
petrify(1cad) petrify(1cad)

NAME
petrify - synthesize Petri nets and asynchronous controllers

SYNOPSIS
petrify [options]* [infile]

DESCRIPTION
Petrify is a tool for the synthesis of bounded Petri nets and logic synthesis of asynchronous controllers.

Petrify initially performs a token flow analysis of the Petri net and produces a finite transition system (TS).
In the initial TS, all transitions with the same label are considered as one event. The TS is then transformed
and transitions relabeled to fulfil the conditions required to obtain a Petri net with bisimilar or trace-equiva-
lent behavior. Some properties for the synthesized Petri net can be imposed (e.g. free-choice, unique-
choice, pure, state-machine decomposable, etc.).

Additionally, petrify can interpret the Petri net as a Signal Transition Graph (STG), in which events repre-
sent rising/falling transitions of digital signals. From an STG, petrify can synthesize a speed-independent
circuit by solving the problems of state encoding, logic synthesis, logic decomposition and technology
mapping onto a gate library. Petrify can also synthesize circuit under timing assumptions specified by the
designer or automatically generated by the tool.

Petrify reads the input description from stdin and writes the resulting STG to stdout unless otherwise speci-
fied.

GENERAL OPTIONS
-h Help mode, print the usage.

-v Print version only.

-d[n] Debug mode. Prints runtime information. The maximum level of debugging is -d2. -d and -d1 are
equivalent.

-o outfile
Write the resulting STG to outfile. Otherwise, the result is written to stdout.

-no Output Petri net is not generated.

-err errfile
Verbose information and errors written into errfile (instead of stderr).

-ip Implied (1-fanin 1-fanout) places are explicitly written in the output description. If this option is
not used, implied places are described as transition-transition arcs.

-dead Do not check for the existence of deadlock states (no events enabled). If this option is not used, an
error message is given and no synthesis is performed when the specification has deadlock states.

-sis Write the output file in SIS compatible style. Currently this means that toggle transitions are writ-
ten with the ˜ suffix.

OPTIONS FOR PETRI NET SYNTHESIS
-all All minimal pre-regions are generated. If this option is not specified, only a subset of minimal

regions sufficient to synthesize a Petri net are generated. The option -all is computationally more
expensive, although it may allow to find optimal irredundant nets.

-sat Generates a minimal saturated (possibly place-redundant) Petri net. This option requires the gen-
eration of all minimal regions. If this option is not used, a place-irredundant Petri net is obtained
(a Petri net is place-irredundant when none of its places can be removed without changing its
behavior).

-min The places of the resulting Petri net correspond to minimal regions. If this option is not specified,
minimal regions can be merged and, thus, a smaller place count obtained. The option -sat

1

petrify(1cad) petrify(1cad)

overrides -min.

-opt When this option is specified, petrify attempts to find the best possible result. Using this option
may be computationally very expensive for large nets. It is equivalent to -all -s -rc and it overrides
the option -sat.

-hide signal_list
The events corresponding to the signals in the list are hidden before synthesis starts. signal_list is a
list of signals separated by commas. Eventually, this list may specify groups of signals using the
keywords .inputs, .outputs, etc. For example, -hide a,.dummy.

-bisim Maintain bisimilarity when minimizing the transition system. In case internal and/or dummy
events are hidden, weak bisimilarity is preserved. If not specified, minimization only preserves
trace equivalence.

-mints Minimize the transition system before synthesis. If such option is not specified, only direct ascen-
dant/descendant states through silent events are merged when they are equivalent (silent events are
removable events specified by the option -hide). Minimizing the transition system is computation-
ally more expensive and may preclude excitation closure in case there are non-confluent states.

OPTIONS FOR PETRI NET PROPERTIES
-p Produce a pure Petri net (no self-loop places).

-fc Produce a Free-Choice Petri net.

-efc Produce an Extended Free-Choice Petri net.

-uc Produce a Unique-Choice Petri net (with no extended free choices).

-euc Produce a Unique-Choice Petri net (with extended free choices).

-er A different transition (label) is generated for each excitation region. If this option is not used, pet-
rify attempts to use as few labels as possible for each event of the transition system. This option
may produce structurally nicer, although larger, Petri nets. It also helps to reduce the complexity of
the label splitting algorithm.

-sm Produce a state-machine-decomposable Petri net.

OPTIONS FOR STG TRANSFORMATIONS
-tog All signal transitions are converted to toggle transitions.

-untog All signal transitions are converted to positive and/or negative transitions. This may imply to
unfold the original transition system.

-2ph Expand channel events to 2-phase protocol. This is the default option when synthesis of an asyn-
chronous circuit must be done.

-4ph Expand channel events to 4-phase protocol. The return-to-zero events are inserted by maintaining
the maximum concurrency with the rest of events.

-redc Reduce concurrency to improve the quality of the resulting circuit. This option can be combined
with the statements .slowenv, .slow, .concurrent, .ordered and .late to indicate which events are
assumed to be slow. Concurrency between slow events is always preserved.

-redz Reduce only the concurrency of return-to-zero events. The concrrency of the rest of events is pre-
served.

OPTIONS FOR SYNTHESIS OF ASYNCHRONOUS CIRCUITS
-csc[n] Check and force Complete State Coding (CSC). Petrify exits with non-zero status when CSC can-

not be completely solved. n is an optional parameter used during the exploration of blocks to parti-
tion the set of states for the insertion of new signals. It indicates that blocks of up to n intersecting
concurrent regions will be generated to explore the insertion of signals. If n is not specified, the

2

petrify(1cad) petrify(1cad)

value n=1 (no intersection) is assumed. Increasing n may result in a better exploration of candi-
dates at the expense of more computational cost.

-icsc[n] Similar as the option -csc[n]. Moreover, when CSC has been solved by inserting more than one
signal, petrify attempts to hide some of them and solve CSC again to improve the final solution.
Any signal declared as internal is eligible to be hidden in this phase.

-tcsc State signals to solve CSC are inserted aiming at improving the circuit’s performance. This is
achieved by increasing the concurrency of those events that appear in critical paths. This option is
the default when the -topt or -atopt options are used.

-acsc State signals to solve CSC are inserted aiming at improving the circuit’s area. This option is the
default when the -topt and -atopt options are not used.

-io Preserve I/O interface. This option prevents the creation of new trigger dependencies to input
events when inserting new signals or reducing concurrency. When not used, new trigger dependen-
cies to slow input events are allowed. This option is ignored when timing assumptions are used
for logic synthesis (options -topt or -atopt).

-avg This option is only applicable when CSC is to be solved and timing optimization is enabled (see
-tcsc). When inserting new CSC signals, petrify will attempt to improve the average response time
of the circuit by increasing the concurrency of the new state signals. Timing assumptions will be
reported when the environment is assumed to be slow enough to allow the state signals stabilize
before new input events occur. These assumptions will only be generated for those input events
declared as slow. When this option is not specified and timing optimization is enabled, petrify
will attempt to impr ove the worst-case response time.

-cg Generate a complex-gate implementation of the circuit (one complex gate for each non-input sig-
nal). If neither -cg nor -gc are specified, logic decomposition is performed until all functions are
mappable onto library gates (if the option -tm is specified) and their literal count and support do
not exceed the maximum allowed (see options -litn and -lutn).

-gc Generate an implementation of the circuit with generalized C elements. If neither -cg nor -gc are
specified, logic decomposition is performed until all functions are mappable onto library gates (if
the option -tm is specified) and their literal count and support do not exceed the maximum allowed
(see options -litn and -lutn).

-mc Generate an implementation based on monotonic covers (only C elements are used as asynchro-
nous latches). No technology mapping is done when this option is used.

-nosi Generate complex gates even if the specification of the circuit is not speed-independent.

-tm[n] Perform technology mapping onto a given library of gates. See the option -lib for information on
how to specify the gate library. The optional parameter n is an integer specifying the depth of
search to collapse gates for boolean matching. The default value is n=2. Higher values perform a
more exhaustive search.

-tm_ratio[x]
Specifies how the mapper must trade off delay and area. x is a real value between 0 and 1. The
default value x=0 seeks for a minimum area circuit, whereas x=1 seeks for minimum delay.

-log logfile
Generate a file with exhaustive information about logic synthesis, timing assumptions, etc. This
file is crucial for the option -selckt that enables the designer to interactively select the preferred
gate implementation of each non-input signal. If this option is not specified, the default log file is
petrify.log. The file name - can be used to redirect to the standard output.

-nolog Do not generate the log file.

-selckt Initiates an interactive selection of the implementation of each non-input signal. The information
about the eligible implementations is reported in the log file (see option -log).

3

petrify(1cad) petrify(1cad)

-eqn eqnfile
Generate a logic description of the circuit in EQN format and write into the file eqnfile. The file
name - can be used to redirect to the standard output.

-blif blif file
Generate a logic description of the circuit in BLIF format and write into the file bliffile. The file
name - can be used to redirect to the standard output.

-vl vlogfile
Generate a logic description of the circuit in Verilog and write into the file vlogfile. The file name
- can be used to redirect to the standard output.

-rst0 Generate a netlist with a reset pin active at low. This option only applies for Verilog netlits.

-rst1 Similar to -rst0 but with the pin active at high.

-lib libfile
When a library gate is required, the file libfile (in genlib format) is read. In case it is not found, the
environment variable PETRIFY_LIB_PATH is used as the path to find the file. If the option -lib is
not used, the file name petrify.lib is used by default. In case more than one -lib option is specified,
all the library files are read and appended to the same gate library. Petrify uses all combinational
gates and asynchronous latches found in the library unless the option -latch is specified. It is the
user’s responsability to guarantee that all the gates in the library can be safely used for asynchro-
nous circuit implementation (e.g. they are hazard free).

-latch str
Specify a restricted set of latches to be used for synthesis. str can contain any string of characters
from the set cdrs (capital letters are also allowed), which respectively correspond to the following
latches: Muller C element, D latch, reset-dominant SR latch and set-dominant SR latch. These
latches are only used if found in the library. In case this option is not specified, any asynchronous
latch in the library is used.

-nolatch
No latches are used for logic synthesis and technology mapping.

-lit[n] Specify the maximum number of literals (in factored form) allowed for each combinational func-
tion. Logic decomposition of combinational gates is attempted when they cannot be mapped onto
any library gate or when their literal count exceeds n (even if they are mappable onto a gate). If
not specified, logic decomposition is attempted until all gates are mappable onto library gates. If n
is not specified, the value n=2 is assumed.

-lut[n] Similarly to the option -lit, but specifying the maximum support of the combinational function.
This option is intended to be used for LUT-based synthesis, where n is the number of inputs of
each lookup table. If n is not specified, the value n=4 is assumed.

-topt Timing optimization is applied. The statements in the specification related to timing assumptions
are taken into account. If CSC is to be solved, petrify to take advantage of the events declared as
slow to improve the performance (response time) of the circuit at the expense of a possible
increase of logic complexity.

-atopt Similar to -topt. Additionally, petrify automatically generates timing assumptions for perfor-
mance optimization.

ADVANCED OPTIONS (only for expert users)
For Petri net synthesis:

-s[n] Defines the search depth to find good regions for label splitting. If n is large, the search may
become computationally expensive. The default value is -s3. The search is never pruned if the
option -s (n not specified) is used.

4

petrify(1cad) petrify(1cad)

-rc[n] Maximum number of non-essential places to obtain a minimal irredundant net. If n is not speci-
fied, an optimal solution is found, although it may be computionally very expensive if the number
of non-essential places is large. The default is n=40. The current implementation eliminates non-
essential places greedily until n places are left. Next, an optimal solution is found for the rest of
places. The cost of each region is calculated as fi+fo+1, where fi and fo correspond to the number
of fanin and fanout arcs respectively. With n=0, the elimination is completely greedy (and faster).

-cl[n] Maximum size of the compatibility graph built to find a one-hot -> log reencoding. If n is not
specified, no size limit is assumed. If n<3, reencoding is not done. The default value is n=31.
This option controls the number of BDD variables used when trying to find a good encoding for
the transition system.

For state encoding:

-ncsc[n]
Specify the maximum number of signals to be inserted for solving CSC. If n is too small, CSC
may not be solved. If n is not specified, only one signal is inserted.

-nice_csc
Try to insert CSC signals with simple causality relations with their neighbouring events. This
option may derive nicer solutions at the expense of more area or less performance.

-seq Do not try to increase the concurrency of the new state signals inserted to solve CSC.

-fr[n] Specify the frontier width for the exploration of blocks for state signal insertion. The default is
-fr1. A very wide frontier is used when n is not specified.

-redfr[n]
Specify the frontier width for the exploration of concurrency reduction. The default is -redfr3. A
very wide frontier is used when n is not specified.

-cw[x] Specify a factor (float between 0 and 1) to tune the eagerness of the signal insertion algorithm to
solve CSC conflicts. Small values of x give priority to solving CSC conflicts rather than optimiz-
ing logic. The default value for x (0.2) has proved to be appropriate for a large set of benchmarks.
If x is not specified, the search is guided towards solving the maximum number of CSC conflicts
for each inserted signal.

-tr csc Report a set of traces that lead to states with CSC conflicts. A trace is generated for each state with
a CSC conflict that has no predecessor states with CSC conflicts. The traces are reported in the
logfile.

For logic synthesis and decomposition:

-boolmin[n]
Define the type of boolean minimizer used by petrify. The values n=0...4 select different types of
BDD-based boolean minimizers trading-off efficiency and optimality. Low values of n select more
efficient but less accurate minimizers. For n=0, the minimizer only generates one irredundant
cover each time it is called. For n=1...3, several irredundant covers may eventually be generated.
The value n=4 selects espresso as boolean minimizer. The default value is n=2, which is a good
trade-off between efficiency and optimality.

-gcmodel r:w:i:e:l
Specify the parameters for the delay estimation of the gates generated by either the -cg or -gc
options. The five parameters must be positive real numbers. If one of the parameters is not speci-
fied, the default value is used. r is the mobility ratio between n and p devices (default: 2.5), w is
the width of p devices assuming that n devices are 1 unit wide (default: 1.5), i is the internal capac-
itance per width unit of each device diffusion (default: 0.25), e is the extra capacitance for con-
necting the pull-up and pull-down networks (default: 1.0) and l is the load capacitance of the gate

5

petrify(1cad) petrify(1cad)

(default: 3.0). The unit for i and e is gate capacitance. The unit for l is the input capacitance of one
inverter (the default value of 3.0 indicates that the gate has a fanout of 3 inverters). Example of
usage: -gcmodel :2::0.5:4 indicating w=2.0, e=0.5 and l=4.0.

-gcm Same as -gc but generating monotonic covers for the pull-up and pull-down networks of the gener-
alized C element. This option may be useful if the networks of the generalized C element must be
implemented as independent gates and still speed independence is to be preserved.

-nmap[n]
Specify the maximum number of signals to be inserted for technology mapping. If n is not speci-
fied, only one signal is inserted.

-cgd[n] Specify the maximum number of complex gates generated for each non-input signal. These com-
plex gates are the functions used to explore algebraic decompositions. The default value is n=3.
If n is not specified, all irredundant covers generated by the boolean minimizer are used for
decomposition.

-algd[n]
Specify the maximum number of algebraic decompositions explored for each combinational gate
during logic decomposition. The default value is n=30. If n is not specified, an exhaustive search
of algebraic decompositions is performed.

-mcd[n]
Specify the maximum number of monotonous covers explored for each positive and negative exci-
tation region of a signal. The default value is n=4. If n is not specified, an exhaustive search of
monotonous covers is performed.

-boold[n]
Specify the maximum number of boolean decompositions explored for each latch and 2-input gate
(AND, OR). The default value is n=3. Increasing n may result in a significant increase of compu-
tational cost. If n is not specified, an exhaustive search of boolean decompositions is performed.

-ed Perform an exhaustive exploration of decompositions for each boolean function. This option over-
rides the options -cgd, -algd, -mcd and -boold and may become computationally expensive even
for small circuits.

For BDD operations:

-trflat[n]
Define the maximum BDD node limit when flattening a partitioned transition relation into a single
BDD. Flattening stops when no more BDDs can be merged without exceeding the node limit. The
default node limit is 2000. If n is not specified, no limit is assumed (i.e. transition relations are rep-
resented monolithically).

-notog Do not use toggle changes in transitions relations. If not specified, the representation of transition
relations is optimized by means of a special encoding for toggling variables.

-noreord
Do not reorder BDD variables dynamically.

-reord[n]
BDD variable reordering frequency for traversal. Reordering is done once out of n iterations.

INPUT SYNTAX
Petrify reads and writes descriptions in astg format (used by SIS). Furthermore, several enhancements
have been introduced to allow the specification of channels, unsafe nets, level transitions, boolean guards,
weighted arcs and inhibitor arcs. The differences from the astg format are illustrated below by means of
examples.

6

petrify(1cad) petrify(1cad)

Weighted and inhibitor arcs:

.graph
a+ p1(2) b+ p2
p2 d-(0)

indicates that the event a+ has arcs to

- place p1 with weight 2
- transition b+ with weight 1 (implicit places cannot have weighted arcs)
- place p2 with weight 1 (default)

and that place p2 has an inhibitor arc (weight 0) to transition d-

Toggle transitions:

The suffix ˜ is not required to specify toggle transitions. Thus, "s" and "s˜" are the same transition (similarly
for "s/1" and "s˜/1").

Don’t care transitions:

A transition a* indicates that signal a may or may not change value, i.e. it behaves non-deterministically as
a toggle or a dummy transition. The designer must be careful when using this type of transitions that can
easily derive inconsistently encoded specifications.

Level transitions:

A transition aˆ0 indicates signal a will be go to level 0 without necessarily making a transition. It will
behave as a dummy transition in case signal a is already at level 0. Similarly, transition aˆ1 indicates signal
a going to level 1.

Boolean guards on transitions:

Each instance of a transition can be annotated with a boolean guard. For example, the following line of the
graph

p0 a+ ? b*!c d- ? !b e+

indicates that place p0 is a predecessor of transitions a+, d- and e+. Transition a+ will be only fired when
the guard b*!c holds (i.e. b=1 and c=0). Transition d- will be fired when b=0, whereas no guard is speci-
fied for e+. For implementation reasons, any signal supporting a boolean guard must be a signal of the
STG and declared in the .initial state statement with its initial value. The behavior of these signals must be
specified in the STG. Boolean guards can only be expressed as a conjuntion of literals.

In case more that one guard is specified for one transition, for example,

p0 a+ ? b*c
a+ ? !c d+

the conjunction of all the guards will be considered. In this example, transition a+ will never be fired since
b*c*!c=0.

Weighted arcs and boolean guards can be combined as shown in the following example:

7

petrify(1cad) petrify(1cad)

p0 a+(3) ? b

Signals with free return-to-zero:

It is posible to specify signals in which only the positive or negative transitions are meaningful, whereas the
complementary transitions are only required to maintain the consistency of the encoding. This is declared
as follows:

.inputs a+ b c-

(similar declarations can be done for output or internal signals). The example indicates that only the posi-
tive transitions of signal a are meaningful (and only the negative transitions of c). For those signals, only
toggle transitions may appear in the STG. When expansion to a 4-phase protocol is desired, the comple-
mentary signals are inserted with maximum concurrency with the rest of transitions of the STG in such a
way that the encoding of the involved signal is maintained consistent. In case that only a 2-phase protocol is
desired, no complementary transitions are inserted and the meaningful transitions are considered as toggle
transitions.

Channels:

.channels a b

.internal_channels i1 i2

.external_channels c

When expansion to a 2- or 4-phase protocol is desired, each channel is implemented as 2 signals (1 input
and 1 output). Only input (e.g. a?) and output (e.g. a!) events are allowed for channels. For a 2-phase pro-
tocol, input and output events are translated into toggle events of the input and output signals respectively
(a? -> a_in˜, a! -> a_out˜). For a 4-phase protocol, input and output events are translated into rising transi-
tions of the input and output signals respectively. The return-to-zero transitions are automatically inserted
with maximum concurrency with the rest of transitions.

Channels can also be declared with some polarity (positive or negative) similarly to signals with free return-
to-zero. For example:

.channels a+ b- c

indicating that the meaningful transitions for signal a (b) will be substituted by positive (negative) transi-
tions. When no polarity is specified (e.g. signal c), positive polarity is assumed. As with signals with free
return-to-zero, polarity is only relevant when expansion to 4-phase protocol is required.

It is also possible to specify a different polarity for the input and output signals. For example:

.channels a+- b-+

The first sign corresponds to the input signal, whereas the second to the output signal. Thus, the meaningful
transitions of signal a_in and b_out will be positive. On the other hand, the meaningful transitions of a_out
and b_in will be negative.

The declarations .channels and .external channels are semantically equivalent. External channels are imple-
mented with input and output signals. Internal channels are implemented with only internal signals.

Signal values for the initial marking (optional):

.initial state !a b

8

petrify(1cad) petrify(1cad)

When the Petri net is interpreted as an STG, this option defines de values of the signals in the initial mark-
ing of the net. This option is useful when toggle transitions are used and the initial value of some signal
cannot be deduced from the flow analysis of the STG. When necessary, petrify assumes the value 0 for sig-
nals with undefined initial value. In the example, the initial values for signals a and b are defined to be 0
and 1 respectively. Currently, the definition of the initial value for a signal is mandatory when don’t care
(a*) or level (aˆ0, aˆ1) transitions are used for that signal. It is also mandatory for signals supporting bool-
ean guards. This statement must go before the graph description.

The following declarations must go after the graph description:

Initial marking (mandatory):

.marking {p1 <a+,b+> p2=2 <c+,d->=3}

Initially p2 has 2 tokens and <c+,d-> 3 tokens (the rest have 1 token)

Place capacity:

.capacity p2=3 <c+,d+>=4

Indicates the maximum capacity for each place (default is 1). This is intended for boundedness check dur-
ing token flow analysis.

Slow events:

.slow a+/1 b? c!/2

Indicates that some events are assumed to be slow. This declaration is used when concurrency is reduced
(option -redc) and when timing optimizations are applied (options -topt and -atopt). The concurrency
between pairs of slow signals is never reduced. When solving CSC, slow events are allowed to be delayed
by new state signals under the assumptions that the internal delay of the circuit will be always shorter than
the delay of the environment with respect to the events declared as slow. The declaration of slow events
enables petrify to generate more aggressive relative timing assumptions between the delays of the circuit
and the environment.

.slowenv

It is a shorcut to declare all events of input signals as slow.

Relative timing assumptions:

.time a+/1 <| b- x- > y+/2 > r- x+=y+=z+@a-,b- c+ <> d-

These are different declarations of relative timing constraints. The syntax a<|b is used to declare that event
a will fire before event b when both are concurrent. The syntax a>b>c is used to declare that event a can be
enabled earlier by some of its transitively preceding trigger signals. For the list of signals to be valid a is
required to be triggered by b, b triggered by c, etc. The syntax x=y=z@a,b indicates that the firing times of
x, y and z are considered to be non-distinguishable with respect to the triggered events a and b (they must
be triggered by some of the events in the left part of the declaration). The syntax a<>b indicates that no
constraints of the type a<|b or b<|a (either specified or generated automatically) should be accepted for
this pair of events. The exact interpretation of the relative timing assumptions is explained in more detail in
the tutorial of the tool.

9

petrify(1cad) petrify(1cad)

Constraints during concurrency reduction (.concurrent, .late and .ordered):

The following statements are only meaningful for the phase of concurrency reduction (option -redc). The
statements .slow and .slowenv also impose constraints on this phase. When channels or signals with free
return-to-zero are specified in 4-phase expansion, only the active transitions of the signals are affected by
this statement.

.concurrent {<a+,b+> <c?,d!>}

Indicates that concurrency between the pairs of events must be preserved.

.late {<r+,s+> <a?,b!>}

Indicates that the pairs of specified events must be concurrent and, in case their concurrency is reduced,
they must be ordered as specified, e.g. r+ before s+ and a? before b! (but not vice versa).

.ordered {<a-,b-> <x?,y!>}

Indicates that concurrency between the pairs of events is to be reduced whenever possible (i.e. when the
reduction does not affect other events for which concurrency must be preserved).

State graphs:

Petrify also allows a new format to describe state graphs in a more compact form. The keyword .state
graph must be used instead of .graph. The description of a state graph is as follows:

.state graph
s0 a+ s1 b+ s2
s2 a- s3
s3 b- s0
.marking {s0}

describes a state graph with four states. An arc with label a+ goes from s0 to s1, an arc with label b+ goes
from s1 to s2, etc. The .marking statement is allowed to specify only one state. Indexed transitions (e.g.
a+/2) are not allowed in state graphs.

EXAMPLES
petrify -o graph.out -hide .dummy -bisim graph.in

generates a Petri net from the one described in graph.in and removes the dummy events preserving weak
bisimilarity.

petrify -o graph.out -fc graph.in

generates a free-choice Petri net from the one described in graph.in.

petrify -o graph.out -csc graph.in

generates an STG in which new state signals have been inserted to force the CSC property.

petrify graph.in -gc -topt -eqn graph.eqn -log graph.log -no

syntehsizes a circuit by solving CSC (if required), generating generalized C elements and reporting infor-
mation in the file graph.log. The equations of the circuit are reported in the file graph.eqn. Relative timing
assumptions are taken into account to optimize the circuit.

10

petrify(1cad) petrify(1cad)

petrify -o graph.out -eqn graph.eqn -er graph.in

solves CSC, generates logic equations for a speed-independent circuit using the default library for decom-
position. The resulting STG (with the new inserted signals) is written into graph.out. In the new STG, each
disconnected excitation region has a different label (-er option). Finally, the logic equations are written into
the file graph.eqn in EQN format.

petrify -o graph.out -blif graph.blif -cg graph.in

Similar as above, but generating a complex-gate implementation (no decomposition is performed). The
resulting circuit is dumped into the file graph.blif.

petrify -o graph.out -blif graph.blif -tm -lit3 -lib mylib .lib graph.in

Logic decomposition is performed until all functions are mappable onto library gates not exceeding 3 liter-
als. After decomposition, technology mapping is performed. The gate library is specified in the file
mylib.lib.

petrify -o graph.out -blif graph.blif -tm -latch CD graph.in

Logic decomposition is performed until all functions are mappable onto library gates. Only C elements and
D latches are used for decomposition with latches.

BUGS
What are you talking about ?

AUTHOR
Jordi Cortadella
Department of Computer Science
Universitat Politecnica de Catalunya
Barcelona, Spain
(jordi.cortadella@upc.edu)

ALSO CONTRIB UTED BY
Mike Kishinevsky (Intel Corporation, USA)
Alex Kondratyev (University of Aizu, Japan)
Luciano Lavagno (Politecnico di Torino, Italy)
Enric Pastor (Universitat Politecnica de Catalunya, Spain)
Alex Taubin (The University of Aizu, Japan)
Alex Yakovlev (University of Newcastle upon Tyne, UK)

STATUS
Use at your own risk. Bug reports are welcomed, as well as success stories.

11

