done on dense models have also shown a significant simplification capability in
terms of visualization metrics like density or edge-crossings.
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