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Abstract—This paper presents a new technique for decompo-
sition and technology mapping of speed-independent circuits. An
initial circuit implementation is obtained in the form of a netlist of
complex gates, which may not be available in the design library.
The proposed method iteratively performsBoolean decomposition
of each such gateF into a two-input combinational or sequential
gate G available in the library and two gates H1 and H2

simpler than F , while preserving the original behavior and speed-
independence of the circuit. To extract functions forH1 and
H2 the method usesBoolean relationsas opposed to the less
powerful algebraic factorization approach used in previous meth-
ods. After logic decomposition, the overall library matching and
optimization is carried out. Logic resynthesis, performed after
speed-independent signal insertion forH1 and H2, allows for
sharing of decomposed logic. Overall, this method is more general
than the existing techniques based on restricted decomposition
architectures, and thereby leads to better results in technology
mapping.

Index Terms—Asynchronous circuits, Boolean relations (BR’s),
logic decomposition, speed independence, technology mapping.

I. INTRODUCTION

SPEED-INDEPENDENT circuits, originating from
Muller’s work [13], arehazard-free under the unbounded

gate delay model. With the recent progress in developing
efficient analysis and synthesis techniques, supported by
computer-aided design (CAD) tools, the implementability
of this subclass of circuits has become significantly more
practical, bearing in mind the advantages of speed-independent
designs, such as their greater temporal robustness and
self-checking properties.

The basic ideas about synthesis of speed-independent cir-
cuits from event-based models, such as signal transition graphs
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(STG’s) and change diagrams, are described, e.g., in [4],
[6], and [10]. They provide general conditions for logic
implementability of specifications intocomplex gateswith
arbitrary fanin and internal feedback.

To achieve greater practicality, synthesis of speed-
independent circuits has to rely on more realistic assumptions
about implementation logic. Thus, more recent work has
been focused on the development of logic decomposition
techniques. It falls into two categories. One of them includes
attempts to achieve logic decomposition through the use of
standard architectures, such as thestandard-Carchitecture
mentioned below. The other group comprises work targeting
the decomposition of complex gates directly, by finding
a behavior-preserving interconnection of simpler gates. In
both cases, the major functional issue, in addition to logic
simplification, is that the decomposed logic must not violate
the original speed-independent specification. This criterion
makes the entire body of research in logic decomposition
and technology mapping for speed-independent circuits quite
specific compared with its synchronous counterparts.

Two examples of the first category [1], [9] present initial
attempts to move from complex gates to a more structured
implementation. The basic circuit architecture includesC ele-
ments, acting as latches, and combinational logic, responsible
for the computation of the excitation functions for the latches.
This logic is assumed to consist ofAND gates with potentially
unbounded fanin and unlimited input inversions and bounded
fanin OR gates. Necessary and sufficient conditions for im-
plementability of circuits in such an architecture, called the
standard-Carchitecture, have been formulated in [1], [9]. They
are calledmonotonic cover(MC) requirements. The intuitive
objective of the MC conditions is to make the first level
(AND) gates work in aone-hotfashion with acknowledgment
through one of the C-elements. Following this approach,
various methods for speed-independent decomposition and
technology mapping intoimplementablelibraries have been
developed, e.g., in [16] and [8]. The former method only
decomposes existing gates (e.g., a three-inputAND into two
two-input AND’s), without any further search of the imple-
mentation space. The latter method extends the decomposition
to more complex (algebraic) divisors, but does not tackle the
limitation inherent in the initial MC architecture.

The best representative of the second category appears to be
the work of Burns [3]. It provides general conditions for speed-
independent decomposition of complex (sequential) elements
into two sequential elements, or a sequential and a combina-
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Fig. 1. General framework for speed-independent decomposition.

tional element. Notably, these conditions are analyzed using
the original unexpanded behavioral model, thus improving the
efficiency of the method. This work is, in our opinion, a big
step in the right direction, but addresses mainly correctness
issues. It does not describe how to use the efficient correctness
checks in an optimization loop, and does not allow the sharing
of a decomposed gate by different signal networks. The latter
issues were successfully resolved in [8], but only within a
standard architecture approach.

Technology mapping for circuits working in fundamental
mode [17] can be achieved by deriving a hazard-free two-
level sum-of-products [14] and obtaining a multilevel form
by hazard-nonincreasing transformations [18]. However, these
transformations cannot be generally applied for the decompo-
sition of speed-independent circuits without introducing new
hazards.

In [15], technology mapping for speed-independent circuits
is done by merely identifying sets of simple logic gates that can
be implemented as a complex gate, but no logic decomposition
is performed when a function cannot be implemented as a
complex gate.

In our present work, we are considering a more general
framework which allows the use ofarbitrary gates and latches
available in the library to decompose a complex gate function,
as shown in Fig. 1. In that respect, we are effectively making
progress toward the more flexible second approach. The basic
idea of this new method is as follows.

An initial complex gate is characterized by its function.
The result of decomposition is a library component designated
by and a set of (possibly still complex) gates labeled,

, , . The latter are decomposed recursively until all
elements are found in the library and optimized to achieve the
lowest possible cost. We, thus, by and large put no restrictions
on the implementation architecture in this work. However, as
will be seen further, for the sake of practical efficiency, our
implemented procedure deals only with the two-input gates
and/or latches to act as-elements in the decomposition. The
second important change of this work compared to [8] is that
the new method is based on a full scale Boolean decomposition
rather than just on algebraic factorization. This allows us
to widen the scope of implementable solutions and improve
on area cost. Future work will tackle performance-oriented
decomposition.

Our second goal in generalizing the C-element-based de-
composition has been to allow the designer to use more
conventional types of latches, e.g., D-latches and SR-latches,
instead of C-elements that may not exist in conventional

Fig. 2. An example of (a) STG, (b) SG, and (c)–(e) their implementation
(benchmarkhazard.g ).

standard-cell libraries. Furthermore, as our experimental re-
sults show (see Section VI), in many cases the use of standard
latches instead of C-elements helps improving the circuit
implementations considerably.

The power of this new method can be appreciated by
looking at the examplehazard.g taken from a set of
asynchronous benchmarks. The original STG specification and
its state graph are shown in Fig. 2(a) and (b). The initial
implementation using the “standard C-architecture” and its
decomposition using two input gates by the method described
in [7] are shown in Fig. 2(c) and (d). Our new method
produces a much cheaper solution with just two D-latches,
shown in Fig. 2(e). Despite the apparent triviality (for an
experienced human designer!) of this solution, none of the
previously existing automated tools have been able to obtain
it. Also note that the D-latches are used in aspeed-independent
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fashion, and are thus free from meta-stability and hazard
problems.1

The paper is organized as follows. Section II introduces the
main theoretical concepts and notation. Section III presents
an overview of the method. Section IV describes the major
aspects of our Boolean relation (BR)-based decomposition
technique in more detail. Section V briefly describes its al-
gorithmic implementation. Experimental results are presented
in Section VI, which is followed by conclusions and ideas
about further work.

II. BACKGROUND

In this section we introduce theoretical concepts and nota-
tion required for our decomposition method. First, we define
state graphs(SG’s), which are used for logic synthesis of
speed-independent circuits. The SG itself may of course be
generated from a more compact, user-oriented model, such as
the STG. The SG provides the logic synthesis procedure with
all the information necessary for deriving Boolean functions
for complex gates. Second, the SG is used for a property-
preserving transformation, calledsignal insertion. The latter is
performed when a complex gate is decomposed into smaller
gates, and the new signals must be guaranteed to be speed-
independent, i.e., hazard-free in input/output mode using the
unbounded gate delay model.

A. State Graphs and Logic Implementability

An SG is a labeled directed graph whose nodes are called
states. Each arc of an SG is labeled with anevent, that is a
rising or falling transition of a signal in the
specified circuit. We also allow notation if we are not
specific about the direction of the signal transition. Each state
is labeled with a vector of signal values. An SG isconsistent
if its state labeling is such that: in every
transition sequence from the initial state, rising and falling
transitions alternate for each signal. Fig. 2(b) shows the SG for
the Signal Transition Graph in Fig. 2(a), which is consistent.
We write if there is an arc from state (to state

) labeled with
The set of all signals whose transitions label SG arcs are

partitioned into a (possibly empty) set of inputs, which come
from the environment, and a set of outputs or state signals that
must be implemented. In addition to consistency, the following
two properties of an SG are needed for their implementability
in a speed-independent logic circuit.

The first property isspeed-independence. It consists of three
parts: determinism, commutativity and output-persistence. An
SG is calleddeterministicif for each state and each label

there can be at most one state such that An
SG is calledcommutativeif whenever two transitions can be
executed from some state in any order, then their execution
always leads to the same state, regardless of the order. An
event is called persistent in stateif it is enabled at and

1For example, all transitions on the input must be acknowledged by the
output before the clock can fall and close the latch. Thus, there is no problem
with setup and hold times as long as the propagation time from D to Q is
larger than both setup and hold times, which is generally the case.

Fig. 3. Event insertion scheme: (a) before insertion and (b) after insertion.

remains enabled in any other state reachable fromby firing an
event different from . An SG is calledoutput-persistentif
its output signal events are persistent in all states and no output
signal event can disable input events. Any transformation, such
as insertion of new signals for decomposition, if performed at
the SG level, may affect all three properties.

The second requirement,complete state coding(CSC), is
a necessary and sufficient condition for the existence of a
logic circuit implementation. A consistent SG satisfies the CSC
property if for every pair of states, such that ,
the set of output events enabled in both states is the same (the
SG in Fig. 2(b) isoutput-persistentand has CSC). CSC does
not however restrict the type of logic function implementing
each signal. It requires that each signal is cast into asingle
atomic gate. The complexity of such a gate can however go
beyond that provided a concrete library or technology.

The concepts of excitation regions and quiescent regions are
essential for transformation of SG’s, in particular for inserting
new signals into them. A set of states is called anexcitation
region (ER) for event [denoted by if it is the set

of states such that The quiescent region
(QR) [denoted by of a transition , with excitation
region , is the set of states in which is stable and
keeps the same value, i.e., for , is equal
to one(zero) in . An example of anER
and two examples ofQR’s are shown in Fig. 2(b).

B. Property-Preserving Event Insertion

Our decomposition method is essentially behavioral—the
creation of new signals at the structural (logic) level must be
matched by an insertion of their transitions at the behavioral
(SG) level. Event insertion is an operation on an SG which
selects a subset of states, splits each of them into two states
and creates, on the basis of these new states, an excitation
region for a new event. Fig. 3 shows the chosen insertion
scheme, analogous to that used by most authors in the area
[19]. We shall say that an inserted signalis acknowledged
by a signal , if is one of the signals delayed by the insertion
of . The same terminology will be used for the corresponding
transitions. For example, acknowledges in Fig. 3.

State signal insertion must preserve thespeed-independence
of the original specification. The events corresponding to an
inserted signal are denoted , , , or, if no confusion
occurs, simply by . Let be a deterministic, commutative
SG and let be the SG obtained from by inserting event

. We say that an insertion state set in is a speed-
independence preserving set (SIP-set)iff: 1) for each event

in , if is persistent in then it remains persistent in
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Fig. 4. Possible violations of SIP conditions.

, and 2) is deterministic and commutative. The formal
conditions for the set of statesto be a SIP-set can be given
in terms of intersections of with the so-called state diamonds
of SG [5]. These conditions are illustrated by Fig. 4, where all
possible cases of illegal intersections ofwith state diamonds
are shown. The first (rather inefficient) method for finding
SIP-sets based on a reduction to the satisfiability problem was
proposed in [19]. An efficient method based on the theory of
regions has been described in [5].

Assume that the set of statesin an SG is partitioned into
two subsets which are to be encoded by means of an additional
signal. This new signal can be added in order to either satisfy
the CSC condition, or to break up a complex gate into a set
of smaller gates. In the latter case, the new signal represents
the output of the intermediate gate added to the circuit. Let

and denote the blocks of such a partition. For
implementing such a partition we need to insert transitions of
the new signals in theborder statesbetween and .

The input borderof a partition block , denoted by ,
is informally the subset of states ofby which is entered. We
call well-formedif there are no arcs leading from states
in to states in . If a new signal is inserted using
an input border, which is not well-formed, then the consistency
property is violated. Therefore, if an input border is not well
formed, its well-formed speed-independent preserving closure
can be constructed, as described by the algorithm presented
in [7].

The insertion of a new signal can be formalized with the no-
tion of I-partition ([19] used a similar definition). Given an SG,

, with a set of states , an I-partition is a partition of into
four blocks: and .

and define the sets of states in which
will have the stable value one and zero, respectively.
and define the excitation regions of in the new
SG . In order to distinguish between the sets of states for
the excitation and quiescent regions of the inserted signal
in the original SG and the new SG , we will refer to
them as , , , and ,
respectively. If the insertion of preserves consistency and
persistency, then the only transitions crossing boundaries of
the blocks are the following:

.
Example 1: Fig. 5 shows three different cases of the in-

sertion of a new signal into the SG for thehazard.g
example. The insertion using and of
Fig. 5(a) does not preserve speed-independence as the SIP set

conditions are violated for [a violation of the type
shown in Fig. 4(b)].

When signal is inserted with the excitation regions shown
in Fig. 5(b) then its positive switching is acknowledged by
transitions , , while its negative switching is acknowl-
edged by transition . The corresponding excitation regions
satisfy the SIP conditions and the new SG, obtained after
insertion of signal is shown in Fig. 5(b). Note that the
acknowledgment of by transitions , results in
delaying some input signaltransitions in until fires.
This changes the original I/O interface for SG, because it
requires the environment to look at a new signal before it can
change and . This is generally incorrect (unless we are also
separately finding an implementation for the environment or
we are working under appropriate timing assumptions), and
hence this insertion is rejected.

The excitation regions and shown
in Fig. 5(c) are SIP sets. They are well-formed and comply
with the original I/O interface because positive and negative
transitions of signal are acknowledged only by output signal
. This shoice of insertion is thus valid.

C. Signal Insertion Guided by Function

In the case of logic decomposition, the insertion of new
signals is guided by Boolean functions either obtained by
algebraic division (as in [8]) or by Boolean decomposition
of complex functions. We next summarize the method for
function-guided signal insertion presented in [8] and also used
in this paper. The method will be illustrated with the example
of Fig. 6.

Given a function , the set of states is initially partitioned
into the blocks and corresponding to the states in which

and , respectively. In the example of Fig. 6,
signal corresponding to the function must be
inserted. Fig. 6(a) depicts the partition of the states with regard
to function .

Next, the I-partition is calculated by defining the input
borders of and and extending them until they become
SIP sets. This extension is not unique and several solutions
can be derived [5]. Fig. 6(b) depicts one of the solutions.
The final I-partition defines , , , and

.
Finally, the events and are inserted following the

scheme depicted in Fig. 3. The final SG is shown in Fig. 6(c).
The new signal can now be implemented by the function

.
In the example, is delayed by whereas is delayed

by . Thus, signal is acknowledged by .
The insertion of a new signal implies changes in the

implementation of some other signals as well. In general:

• signals delayed by change their implementations, since
becomes a new trigger signal for them and

• the implementation of thesignals not delayed by is valid
in the new SG. However, it might be the case that simpler
implementations are possible when the new signalis
included in their support. Hence can contribute to the
simplification of these “non-triggered” signals as well.
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Fig. 5. Different cases of signal insertion for benchmarkhazard.g : (a) violating the SIP-condition, (b) changing the I/O interface, and (c) correct insertion.

Fig. 6. (a) Bipartition by functionx = c+ d, (b) I-partition with SIP ER’s, (c) insertion of signalx, and (d) bipartition for functionx = a+ d + z:

Henceforth, we will say that a function is speed indepen-
dent in an SG if an I-partition with SIP ER’s can be found for

. In our example, is a speed-independent function.
Fig. 6(d) shows a bipartition of the set of states for function

. It can be easily seen that this function is not
speed independent in this SG as no I-partition with SIP ER’s
can be found. This is due to the isolation of state 0100 in a
diamond, that generates a forbidden configuration similar to
the one of Fig. 4(b).

D. Basic Definitions About Boolean Functions and Relations

An important part of our decomposition method is find-
ing appropriate candidates for characterization (by means of
Boolean covers) of the sets of states and
for the inserted signal . For this, we need to reference
here several important concepts about Boolean functions and
relations [12].

An incompletely specified (scalar) Boolean function is a
functional mapping where
and “ ” is a don’t care value. The subsets of domain
in which holds the zero, one, and don’t care value are,

respectively, called theOFF-set, ON-set, and DC-set. is
completely specifiedif its DC-set is empty. We shall further
always assume that is a completely specified Boolean
function unless we explicitly say otherwise.

Let be a Boolean function of Boolean
variables. The set is called thesupport
of the function . In this paper, we shall mostly be using
the notion of true support, which is defined as follows. A
variable is essentialfor function (or is dependent
on ) if there exist at least two minterms , different
only in the value of , such that . The set
of essential variables for a Boolean functionis called the
true supportof and is denoted by . It is clear that
for an arbitrary Boolean function its support may not be the
same as the true support. E.g., for a support
and a function the true support of is

, i.e., only a subset of .
Let be a Boolean function with support

. The cofactor of with respect to
is defined as

, respectively). The
well-known Shannon expansion of a Boolean function is
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based on its cofactors: . The existential
abstraction of a function with respect to is defined as

. The existential abstraction can be naturally
extended to a set of variables. TheBoolean difference, or
Boolean derivative, of with respect to is defined as

A function is unate in variable
if either or under ordering .
In the former case it is called positive unate
in , in the latter casenegative unate in . A function
that is not unate in is called binate in . A function is
(positive/negative)unate if it is (positive/negative)unate in
all its support variables. Otherwise it is binate. For example,
the function is positive unate in variable
because .

For an incompletely specified function with a DC-
set, let us define the DC function such that

. We will say that a function is an
implementation of if .

A Boolean relationis a relation between Boolean spaces
[2], [12]; it can be seen as a generalization of a Boolean
function, where a point in the domain can be associated
with several points in the codomain. More formally, a BR
is . Sometimes, we shall also use the “”
symbol as a shorthand in denoting elements in the codomain
vector, e.g., 10 and 00 will be represented as one vector.
BR’s play an important role in multilevel logic synthesis [12],
and we shall use them in our decomposition method.

Consider a set of Boolean functions
. Let be a BR with the same

domain as functions from . We will say that is compatible
with if for every point in the domain of the vector of
values is an element of . An
example of compatible functions will be given in Section IV.

III. OVERVIEW OF THE METHOD

In this section we describe our proposed method for se-
quential decomposition of speed-independent circuits aimed
at technology mapping. It consists of three main steps:

1) synthesis via decomposition based on BR’s;
2) signal insertion and generation of a new SG;
3) library matching.

The first two steps are iterated until all functions are
decomposed into implementable gates or no further progress
can be made. At each iteration only one noninput signal
is decomposed by inserting a new internal signal (Step 2).
Resynthesis of all noninput signals is performed after the
insertion of a new signal (Step 1). Finally, Step 3 collapses
decomposed gates and matches them with library gates.

The pseudocode for the technology mapping algorithm is
given in Fig. 7. At each iteration of the main loop, a new signal
is inserted. In order to define a function for this new signal,
a set of valid decompositions is calculated for each noninput
signal (line 2 in Fig. 7) and the best one is kept (line 3).
Finally the most complex function from all the decompositions
is implemented as a new signal (lines 5 and 6). Choosing the
most complex function at each step allows this function to

Fig. 7. Algorithm for logic decomposition and technology mapping.

become a candidate for decomposition in the next iteration.
Thus, we decompose the largest gates first.

The algorithm terminates when all noninput signals are
implementable with gates from the library or when no more
signals can be further decomposed (line 4).

The proposed method breaks an initial complex gate imple-
mentation of an SG,starting from the gate output,2 by using
sequential(if its function is self-dependent, i.e., it has internal
feedback) orcombinationalgates.

This method is complementary to the one proposed in [7]
in which the decomposition was performed by using algebraic
divisors of the current implementations of the output signals,
and thus decomposition was performedfrom the inputsof
complex gates.

Given a vector of SG signals and given one noninput
signal (in general the function for may be self-
dependent), we try to decompose function into (line 2
of algorithm in Fig. 7):

• a combinational or sequential gate with function
where is a vector of newly introduced signals,

• a vector of combinational3 functions for signals ,
so that implements .

Moreover, we require the newly introduced signals to be
speed-independent (line3).

The problem of representing the flexibility in the choice of
the functions as BR’s has been explored, in the context
of combinational logic minimization, by [22] among others.
Here we extend its formulation to cover alsosequentialgates
(in Sections IV-A and IV-C). This is essential in order to
overcome the limitations of previous methods for speed-
independent circuit synthesis that were based on a specific
architecture. Now we are able to use a broad range of
sequential elements, like set and reset dominant SR latches,
transparent D latches, and so on. We believe that overcoming
this limitation of previous methods, that could only use C
elements and dual-rail SR-latches, is one of the major strengths
of this work. Apart from dramatically improving some exper-
imental results, it allows one to use a “generic” standard-cell
library, that generally includes SR and D latches (but not C

2Note that after decomposition terminates, technology mapping can be
performed indifferently starting from the inputs or from the outputs.

3The restriction thatH(X) be combinational will be partially lifted in
Section IV-C.



CORTADELLA et al.: DECOMPOSITION AND TECHNOLOGY MAPPING OF SPEED-INDEPENDENT CIRCUITS 1227

elements), without the need to design and characterize any
new asynchronous-specific gates.

The algorithm proceeds as follows. We start from an SG and
derive a logic function for all its noninput signals (line1). We
then perform an implementability check for each such function
as a library gate. The largest nonimplementable function is
selected for decomposition. In order to limit the search space,
we currently try as candidates for (line 2):

• all the sequential elements in the library (assumed to have
two inputs at most, again in order to limit the search
space);

• two-input AND, OR gates with all possible input inver-
sions.

The flexibility in the choice of functions
is defined by a BR, that represents the solution space of

, as described in Section IV-A.
The set of function pairs compatible with the BR

is then checked for speed-independence (line3), as described
in Section II-C. This additional requirement has forced us
to implement a new BR minimizer, that returns aset of
compatible functions, as outlined in Section V-A. If both are
not speed-independent, the pair is immediately rejected.

Then, both and are checked for approximate (as
discussed above) implementability in the library, in increasing
order of estimated cost. We have two cases:

1) both are speed-independent and implementable: in this
case the decomposition is accepted,

2) otherwise, the most complex implementable is se-
lected, and the other one is merged with.

Choosing the most complex function, as mentioned above,
experimentally helps with keeping the decomposition bal-
anced. Note that at this stage we can also implementor

as asequential gateif the sufficientconditions described
in Section IV-C are met.

The procedure is iterated as long as there is progress or
until everything has been decomposed (line4). Each time a
new function is selected to be implemented as a new signal,
it is inserted into the SG (line6) and resynthesis is performed
in the next iteration.

The incompleteness of the method is essentially due to the
greedy heuristic search that accepts the smallest implementable
or nonimplementable but speed-independent solution. There-
fore, a speed-independent solution could be missed, e.g., if it
corresponds to a redundant cover as shown in Example 2. In
order to enable the generation of redundant decompositions in
our implementation, the method based on BR’s is combined
with a method based on monotonic covers that performs
a direct search for speed-independent covers [9], [1], but
is also incomplete due to a very restricted decomposition
structure based on C-elements. We believe that an exhaustive
enumeration of all speed-independent solutions with back-
tracking would be complete (but impractical), by a relatively
straightforward extension of the results in [20] that applied
only to circuits without external inputs.

Note that in this paper we assume that input inverters
(bubbles) attached to the inputs of other gates are “fast,” and
therefore bubbles can be added to the fanin of any hazard-free

gate available in the library. The implementation is guaranteed
to be hazard-free under the following conservative assumption:
the delay of a bubble with fanin signalis less than the delay
of any other gate, with possibly input bubbles, within its
fanin [9].4

At the end, we perform a Boolean matching step ([11])
to recover area and delay (line7). This step can merge
together the simple two-input combinational gates that we
have conservatively used in the decomposition into a larger
library gate. It is guaranteed not to introduce any hazards if
the matched gates are atomic.

IV. L OGIC DECOMPOSITIONUSING BOOLEAN RELATIONS

A. Specifying Permissible Decompositions with BR’s

As discussed above, in this paper we apply BR’s to the
following problem.

Given an incompletely specified Boolean function for
signal , , decompose it into two levels ;

such that implements and
functions and have a simpler implementation than
(any such will be called permissible).

Note that the first-level function
is a multioutput logic function, specifying the behav-

ior of internal nodes of the decomposition, .5

The final goal is a function decomposition to a form that
is easily mappable to a given library. Hence only functions
available in the library are selected as candidates for. Then
at each step of decomposition a small mappable piece (function

is cut from the potentially complex and unmappable func-
tion . For a selected all permissible implementations of
function are specified with a BR and then via minimization
of BR a few best compatible functions are obtained. All of
them are verified for speed-independence by checking SIP-
sets. The one which is speed-independent and has the best
estimated cost is selected.

Since the support of function can include the output
variable , it can specify sequential behavior. In the most
general case we perform two-levelsequentialdecomposition
such that both function and function can be sequential,
i.e., contain their own output variables in their supports. The
second level of the decomposition is made sequential by
selecting a latch from the library as a candidate gate,The
technique for deriving a sequential solution for the first level

is described in Section IV-C.
We next show by example how all permissible implemen-

tations of a decomposition can be expressed with BR’s.
Example 2: Consider the STG in Fig. 8(a), whose SG ap-

pears in Fig. 9. Signals, , and are inputs and is an
output. A possible implementation of the logic function for

is . Let us decompose this
function using as a reset-dominant Rs-latch represented by
the equation [see Fig. 8(b)].

4This is likely to be satisfied if the layout program keeps such inverters
very close to their fanout gates.

5For simplicity we consider the decomposition problem for a single-
output binary functionF , although a generalization for the multioutput and
multivalued functions would be straightforward.
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Fig. 8. Sequential decomposition for functiony = acd + y(c + d).

Fig. 9. State graph and decomposition of signaly by an RS latch.

At the first step we specify the permissible implementations
for the first level functions and by
using the BR specified in the table of Fig. 9. Consider, for
example, vector . It is easy to check
that . Hence, for vector 0000 the table
specifies that i.e., any
implementation of and must keep for this input vector
either at oneor at zero, since these are the necessary
and sufficient conditions for the Rs-latch to keep the value
zero at the output , as required by the specification. On the
other hand, only the solution , is possible for the
input vector 1100, which corresponds to setting the output of
the Rs-latch to one. The BR solver will find, among others,
the two solutions illustrated in Fig. 8(c)–(d): 1) ;

and 2) ; . Solution (2) is not speed-
independent, and therefore only solution (1) will be included
as a SIP candidate. Another speed-independent solution, (3)

; [Fig. 8(f)] corresponding to a redundant
cover will be included into the list of SIP candidates by the
monotonic cover method. It differs from solution 2) by adding
a redundant literal to function. The monotonic cover method
[9], [1] performs direct search for speed-independent cubes
and covers for each excitation region of a signal assuming a
restricted decomposition structure based on a C-element or a

TABLE I
BOOLEAN RELATIONS FOR DIFFERENT GATES

Region
C-element
H1;H2

D-latch
C;D

Rs
R; S

ER(y+) 11 11 01
QR(y+) f1�;�1g f0�;�0g 0�

ER(y�) 00 10 1

QR(y�) f0�;�0g f0�;�0g f1�;�0g
unreachable — — — — — —

Region
Sr
S;R

AND

H1; H2

OR

H1;H2

ER(y+) 1� 11 f1�;�1g

QR(y+) f1�;�0g 11 f1�;�1g

ER(y�) 01 f0�;�0g 00

QR(y�) 0� f0�;�0g 00

unreachable — — — — — —

dual-rail RS-latch. The best solution is selected among 1) and
3) depending on the cost function.

Table I specifies compatible values of the BR for different
types of gates: a C-element, a D-latch, a reset-dominant Rs-
latch, a set-dominant Sr-latch, a two-input AND gate and a
two input OR gate. All states that are not reachable in the
SG form the DC-set for the BR. E.g., for each statefrom

only one compatible solution, 11, is allowed for input
functions , of a C-element. This is because the output of
a C-element in all states, is at zero and .
Under these conditions the combination 11 is the only possible
input combination that implies the value one at the output of
the C-element. On the other hand, for each state ,
the output and . Hence, it is enough to keep
at least one input of the C-element in 1. This is expressed by
values in the second line of the table. Similarly, all
other compatible values are derived.

B. Functional Representation of Boolean Relations

Given an SG satisfying the CSC requirement, each output
signal is associated with a uniqueincompletely
specified function , whose DC-set represents the set of
unreachable states. can be represented by threecom-
pletelyspecified functions, denoted , ,
and representing the ON-, OFF-, and DC-set of
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, such that they are pairwise disjoint and their union is
a tautology.

Let a generic -input gate be represented by a Boolean
equation , where are the inputs
of the gate, and is its output.6 The gate is sequential if
belongs to the true support of

We now give the characteristic function of the BR for
the implementation of with gate This characteristic
function representsall permissible implementations of

that allow to be decomposed by

(1)

Intuitively, this equation specifies the relations:

• between every minterm (with support in) in the ON-set
and the functions of that make ;

• between every minterm in the OFF-set and the functions
of that make .

In the example of Fig. 9, the minterms and
belong to the OFF-, ON- and DC-set, respectively. Thus, the
BR for the function will be

Given the characteristic function (1), the corresponding table
describing the BR can be derived using cofactors. For each
minterm with support in , the cofactor gives the
characteristic function of all compatible values for .

Finding a decomposition of with gate is reduced to
finding a set of functions
such that

(2)

Example 3: (Example 2 continued.) The SG shown in
Fig. 9 corresponds to the STG in Fig. 8. Let us consider
how the implementation of signal with a reset-dominant
Rs latch can be expressed using the characteristic function of
the BR. Recall that the table shown in Fig. 9 represents the
function and the permissible
values for the inputs and of the Rs latch. The ON-,
OFF-, and DC-sets of function are defined by the
following completely specified functions:

The set of permissible implementations for and is
characterized by the following characteristic function of the

6In the context of Boolean equations representing gates we shall liberally
use the “=” sign to denote “assignment,” rather than mathematical equality.
Hence, literalq in the left-hand side of this equation stands for thenextvalue
of signal q while the same literal in the right-hand side corresponds to its
previous value.

BR specified in the table. It can be obtained from (1) by
substituting expressions for , , , and the
function of an Rs-latch,

(3)

This function has value one forall combinations represented
in the table of Fig. 9 and value zero for all combinations that
are not in the table [e.g., for . For
example, the set of compatible values for is
given by the cofactor

which correspond to the terms and given for the BR
for that minterm.

Two possible solutions for the equation
corresponding to Fig. 8(c)–(d) are

C. Two-Level Sequential Decomposition

Accurate estimation of the cost of each solution produced
by the BR minimizer is essential in order to ensure the
quality of the final result. The minimizer itself can only handle
combinational logic, but often (as shown below) the best
solution can be obtained by replacing a combinational gate
with a sequential one. This section discusses some heuristic
techniques that can be used to identify when such a replace-
ment is possible without altering the asynchronous circuit
behavior, and without undergoing the cost of a full-blown
sequential optimization step. In particular, it discusses how
a decomposed combinational function can be
replaced by a sequential function without
changing the behavior of the circuit. Let us consider our
example again.

Example 4: (Example 2 continued.) Let us assume that the
considered library contains three-input AND, OR gates and
Rs-, Sr-, and D-latches. Implementation (1) of signalby
an Rs-latch with inputs and matches the
library and requires two AND gates, one with two and one
with three inputs, and one Rs-latch. The implementation (2)
of by an Rs-latch with inputs and
would be rejected, as it requires a complex AND-OR gate
which is not in the library. However, when input in the
function is replaced by signal the output behavior
of will not change, i.e., function can be safely
replaced by . The latter equation corresponds to
the function of a D-latch and gives the valid implementation
shown in Fig. 8(e).
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Our technique to improve the precision of the cost esti-
mation step, by partially considering sequential gates, is as
follows.

1) Produce permissible functions and
via the minimization of BR’s ( and are

always combinational as ).
2) Estimate the complexity of and

if matches the librarythen Complexity cost of the
gate else Complexity literal count

3) Estimate the possible simplification of and due to
adding signals and to their supports, i.e., estimate
the complexity of the new pair of permissible
functions , .

4) Choose the best complexity between and .

Let us consider the task of determining and as in Step
3. Let be an SG encoded by variables from setand let

, such that , , be an equation for the
new variable which is to be inserted in . The resulting
SG is denoted . Sometimes we
will simply write or
when more than one signal is inserted.

A solution for Step 3 of the above procedure can be obtained
by minimizing functions for signals and in an SG

. However, this is rather inefficient because the
creation of SG is computationally expensive. Hence instead
of looking for an exact estimation of complexity for signals

and we will rely on a heuristic solution, following
the ideas on input resubstitution presented in Example 4.
For computational efficiency, the formal conditions on input
resubstitution should be formulated in terms of the original
SG rather than in terms of the SG obtained after the
insertion of new signals.7

Lemma 1: Let Boolean function implement the
inserted signal and be positive (negative) unate in. Let

be the function obtained from by replacing
each literal (or ) by literal . The SG’s

and are isomorphic,
i.e., have the same states and arcs, iff the following condition
is satisfied:

where is the characteristic function describing the set of
states in .

Informally Lemma 1 states that resubstitution of input
by is permissible if in all states where the value of function

depends on, the inserted signal has a stable value.
The intuition behind this lies in the way of constructing

SG’s or when signal is inserted in SG . Any state
which belongs to the excitation region of

gives rise to two states and in or .
For and to be isomorphic, the value of the functions

and in these states must coincide, otherwise

7Note that this heuristic estimation covers only the cases when one of
the input signals for a combinational permissible functionHi is replaced
by the feedbackzi from the output ofHi itself. Other cases could also be
investigated, but checking them would be too complex.

the enabling of signal would be different, meaning that
either or would have different output arcs in and

. However, if the condition of Lemma 1 is violated, then
keeps the same value in both and , while
changes its value due to the change ofHence,

and cannot be isomorphic if the conditions of the Lemma
are violated.

Example 5: (Example 2 continued.) Let input of the RS-
latch be implemented as [see Fig. 8(d)]. The ON-set
of function is shown by the dashed line in Fig. 9.
The input border of is the set of states by which its ON-set
is entered in the original SG , i.e., . By
similar consideration, we have that . These
input borders satisfy the SIP conditions and, hence, can
be taken as , while must be expanded
beyond by state 1100 so that it does not delay the
input transition .

The set of states where the value of functionessentially
depends on signal is given by the function

. is negative unate in and cube has no intersection
with . Therefore by the condition of
Lemma 1 literal can be replaced by literal thus producing
a new permissible function .

This result can be generalized to binate functions, as fol-
lows.

Lemma 2: Let Boolean function implement the
inserted signal and be binate in Function can be
represented as , where , , and

are Boolean functions not depending onLet
. Then SG’s and

are isomorphic iff the following
conditions are satisfied:

(1)

(2)

where and are the characteristic Boolean functions
describing sets of states and
in , respectively.

The proof is given in the Appendix.
The conditions of Lemma 2 can be efficiently checked

within our binary decision diagram (BDD)-based framework.
They require to check two tautologies involving functions
defined over the states of the original SG. This heuristic
solution is a tradeoff between computational efficiency and
optimality. Even though the estimation is still not exact (the
exact solution requires the creation of ), it
allows us to discover and possibly use the implementation of
Fig. 8(e).

V. IMPLEMENTATION ISSUES

The method for logic decomposition presented in the previ-
ous section has been implemented in a synthesis tool for speed-
independent circuits. The main purpose of such implementa-
tion was to evaluate the potential improvements that could
be obtained in the synthesis of speed-independent circuits by



CORTADELLA et al.: DECOMPOSITION AND TECHNOLOGY MAPPING OF SPEED-INDEPENDENT CIRCUITS 1231

Fig. 10. Exploration tree for solving BR’s.

using a BR-based decomposition approach. Efficiency of the
current implementation was considered to be a secondary goal
at this stage of the research.

A. Solving Boolean Relations

In the overall approach, it is required to solve BR’s for
each output signal and for each gate and latch used for
decomposition. Furthermore, for each signal and for each gate,
several solutions are desirable in order to increase the chances
to find SIP functions.

Previous approaches to solve BR’s [2], [21] do not satisfy
the needs of our synthesis method, since (1) they minimize
the number of terms of a multiple-output function and (2) they
deliver (without significant modifications to the algorithms and
their implementation) only one solution for each BR. In our
case we need to obtainseveral compatible solutionswith the
primary goal ofminimizing the complexity of each function
individually. Term sharing is not significant because two-
level decomposition of a function is not speed-independent in
general and, hence, each minimized function must be treated
as anatomic object. Sharing can be exploited, on the other
hand, when resynthesizing the circuit after insertion of each
new signal. For this reason we devised a heuristic approach
to solve BR’s. We next briefly sketch and illustrate it with
the example of Fig. 10, that corresponds to the decomposition
shown in Fig. 9.

Given a BR , each function for
is individually minimized by assuming that all other functions

will be defined in such a way that will be
a compatible solution for BR. Formally, for eachwe define

The existential abstraction derives a new relation only for
that ignores the constraints due to other . Next, the
ON-, OFF-, and DC-sets for minimization are obtained as
follows:

In the example of Fig. 9 that corresponds to the BR (3) we
have

that corresponds to the leftmost Karnaugh map of Fig. 10.
A two-level cover for each is obtained individually by

using a standard Boolean minimizer. Let us call the
cover obtained for In general, an incompatible solution
may be generated when combining all covers. In the example,
an individual minimization of and yields the solution

and .
The set of minterms that are incompatible with the BR can

be represented with a characteristic function, by substituting
each by in In the example,

These minterms correspond to the shadowed cells in the
Karnaugh map of Fig. 10.

If no incompatible minterms are generated after minimiza-
tion, the obtained solution is chosen as a valid solution
for the BR. Otherwise, one of the incompatible minterms
is heuristically selected. In our case, we select one of the
minterms with the largest number of incompatible neighbors
(Hamming distance 1). Intuitively and empirically we have
observed that this strategy helps to “legalize” a larger number
of minterms in forthcoming iterations of the solver, since the
compatibility of one minterm often propagates to its neighbors.

Once a minterm has been selected, new BR’s are defined
by redirecting its output to a set of compatible output cubes
that cover the flexibility expressed by the original BR. A new
BR is defined for each such cube. In our example, we select
the minterm and derive two new BR’s by assigning the
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cube and to each one, respectively.
Thus, we obtain the BR’s

Any valid solution for or is also a valid solution
for BR.

This approach generates a tree of BR’s to be solved. This
provides a way of obtaining several compatible solutions for
the same BR. However, the exploration may become prohibi-
tively expensive if the search tree is not pruned. In our imple-
mentation we use a heuristic pruning strategy that at each step
keeps only those nodes that have the most promising chances
of generating a valid solution. In the current implementation,
the cost of each node is evaluated as a weighted sum of the
number of incompatible minterms and the number of literals
of the (possibly invalid) solution. The solver stops when the
number of generated solutions is considered to be satisfactory.

In the example, several solutions are generated. Among
them, Fig. 10 depicts the part of the exploration tree leading
to two valid solutions

The time required by the BR solver dominates the computa-
tional cost of the overall method in our current implementation.
Ongoing research on solving BR’s for our framework is
being carried out. We believe that the fact that we pursue
to minimize functions individually, i.e., not targeting the term
sharing among different output functions, and that we only
deal with two-output decompositions, may be crucial to derive
algorithms which might be much more efficient than the
existing approaches.

B. Selection of the Best Decomposition

Each generated decomposition for an output signal consists
of a (possibly sequential) output gate with behavior

and a set of decomposed functions . From
the selected decomposition, only one of the functions
will be chosen for its implementation as a new signal.

Thus, once a set of compatible solutions has been generated
for each output signal, the best candidate is selected according
to the following criteria (in priority order).

1) At least one of the decomposed functions must
be speed-independent. This means that at least one new
signal that contributes to decompose an output signal
can be inserted.

2) The acknowledgment of the decomposed functions must
not increase the complexity of the implementation of
other signals (see Section V-C).

3) Solutions in which all decomposed functions are
implementable in the library are preferred.

4) Solutions in which the complexity of the largest non-
implementable function is minimized are pre-
ferred. This criterion helps to balance the complexity of
the decomposed functions and derive balanced tree-like
structures rather than linear ones.8

8Different criteria, of course, may be used when we also consider the delay

5) The estimated savings obtained by sharing a function
for the implementation of several output signals is also
considered as a second order priority criterion.

Among the best candidate solutions for all output signals, the
function with the largest complexity, i.e., the farthest
from implementability, is selected to be implemented as a new
output signal of the SG.

The complexity of a function is calculated as the number
of literals in factored form. In case it is a sequential function
and it matches some of the latches of the gate library, the
implementation cost is directly obtained from the information
provided by the library.

C. Signal Acknowledgment and Insertion

For each function delivered by the BR solver, an efficient
SIP insertion must be found. This reduces to finding a partition

of the SG
such that and (that are restricted to be
SIP-sets, Section II-C) become the positive and negative ER’s
of the new signal . and stand for the
corresponding state sets wherewill be stable and equal to
one and zero, respectively.

In general, each function may have several and
sets acceptable as ER’s. Each one corresponds to a

signal insertion with different acknowledging outputs signals
for its transitions. In our approach, we perform a heuristic
exploration seeking for different and
sets for each function. We finally select one according to the
following criteria.

• Sets that are only acknowledged by the signal that is being
decomposed (i.e., local acknowledgment) are preferred.

• If no set with local acknowledgment is found, the one
with the least acknowledgment cost (i.e., with the least
number of signals delayed by the new inserted signal) is
selected.

The selection of the and sets is done
independently. The cost of acknowledgment is estimated by
considering the influence of the inserted signalon the
implementability of the other signals. The cost can be either
increased or decreased depending on how and

are selected, and is calculated by incrementally
deriving the new SG after signal insertion.

As an example consider the SG of Fig. 5(c) and the in-
sertion of a new signal for the function .
A valid SIP set for would be the set of states

, where the state is the input
border for the inserted function. A valid SIP set for
would be the set of states . With such insertion,

would be acknowledged by the transition and
by However, this insertion is not unique. For

the sake of simplicity, let us assume thatand are also
output signals. Then an insertion with
would also be valid. In that case, transition would be
acknowledged by transitions and .

of the resulting implementation, since then keeping late arriving signals close
to the output is generally useful and can require unbalanced trees.
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TABLE II
EXPERIMENTAL RESULTS

Circuit signals Siegel literals/latches CPU (s) Area non-SI Area SI

I/O [16] old new old/new lib 1 lib 2 best 2 inp map best

chu 133 3/4 yes 12/1 10/2 2/4 224 216 216 216 208 208
chu 150 3/3 no 14/2 10/1 2/18 192 160 160 160 168 208
converta 2/3 no 12/3 8/3 2/14 352 312 312 216 224 216

dff 2/2 yes 12/2 0/2 4/1 144 96 96 88 88 88
drs 2/2 n.a. 0/2 n.a./7 112 112 112 80 80 80

ebergen 2/3 no 20/3 6/2 2/4 184 160 160 160 144 144
hazard 2/2 yes 12/2 0/2 1/1 144 120 104 104 104 104
half 2/2 no 2/2 6/2 1/4 184 184 184 154 154 154

mp-forward-pkt 3/5 yes 14/3 14/2 3/31 232 232 232 256 256 256
mr1 4/7 36/9 28/2 126/456 656 624 624 480 982 480

nak-pa 4/6 no 20/4 18/2 4/441 256 248 248 250 344 250
nowick 3/3 yes 16/1 16/2 3/170 248 248 248 232 256 232

rcv-setup 3/2 yes 10/1 8/1 2/10 120 120 120 136 128 128
sbuf-ram-write 5/7 no 22/6 20/2 23/696 296 296 296 360 338 338

trimos-send 3/6 36/8 14/10 129/2071 576 480 480 786 684 684
vbe5b 3/3 no 10/2 10/2 1/10 208 216 208 202 224 202
vbe5c 3/3 no 4/3 4/3 1/12 160 160 160 178 208 178

Total 252/52 172/36 306/3960 4288 3984 3976 4058 4590 3902

D. Library Mapping

The logic decomposition of the noninput signals is com-
pleted by a technology mapping step aimed at recovering
area and delay based on a technology-dependent library of
gates. These reductions are achieved by collapsing small
fanin gates into complex gates, provided that the gates are
available in the library. The collapsing process is based on the
Boolean matching techniques proposed by Mailhotet al. [11],
adapted to the existence of asynchronous memory elements
and combinational feedback in speed-independent circuits.
The overall technology mapping process has been efficiently
implemented based on the utilization of BDD’s.

VI. EXPERIMENTAL RESULTS

A. Results in Decomposition and Technology Mapping

The method for logic decomposition presented in the pre-
vious sections has been implemented and applied to a set of
benchmarks. The results are shown in Table II.

The column “Siegel” reports the results from [16] on the
decomposability of the benchmarks into two-input gates. The
columns “literals/latches” report the complexity of the circuits
derived after logic decomposition into two-input gates. The
results obtained by the method presented in this paper (“new”)
are significantly better than those obtained by the method
presented in [7] (“old”). Note that the library used for the
“new” experiments was deliberately restricted to D, Sr, and Rs
latches, i.e., without C-elements that are not generally part of
standard cell libraries. This improvement is mainly achieved
because of two reasons.

• The superiority of Boolean methods versus algebraic
methods for logic decomposition.

• The intensive use of different types of latches to imple-
ment sequential functions compared to the C-element-
based implementation in [7].

Comparing with “Siegel,” the new method improves the
results significantly. However, Boolean decomposition does
not make a tangible contribution to the decomposability of
the circuit, since all the reported examples were already
decomposable by using algebraic methods. Thus, we can
conclude that Boolean methods mainly affect the quality of
the circuits, in area and delay, whereas the method for signal
insertion with multiple acknowledgment mainly contributes to
their decomposability.

However, the improved results obtained by using Boolean
methods are paid in terms of a significant increase in CPU time
(about one order of magnitude). This is the reason why some
of the examples presented in [7] have not been decomposed.
We are currently exploring ways to alleviate this problem by
finding new heuristics to solve BR’s efficiently.

B. The Cost of Speed Independence

The second part of Table II is an attempt to evaluate the cost
of preserving speed independence during the decomposition
of an asynchronous circuit. The experiments have been done
as follows. For each benchmark, the following script has been
run in SIS, using the libraryasynch.genlib : astg to f ;
source script.rugged ; map. The resulting netlists
could be considered a lower bound on the area of the cir-
cuit regardless of its hazardous behavior, since the circuit
only implements the correct function for each output signal
without regard to hazards.Script.rugged is the best
known general-purpose optimization script for combinational
logic. The columns labeled “lib 1” and “lib 2” refer to two
different libraries, one biased toward using latches instead of
combinational feedback,9 the other one without any such bias.

9This was chosen due to the common claim that a latch is more “robust,”
e.g., with respect to meta-stability, than an equivalent combinational standard
cell plus an external feedback wire.
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The columns labeledSI report the results obtained by the
method proposed in this paper. Two decomposition strategies
have been experimented before mapping the circuit onto the
library.

• Decompose all gates into two-input gates (2 inp ).
• Decompose only those gates that are not directly map-

pable into gates of the library (map).

In both cases, decomposition and mapping preserve speed
independence, since we do not use gates (such as MUXes) that
may have a hazardous behavior when the select input changes.
There is no clear evidence that performing an aggressive
decomposition into two-input gates is always the best approach
for technology mapping. The insertion of multiple-fanout
signals offers opportunities to share logic in the circuit, but also
precludes the mapper from taking advantage of the flexibility
of mapping tree-like structures. This tradeoff must be better
explored in forthcoming work.

Looking at the best results for non-SI/SI implementations,
we can conclude that preserving speed independence does not
involve a significant overhead. In our experiments we have
shown that the reported area is similar. Some benchmarks were
even more efficiently implemented by using the SI-preserving
decomposition. We believe that these improvements are due to
the efficient mapping of functions into latches by using BR’s.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a new solution to the problem
of multilevel logic synthesis and technology mapping for
asynchronous speed-independent circuits. The method consists
of three major parts. Part 1 uses BR’s to compute a set
of candidates for logic decomposition of the initial complex
gate circuit implementation. Thus each complex gateis
iteratively split into a two-input combinational or sequential
gate available in the library and two gates and that
are simpler than , while preserving the original behavior and
speed-independence of the circuit. The best candidates for
and are selected for the next step, providing the lowest
cost in terms of implementability and new signal insertion
overhead. Part 2 of the method performs the actual insertion of
new signals for and/or into the state graph specification,
and resynthesizes logic from the latter. Thus parts 1 and 2 are
applied to each complex gate that cannot be mapped into the
library. Finally, part 3 does library matching to recover area
and delay. This step can collapse into a larger library gate the
simple two-input combinational gates (denoted above by)
that have been conservatively used in decomposing complex
gates. No violations of speed-independence can arise if the
matched gates are atomic.

This method improves significantly over previously known
techniques [1], [8], [9]. This is due to the significantly larger
optimization space exploited by using 1) BR’s for decom-
position and 2) a broader class of latches.10 Furthermore,
the ability to implement sequential functions with SR and D
latches significantly improves the practicality of the method.

10In fact, any sequential gate could be used, including, e.g., asymmetric C
elements, the only limit being the size of the space to be explored.

TABLE III
SUBSTITUTION OF INPUT SIGNAL IN BINATE FUNCTION

RFGy H(X; y)
Value of z
in SG A’

H’(X,z)

0––– 1 1 or 0* 1
000– 0 0 or 1 0
0010 1 1 or 0* 1
0011 0 0 or 1 0
0100 0 0 or 1 0
0101 1 1 or 0* 1
0110 1 1 or 0* 1

0111 1 1 or 0* 1

Indeed one should not completely rely, as earlier methods did,
on the availability of C-elements in a conventional library.

In the future we are planning to improve the BR solution al-
gorithm, aimed at finding a set of optimal functions compatible
with a BR. This is essential in order to improve the CPU times
and synthesize successfully more complex specifications.

Additionally, the methods proposed in this paper and [8]
have both been aimed at area minimization. The fact that both
methods generate several candidates for the decomposition
of each output signal suggests the possibility of defining a
tunable cost function, trading-off area and delay, that could
improve the quality of the circuit according to the designer’s
preferences.

APPENDIX

Proof: (Lemma 2)
In order to prove that SG’s

and are isomorphic under
Conditions 1) and 2), we will show that starting from the
same initial state all the corresponding states ofand
have the same set of enabled signals. As the construction of
SG proceeds by switching enabled signals, the latter clearly
means that and have the same sets of states and arcs,
i.e., are isomorphic in the graph sense.

The only signal function that is different in and is the
function for signal . Therefore, to prove the isomorphism it
is sufficient to show that enablings of signalin all reachable
states of and are the same.

Let us consider all possible combinations of values for, ,
, and and the implied values for , and

in SG . They are presented in Table III. Resume by cases.

1) , (State , where
stands for any value. Clearly, functions and

will exhibit the same behavior in these states
of SG .

2) Then both and will have
value zero independent of.

3) . The implied value for is one due to
the part. The implied value for in SG is either
1 or . Let us consider the state adjacent
to by signal . In and, therefore,

in both and Then according
to Condition 1 must be stable in . If then

.
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4) In this state is stable (see the consideration
above) and therefore .

5) For states 0100 and 0101 we can apply considerations
similar to 3) and 4).

6) . The implied value for is 1. The
implied value for in SG is either 1 or .

then according to Condition 2 must be at
stable 1. In such case

7) Similar to 6).

Hence, by exhaustive consideration of all possible cases we
can conclude that when Conditions (1) and (2) are satisfied
the values of and coincide. This ensures
the same enablings of signal in the states of and .
Therefore and are isomorphic.

Let us consider the consequences of violations of
Condition 1) or 2).

1) Assume that Condition 1) is violated. Then in the original
SG there exist two states and that are different
only in the value of signal and at least for one of them

. I.e., for e.g., and
(the case is similar). From

it follows that in the value of function
should be 0, while one of the

functions or is at 1.
From it follows that in SG

there exist two states and
which correspond to and such that . In both these
states the value of functions, , and is the same because

is the only signal which is changed and, , and does
not depend on . This means that also has the same
value in both states and .

Let us consider states and in SG
. From it follows that
has different values in and because of the

change of signal . Hence, in the corresponding states of
and the functions and have different
values that lead to different enablings of signalin them. We
can conclude that and are not isomorphic.

2) Assume that Condition 2) is violated. Then in the
original SG there exists state and

in . corresponds to states and in SG
where . In both these states

has the same value, while has different
values. Arguments similar to those used in the previous case
prove that and are not isomorphic.
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