
1708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

Area-Optimal Transistor Folding for
1-D Gridded Cell Design

Jordi Cortadella, Member, IEEE

Abstract—The 1-D design style with gridded design rules is
gaining ground for addressing the printability issues in sub-
wavelength photolithography. One of the synthesis problems in
cell generation is transistor folding, which consists of breaking
large transistors into smaller ones (legs) that can be placed in
the active area of the cell. In the 1-D style, diffusion sharing
between differently sized transistors is not allowed, thus implying
a significant area overhead when active areas with different sizes
are required. This paper presents a new formulation of the
transistor folding problem in the context of 1-D design style and
a mathematical model that delivers area-optimal solutions. The
mathematical model can be customized for different variants of
the problem, considering flexible transistor sizes and multiple-
height cells. An innovative feature of the method is that area
optimality can be guaranteed without calculating the actual
location of the transistors. The model can also be enhanced to
deliver solutions with good routability properties.

Index Terms—Cell generation, design for manufacturability,
linear programming, transistor folding, transistor sizing.

I. Introduction

THE SCALING of transistor dimensions and the manufac-
turing challenges involved in the subwavelength optical

lithography impose severe constraints on the layout patterns
that can be reliably printed on the wafers.

According to several authors, the 1-D design style with
gridded design rules (GDRs) is one of the principal trends
toward addressing the manufacturing issues in future process
technologies [8], [12], [18], [22], [23]. In 1-D GDRs, layout is
composed of grating patterns with rectangular shapes located
on a grid with fixed pitch.

An interesting study on different layout styles is presented
in [6], where the impact on area, yield, and variability is stud-
ied. The 1-D style offers better yield and smaller variability
than the 2-D style with nonrectangular shapes. The best style
to minimize standard cell area seems to be the 1-D, although
this requires a larger utilization of the M2 layer.

For standard cell design, 1-D style implies an underlying
active area with equally spaced transistors and unidirectional

Manuscript received November 19, 2012; revised April 13, 2013; accepted
June 9, 2013. Date of current version October 16, 2013. This work was
supported by a gift from the Intel Corporation, the project FORMALISM
(CICYT TIN2007-66523), and the Generalitat de Catalunya (ALBCOM-SGR
2009-2013). This paper was recommended by Associate Editor G.-J. Nam.

The author is with the Department of Software, Universitat Politècnica de
Catalunya, Barcelona 08034, Spain (e-mail: jordi.cortadella@upc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2269680

metal layers routed on gridded layouts [17]. In this context,
cell design is a problem that is moved from the continuous
domain (any type of shape, any location) to the discrete
domain (only rectangular shapes on a coarse grid with fixed
pitch). Thus, cell synthesis becomes a combinatorial problem
in which EDA algorithms can do a much better job than
manual design.

Area is a critical resource that still needs to be minimized for
cost-efficient manufacturability. The height of a cell depends
on the number of tracks used for the active area, whereas the
width is determined by the number of devices and the diffusion
breaks inserted to isolate transistor chains.

Minimum-area cells are synthesized by finding good tran-
sistor orderings that allow to maximize diffusion sharing. The
algorithms proposed to find these orderings are tightly related
to the theory of finding Eulerian paths in undirected graphs.
Several theoretical results and algorithms have been proposed
to find optimal transistor orderings, either considering fixed
transistor netlists [16], [20] or allowing transistor reordering
of series–parallel graphs while preserving the functionality of
the cells [13], [14]. Large transistors may exceed the maximum
allowable size in a standard cell. This problem is solved
by breaking large transistors into smaller ones (legs). For
example, a transistor that needs seven tracks of active area
may be implemented with three legs of 3+2+2 or 3+3+1 tracks.
The strategy of creating multiple legs of the same transistor
is called transistor folding.

A. Simple Example

Fig. 1 depicts the FEOL layers of three different imple-
mentations of an AND2 gate using multiple legs to implement
large devices. Table I reports the characteristics of the devices.
The second column specifies an interval of sizes (tracks)
allowed for each device. For example, device p1 can have
a size between eight and 10 tracks.

In the example, the maximum size for p and n devices is
four and three tracks, respectively. Double-height cells can also
be designed as shown in Fig. 1(b). The two p strips can poten-
tially be merged to extend the maximum size of the p devices,
as shown in Fig. 1(c). Hybrid approaches having segments
with two p strips and segments with one merged strip are also
possible in double-height cells. The three layouts shown in
Fig. 1 are area-optimal in each category (single height, double
height, and double height with p-diffusion merging).

Diffusion strips may be interrupted for different reasons (see
Fig. 2). When no Eulerian paths are found, diffusion breaks

0278-0070 c© 2013 IEEE

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1709

Fig. 1. Several symbolic layouts of the FEOL layers for an AND2 gate:
(a) single height, (b) double height, (c) double height with merged p strips.

TABLE I

Devices (Legs × Size) for the Layouts in Fig. 1

must be introduced to isolate devices. One strategy is to use
isolation transistors (permanently off) by connecting the gate
to Vdd or Vss, as shown in Fig. 2(a).

A row may also contain blocks of devices with different
size. With 1-D GDRs, no diffusion sharing with differently
sized transistors is allowed, since this would imply nonrect-
angular shapes for the active area, as shown in Fig. 2(b).
Diffusion strips must have equally sized transistors and breaks
must be introduced between devices with different size. The
length of these breaks must be a multiple of the technological
pitch, as shown in Fig. 2(c). Depending on the technological
pitch, breaks between differently sized transistors may occupy
one or two polysilicon slots.

Transistor folding is a combinatorial problem that cannot
be simply reduced to minimizing the total number of devices
of the cell. The existence of Eulerian paths in the transistor
strips and the diffusion breaks required to isolate blocks with
different size are crucial in defining the transistor folding
strategy for each cell.

B. Previous Work and Contributions of This Paper

The transistor folding problem has been addressed by dif-
ferent authors in the past, either for single-height cells or
multiple-height cells.1

In [11], an efficient algorithm for folding in single-height
cells was proposed. A faster algorithm was later proposed
in [4]. In both cases, the algorithms aim at minimizing the
product height × width of the cell, and diffusion sharing is not
taken into account. This approach is not realistic for standard
cell design, since the height of the cell is defined a priori

1The terms 1-D and 2-D are traditionally used to refer to the synthesis of
single- and multiple-height cells, respectively. In this paper, we change the
nomenclature to avoid any confusion with 1-D and 2-D design rules.

Fig. 2. Legal and illegal diffusion breaks for 1-D GDRs.

Fig. 3. Impact of adjacent legs in cell area.

for the complete library. Furthermore, diffusion sharing has a
significant impact in area, as will be shown in this paper.

Gupta and Hayes [9] identify the interdependence between
transistor folding and diffusion sharing. They propose an
integer linear programming model for multiple-height cells.
However, folding and transistor placement are solved inde-
pendently, assuming that each transistor is folded with the
minimum number of legs allowed by the cell height. This
approach also assumes that the legs of each transistor are
placed contiguously in the layout. For these reasons, this
strategy does not guarantee a minimum-area layout.

An example is shown in Fig. 3, where the pull-down netlist
of a NAND3 gate is depicted and each transistor has two legs.
By enforcing the legs of the same transistor to be contiguous,
a chain such as the one shown in the top can be obtained.
This chain has a diffusion break since no Eulerian path can
be found.2 However, no diffusion break is necessary if some
of the transistors are allowed to have separated legs, as shown
in the chain at the bottom.

Berezowski [2] proposes the first approach in which folding
and diffusion sharing are integrated for single-height cells. The
approach is based on an extension of the dynamic program-
ming algorithm presented in [1].

All the previous approaches work with the assumption that
differently sized transistors can share diffusions, i.e., a 2-D
design style. Additionally, the methods are restricted to the
placement of pairs of p and n transistors that must be aligned
vertically to share the same polysilicon stick. The placement
of transistor pairs also involves some area overhead (see, e.g.,
[6, Sec. II.B]).

This paper presents an exact algorithm that guarantees
an area-minimal layout for the transistor folding problem
considering different layout parameters: single- and multiple-
height cells, parametrized diffusion breaks, flexible transistor
sizes, and adaptable diffusion tracks.

2By simple enumeration, the reader can easily realize that no Eulerian path
exists with the two b gates being adjacent.

1710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

An important feature of the approach is that the algorithm
does not even deliver any specific transistor ordering. Instead,
it generates a netlist for which an area-optimal transistor
ordering is guaranteed to exist. In general, different solutions
with the same area may exist, thus giving the opportunity for
transistor placement tools to explore the best one in terms of
routability.

Finally, the algorithm can also incorporate terms in the cost
function that, still guaranteeing area optimality, can deliver
solutions that have better routability properties.

This paper is organized as follows. Section II presents a
graph model for the problem and reviews the relevant Euler’s
graph theory. Section III proposes the mixed-integer linear
programming (MILP) formulation of the problem. A strategy
to generate multiple solutions is discussed in Section IV.
Several extensions of the model are presented in Section V.
A strategy to deliver routability-aware solutions is proposed
in Section VI. Section VII describes two heuristics that are
compared with the MILP model. Finally, the impact of the
proposed methods on area and routability is evaluated in
Section VIII. Section IX concludes this paper.

II. Graph Model for the Transistor

Folding Problem

A transistor netlist is represented by an undirected graph
G(N, T) where N is the set of nodes, representing source/drain
terminals of the transistors, and T is the set of transistors.3 The
gates of the transistors are irrelevant for the folding problem
and are not represented in the model. Every transistor t ∈ T

has a target size, denoted by Size(t). In general, the target
size may be defined by an interval [Sizemin(t), Sizemax(t)] of
discrete values that represent the acceptable flexibility interval
for the number of tracks of t.

We will consider the folding problem for arbitrary transistor
netlists (not necessarily static CMOS) in which the rows for
p and n devices can be optimized independently.

The folding problem consists of finding an equivalent im-
plementation of the netlist with multiple transistor legs that
cannot exceed a maximum size S and can be implemented
with minimum area using an optimal transistor chaining.

The output of the folding algorithm is another netlist for
which at least one area-minimal transistor chaining exists.
Finding the transistor arrangement with the best routability
characteristics is the goal of algorithms for transistor place-
ment (see [1] and [16]) and is out of the scope of this paper.

The model assumes that transistors with different sizes
cannot be chained,4 as it was shown in Fig. 2. Diffusion breaks
are required to separate transistors with different sizes and the
separation gap is denoted by the constant DiffSizeGap. Sets
of transistors with the same size cannot always be chained due
to the nonexistence of Eulerian paths. In this case, the diffusion
breaks may have a different gap, denoted by the constant

3To be more precise, G is a multigraph since there can be multiple transistors
(edges) between the same pair of nodes.

4The reader can easily realize that allowing chaining with different diffusion
sizes can be supported with a simplification of the model.

Fig. 4. Transistor netlist (pull-down), graph representation, and three differ-
ent folding solutions with their associated transistor chains.

SameSizeGap. When using isolation gates, as in Fig. 2(a),
SameSizeGap will be 1.

The folding problem can be reduced to the generation
of a set of graphs {Gs}, where s ∈ {1, . . . , S}. Each graph
Gs(N, Ts) contains the legs with size s.

A. Example

Fig. 4 shows an example of transistor folding. The graph at
the left represents a netlist of transistors with the same polarity
in which each edge is a transistor that connects two nodes:
source and drain. The gates of the transistors are omitted. This
netlist could represent the pull-down network of an AOI33
gate. Each edge has a label that represents the size of the
transistor. In some cases, the label represents an interval of
discrete sizes.

The graphs at the right represent three different solutions of
the folding problem under the assumption that every device
can have four tracks at most (S = 4). Each solution depicts
the edges in the graphs G1, . . . , G4. Apparently, all solutions
have the same cost with 11 devices each one. However, the
area cost is different when considering the optimal transistor
chaining.

At the bottom of Fig. 4, optimal transistor arrangements
for each one of the solutions are shown. Each edge n

s
n′

represents a transistor connecting n and n′ with size s. The
symbol ∼ represents a diffusion break. In this case, it has
been assumed that DiffSizeGap = SameSizeGap = 1.

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1711

Although solution (c) is the one that uses the largest
transistor sizes for arcs c-d and e-f, it turns out to be the
most area efficient. This example clearly illustrates the impact
of a good folding strategy in the cell area. This example also
illustrates how different legs of the same transistor can be
placed separately in the layout.

B. Basic Graph Theory on Eulerian Paths

This section reviews some fundamental concepts of graph
theory and Eulerian paths [5] that will be used in the folding
model.

Theorem 1 (Existence of Eulerian path): An undirected
graph has an Eulerian path if and only if at most two nodes
have odd degree, and if all of its nodes with nonzero degree
belong to a single connected component. If there are two
nodes with odd degree, these nodes must be the endpoints of
any Eulerian path.

Henceforth, we will call odd nodes and even nodes those
nodes with odd and even degree, respectively.

A non-Eulerian graph can become Eulerian by adding
extra edges. This process is called Eulerization. Eulerizing a
connected graph with a minimum number of edges is simple:
it is sufficient to add edges between pairs of odd nodes
until all nodes become even. In case of semi-Eulerization,
one less edge is to be added so that two odd nodes may
still remain. For graphs describing transistor netlists, semi-
Eulerization represents the process of adding diffusion breaks
in the transistor chains.

Definition 1 (Eulerization cost): The (semi-)Eulerization
cost of a graph is the minimum number of edges that must
be added to the graph to become (semi-)Eulerian.

Theorem 2: Let G be a connected graph and Vo(G) the
subset of odd nodes. The Eulerization cost of G is

EulerCost(G) =
|Vo(G)|

2
.

The semi-Eulerization cost of G is5

SemiEulerCost(G) = max(0,
|Vo(G)|

2
− 1).

Graphs with multiple connected components are not Eu-
lerian. In general, each graph can have Eulerian connected
components (ECCs) and non-Eulerian connected components
(NCCs) depending on the property of individually being
Eulerian. The Eulerization cost of a graph with multiple
components must also account for the cost of connecting the
graph.

The next theorem is essential to guarantee the optimality of
the approach presented in this paper.

Theorem 3 (Eulerization cost [3]): Let G be a non-
Eulerian graph and Vo(G) the subset of odd nodes. The
Eulerization cost of G is

EulerCost(G) =
|Vo(G)|

2
+ Ecc(G)

where Ecc(G) is the number of ECCs of G.

5The max operator is required to prevent a negative cost in case the graph
is Eulerian.

Fig. 5. Examples of semi-Eulerization cost for disconnected graphs.

Fig. 6. Layout for min-area transistor chaining.

Corollary 1: Let G be a non-Eulerian graph. The semi-
Eulerization cost of G is

SemiEulerCost(G) =
|Vo(G)|

2
+ Ecc(G) − 1.

Fig. 5 depicts two examples of disconnected graphs and
their semi-Eulerian cost. The dotted edges represent extra
edges for the graph to become semi-Eulerian. The graph
in Fig. 5(a), ignoring the dotted edges, has three connected
components and eight odd nodes. None of the connected
components is Eulerian. For this reason, two Eulerization
edges can be reused as bridges to connect the components.

The graph in Fig. 5(b) has four connected components and
six odd nodes. However, two of the connected components are
Eulerian (second and fourth from the left). In this case, extra
edges must be used as bridges to connect these components.

III. MILP Model

An MILP formulation of the transistor folding problem is
presented in this section. The formulation is based on the
model illustrated in Fig. 4, where the graph G is decomposed
into a set of graphs {Gs}, with s ∈ {1, . . . , S}.

Fig. 6 depicts a layout architecture for transistor netlists
that guarantees minimal area. Since transistors with different
sizes cannot be chained, groups of equally sized transistors are
created. Each group corresponds to one of the Gi graphs for
folding. This scheme minimizes the diffusion breaks between
different sizes that have a cost of DiffSizeGap slots.

Within each group, the number of allocated slots is equal
to the number of transistors plus the semi-Eulerization cost
(Corollary 1). The diffusion breaks for equally sized transistors
have a cost of SameSizeGap slots (typically one slot when
using isolation gates).

We first explain the model for one row of transistors. In
Section V, the model will be extended to support multiple
rows and multiple-height cells.

1712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

TABLE II

Variables of the MILP Model

TABLE III

Summary of Constraints of the MILP Model

A. Variables and Constraints of the MILP Model

A summary of the variables and constraints is reported in
Tables II and III.

1) Size Constraints: The main variables of the MILP
model are λ(t, s). They are integer variables representing the
number of legs of size s to implement transistor t. The size
constraint (two inequalities) is defined for each transistor and
guarantees the sum of sizes of all legs to be in the interval
[Sizemin(t), Sizemax(t)], i.e.

∀t ∈ T : Sizemin(t) ≤
S∑

s=1

s · λ(t, s) ≤ Sizemax(t). (1)

The following constraints are defined to calculate the length
of the transistor chains after folding based on the existence of
Eulerian paths and the Eulerization cost.

2) Eulerian Paths: The degree of every node n ∈ N at
every graph Gs is the total number of legs with size s that are
incident to n. We denote by δ(n, s) the degree of each node n

in the graph Gs that can be expressed as follows:

δ(n, s) =
∑

t=(n,n′)

λ(t, s)

where t = (n, n′) represents an edge incident to n.
For every size s, the existence of an Eulerian path in Gs

and the cost of Eulerizing Gs can be calculated by knowing
the number of odd nodes. For this, we introduce two sets of
variables, i(n, s) (integer) and o(n, s) (binary), to calculate the
parity of the degree of each node. Thus

∀n ∈ N, ∀s ∈ {1, . . . , S} : δ(n, s) = 2 · i(n, s) + o(n, s). (2)

Given that i(n, s) is integer and o(n, s) is binary, the value
of these two variables is unique for every value of δ(n, s).
Therefore, o(n, s) = 1 indicates that the degree is odd. The
total number of odd nodes in Gs can be calculated as follows:

Odd(s) =
∑
n∈N

o(n, s). (3)

Assuming that every graph Gs is connected,6 Euler’s theory
provides the number of edges (semi-Eulerization cost) that
need to be added to create an Eulerian path (see Theorem 2)

∀s ∈ {1, . . . , S} : Breaks(s) = max(0,
Odd(s)

2
− 1).

Given that Breaks(s) will be a variable minimized by the
cost function, the previous constraint can be substituted by

∀s ∈ {1, . . . , S} : Breaks(s) ≥ Odd(s)

2
− 1. (4)

3) Diffusion Breaks Between Differently Sized Transistors:
In order to calculate the number of diffusion breaks between
differently sized transistors (see Fig. 6), we need to know how
many different sizes are used. A set of new binary variables,
UseSize(s), are defined to account for the usage of each size s

∀s ∈ {1, . . . , S} : UseSize(s) ≥ 1

�s

∑
t∈T

λ(t, s) (5)

where �s is a sufficiently large constant to guarantee that the
right-hand side of the inequality is a value in the interval [0, 1].
A valid value for �s could be calculated by assuming that all
legs of all transistors would have size s, that is

�s =
1

s
·
∑
t∈T

Sizemax(t).

If any transistor would have a leg of size s, then UseSize(s)
would be forced to take the value 1. Since UseSize(s) will be
a variable minimized by the cost function, its value will be 0
when no transistor uses any leg of size s.

4) Cost Function: The cost function aims at minimizing
the area of the cell that includes the legs and diffusion breaks.
The total number of legs is

Nlegs =
∑
t∈T

s∈{1,... ,S}

λ(t, s).

The total number of diffusion breaks inside the blocks of
equally sized transistors is

Nbreaks =
∑

s∈{1,... ,S}
Breaks(s).

Finally, extra edges must be added to bridge blocks of tran-
sistors with different sizes. The number of required bridges is
equal to the number of different sizes minus one (see Fig. 6)

Nbridges = −1 +
∑

s∈{1,... ,S}
UseSize(s).

To obtain a min-area cell, we need to minimize the total
number of slots in the row

min : Area = Nlegs +
SameSizeGap · Nbreaks +
DiffSizeGap · Nbridges.

(6)

6This assumption is an imperfection of the MILP model, since the graphs
Gs may not be necessarily connected. A strategy to treat this imperfection
will be discussed in Section IV.

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1713

The MILP model with the constraints (1)–(5) and the cost
function (6) delivers an area-optimal folding solution under
the assumption that the value of Breaks(s) from constraint (4)
corresponds to the semi-Eulerization cost of the resulting
graph (see Theorem 3).

The next section proposes an algorithmic approach to guar-
antee optimality even in the case that there is a discrepancy
between Breaks(s) and the semi-Eulerization cost.

IV. Generation of Folding Solutions

The MILP model generates a set of graphs {Gs}, each
one containing the edges of each size s. The area cost of
implementing a transistor chain must be calculated by adding
the semi-Eulerization cost (diffusion breaks).

As it was mentioned in the previous section, the MILP
model may deliver a solution in which the area cost given
by (6) does not coincide with the real cost of the solution
when considering all diffusion breaks.

The discrepancy is originated by the difference of the
semi-Eulerization cost for connected and disconnected graphs,
formally modeled by the difference between Theorem 2 and
Corollary 1. More precisely, the MILP model does not take
into account the number of ECCs of each graph Gs.

Given a solution S of the MILP model, we will denote
by Milp Area(S) the area estimated by the model and
Graph Area(S) the exact area calculated from the graph
associated to the solution. It holds that

Milp Area(S) ≤ Graph Area(S)

and the difference arises when there is some Gs that is
disconnected and Ecc(Gs) �= 0 (see Corollary 1).

We propose to solve this imperfection algorithmically by
generating different solutions until we found one in which
Milp Area(S) = Graph Area(S). Although the strategy
may theoretically require a large number of iterations, the
experiments show that most of the initial solutions are already
optimal and only few extra iterations are required for a small
set of cells.

Algorithm IV generates a solution for transistor folding by
iteratively solving different MILP models. When a solution is
found in which the estimated cost and the real cost coincide
(line 8), the solution is guaranteed to be optimal.

In case the estimated area and the real area do not coincide,
the cause of the discrepancy is investigated. This is always
produced by a set disconnected Gs’s with Ecc(Gs) �= 0
(line 11). The MILP model is modified by introducing cuts
that prevent the same solution to be generated by the Gs’s
causing the area underestimation (line 12). The technique to
introduce these cuts will be discussed in Section IV-A.

Finally, a new constraint is added to cut all solutions that
have an estimated area greater than or equal to the real area
of the last solution (line 13).

To avoid an excessive computational cost, a maximum
number of iterations is allowed (line 10). If this number is
exceeded, the returned solution cannot be guaranteed to be
optimal.

It may occur that the progressive introduction of cuts makes
the MILP model unsatisfiable (line 7). In this case, the optimal
solution contains some disconnected Gs with Ecc(Gs) > 0
and is one of the generated in previous iterations (Best S).

A. Generation of Cuts to Exclude Suboptimal Solution

The introduction of cuts to exclude a particular solution is
based on the technique proposed in [19]. The technique can be
slightly simplified for the folding problem by observing that
the solution is only characterized by the variables λ(t, s) and
that a new solution with optimal cost will always imply that
one of the nonzero λ(t, s) variables of disconnected Gs’s with
Ecc(Gs) �= 0 will be modified.

Let us assume that X = {x1, . . . , xk} is the set of integer
variables with nonzero value for which a new solution must
be generated. Let x0

i be the value of xi in the current solution.
Then, a new set of constraints is added to the MILP model to
enforce that at least one of the variables will change its value,
that is

k∑
i=1

|xi − x0
i | ≥ 1.

To linearize the previous expression, new variables αi ∈ {0, 1}
and Wi ≥ 0 are defined for each xi ∈ X, with the following
constraints:

0 ≤ Wi − xi + x0
i ≤ M(1 − αi)

0 ≤ Wi − x0
i + xi ≤ Mαi

where M is a large constant. Finally, a new constraint is added
to enforce some variable to change its value

k∑
i=1

Wi ≥ 1.

B. Alternative Method to Generate Cuts

The method proposed in [19] requires the addition of |X|
binary variables (αi), |X| real variables (Wi), and 2|X| + 1
constraints.

We propose a new method to eliminate a solution that only
requires one new binary variable and two constraints. How-
ever, the method may also eliminate other optimal solutions,
but hopefully with very low probability.

The method consists in calculating a hash value of the
solution and eliminating all solutions that have the same hash
value. The hash function is calculated as a linear combina-
tion of the nonzero variables of the solution using a set of
coefficients, that is

Hash(X) =
k∑

i=1

cixi.

In our case, we selected small prime numbers for the coef-
ficients ci. Let � be a constant that is the hash value of the
solution provided by the MILP model. Let α be a new binary
variable and M a large constant. The next constraint enforces
Hash(X) �= �

(� + 1)(1 − α) ≤ Hash(X) ≤ (� − 1)α + M(1 − α).

1714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

Algorithm 1 Transistor folding

1: M = MILP model for transistor folding;
2: Best S = ∅; � No initial solution
3: n iter = 0; � Iteration counter
4: loop
5: n iter = n iter + 1;
6: S = ILP Solver(M); � S is the solution delivered by the MILP solver
7: if M is unsatisfiable then return Best S; � Can never occur on the first iteration. The returned solution is optimal
8: if Milp Area(S) = Graph Area(S) then return S; � Optimal solution: the area estimated by the model is correct
9: if Graph Area(S) < Graph Area(Best S) then Best S = S; � A better solution has been found (may not be optimal yet)

10: if n iter ≥ MaxIterations then return Best S; � Too many iterations: return the best one found so far (may not be optimal)
11: {GEcc} = Set of disconnected Gs with Ecc(Gs) �= 0; � Set of graphs that generate area underestimation
12: M = M ∪ {constraints to exclude {GEcc}}; � Add constraints to avoid the generation of the same solution for {GEcc}
13: M = M ∪ {Area ≤ Graph Area(S) − 1}; � Add constraint to improve the previous cost
14: end loop

The generation of cuts not only contributes to eliminate
suboptimal solutions, but can also be used to generate multiple
solutions with the same or similar cost.

The generation of a cell layout also depends on the sub-
sequent steps in the synthesis flow: transistor placement and
routing. Some cells may require a highly congested layout
(e.g., flip-flops, full adders, or simple cells with multiple
inputs) and the routability of the cell may depend on subtle
variations of the folding and placement solutions. The avail-
ability of different solutions may contribute to increase the
probability of finding routable solutions with optimum area.

To avoid the unlikely situation in which a cut also eliminates
some optimal solution, a hybrid approach can be used com-
bining the cuts presented in Section IV-A (to find an optimal
solution) with the cuts presented in this section (to generate a
diversity of similar solutions).

V. Extensions of the Model

The MILP proposed in Section III can solve the folding
problem for single-height cells. The model can be solved
independently for the p and n devices and the width of the cell
will be determined by the maximum width of the two rows.
It is also easy to formulate an integrated model to solve both
problems simultaneously.

This section presents extensions of the model to support
different variants of the problem.

A. Adaptable Diffusion Tracks

For the synthesis of standard cells, it is often the case that
the total number of tracks for active area is defined a priori,
whereas the height of the n and p strips can be adaptable as
long as the sum of both heights does not exceed the available
tracks for diffusion.

We propose an extension of the model that supports this
flexibility. The extension is proposed for the case of synthesiz-
ing single-height cells. The extension to multiple-height cells
is briefly discussed in Section V-C.

Let us introduce two new variables, Sn and Sp, that represent
the maximum size of n and p transistors, respectively. Since
we have a fixed number of tracks for active area, we add a

constraint on the total number of tracks used by the diffusions,
that is

Sn + Sp ≤ S (7)

where S is a constant that now represents the maximum
number of tracks for diffusions.

We now have to make sure that no transistor exceeds the
maximum allowable size. For that, we can add new constraints
on the variables that represent the usage of each size

∀s ∈ {1, . . . , S} : s ·UseSizen(s) ≤ Sn, s ·UseSizep(s) ≤ Sp.

where UseSizen(s) and UseSizep(s) are the binary variables
that represent the presence of legs of size s in the p and n

rows, respectively.

B. Multiple-Height Cells: Folding and Row Assignment

The previous model can be extended for multiple-height
cells. A common case is the synthesis of double-height cells,
as shown in the example of Fig. 1(b). As for the synthesis of
single-height cells, the problem can be solved independently
for p and n devices.

Let us assume that we can have R different rows of
transistors. The MILP model will now generate R× S graphs.
The edges of graph Gr,s will represent the legs in row r and
size s. Therefore, the model determines the size and the row
of each transistor leg.

The modifications to the basic MILP model are the follow-
ing.

1) All the variables of the model (see Table II) must have
a different instance for each row r: λ(t, r, s), i(n, r, s),
o(n, r, s), Odd(r, s), Breaks(r, s), and UseSize(r, s), where
t represents a transistor, n a node of the netlist, r a row,
and s a size.

2) The size constraint (1) needs to be slightly modified

∀t ∈ T :

Sizemin(t) ≤
∑

r∈{1,... ,R}
s∈{1,... ,S}

s · λ(t, r, s) ≤ Sizemax(t).

3) The rest of constraints (2)–(5) must be instantiated for
each row of the layout.

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1715

4) A new variable (Area) and R constraints must be added
to calculate the maximum area of all rows. For each row
r, the following constraints will be added:

Area ≥ Nlegsr +
SameSizeGap · Nbreaksr +
DiffSizeGap · Nbridgesr.

(8)

5) The cost function must minimize the area of the cell

min : Area.

It is interesting to observe that the support for multiple-
height cells not only calculates the folding for transistors
but also partitions and assigns the legs to the rows of the
layout. Therefore, the model also guarantees the existence of
a partition with the target Area. However, this partition may
not be unique and the subsequent synthesis tools for transistor
chaining may find a different one with the same folding
configuration, but possibly assigning the legs to different rows.

Finally, the reader may realize that the previous model can
be easily generalized to accept rows with a different number
of tracks of active area.

C. Double-Height Diffusions

Multiple-height cells are typically organized by interleaving
n and p rows in such a way that the Vdd and Gnd rails can be
shared internally. For example, a triple-height cell can be laid
out with adjacent n and p rows organized as follows: nppnnp.
Fig. 1(b) and (c) depicts double-height cells with the structure
nppn.

As shown in Fig. 1(c), adjacent rows with the same polarity
can be extended and merged to allocate larger legs. In this
example, the active area for p transistors occupies four tracks.
However, by merging two adjacent p rows, transistors up to
ten tracks can be implemented.

Fig. 7 shows a possible structure for the active area of
standard cells with double-height diffusions. The layout is
organized by putting all double-height blocks of transistors
at the left of the cell and the single-height blocks at the right.
As in the basic layout model, differently sized blocks will be
separated by DiffSizeGap tracks. This structure guarantees
area optimality but does not prevent the placement tools to
find another ordering with better routability.

For simplicity, we will formulate a model for the double-
height p diffusion in a cell organized with rows nppn. The
reader will soon realize that the model can be easily extended
for other templates.

If Sp is the maximum size of a p transistor in a p row, then
the legs occupying both rows can have a size up to 2Sp + χp,
where χp is a constant that represents the extra size available
between the two p rows. In the example of Fig. 1(c), we have
Sp = 4 and χp = 2.

To incorporate the double-height diffusions, the MILP
model must be slightly modified. A similar approach as the
one presented in Section V-B for multiple-height cells must
be used. However, adjacent rows are not totally independent
since they can allocate large transistors.

Fig. 7. Layout organization for double-height diffusions.

In the model, we will assume we have two single-height
rows that we will represent as � (top) and ⊥ (bottom). We
will also use the symbol �⊥ to denote the double-height row
that can be used by merging the top and bottom rows.

For every p transistor t, (8) must be rewritten as follows:

Sizemin(t) ≤
Sp∑
s=1

s · (λ(t, �, s) + λ(t, ⊥, s)) +

2Sp+χp∑
s=Sp+1

s · λ(t, �⊥, s) ≤ Sizemax(t).

The rest of constraints must also be adapted to accommodate
these new variables.

Finally, the cost function must take into account that the area
of the double-height diffusions must be accounted in the two
p rows simultaneously. The following constraints guarantee
that Area takes the maximum area of both rows:

Area ≥ Nlegs(�) + Nlegs(�⊥) +

DiffSizeGap · (Nsizes(�) + Nsizes(�⊥) − 1) +

SameSizeGap · (Nbreaks(�) + Nbreaks(�⊥)).

Area ≥ Nlegs(⊥) + Nlegs(�⊥) +

DiffSizeGap · (Nsizes(⊥) + Nsizes(�⊥) − 1) +

SameSizeGap · (Nbreaks(⊥) + Nbreaks(�⊥)).

We can observe that the �⊥ variables representing the legs
and breaks of the double-height diffusions equally contribute
to the area of the top and bottom rows.

The synthesis of multiple-height cells with double-height
diffusions can be extended to incorporate an adaptable number
of tracks, as was discussed in Section V-A. For example, for
a double-height cell, the constraint (7) could be extended as
follows:

Stop
n + Stop

p + χp + Sbottom
p + Sbottom

n ≤ S

1716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

Fig. 8. Local (dashed lines) and global (solid lines) wires between transistor
groups.

where S is the maximum total height of the cell. Additional
constraints on the UseSize variables should be included in a
similar way, as was discussed in Section V-A. This scheme
can be easily extended for any arbitrary number of rows.

VI. Wire Optimization

The proposed MILP model aims at minimizing the area of
the cell and delivers a solution that guarantees (by Euler’s
theory) the existence of a transistor alignment with the area
calculated by the model. Still, there may be multiple folding
solutions with the same optimal area cost. An interesting
question is: among all the area-optimal solutions, can the
MILP model provide one with good routability properties?
In this section, we propose an optimization criterion that has
a direct impact on wire congestion.

The MILP model generates transistor legs with different
sizes. In the case of multiple-height cells, it also assigns the
legs to one of the rows of the cell. At an abstract level
and using the nomenclature from Section V-B, every solution
assigns legs to the Gr,s graphs of the cell. Every graph Gr,s

represents a group of transistors with the same size.
Given the gaps required to separate transistors with different

sizes, area-optimal layouts have a tendency to group (and
chain) transistors with the same size in the same active area.
Let us call local wires the ones used to connect terminals of the
same signal within the same group of transistors represented
by graph Gr,s.

If a signal belongs to various Gr,s, there will be wires across
different transistors groups. Let us call them global wires.

This is illustrated in Fig. 8, where the shadowed boxes
represent active areas allocating transistors with the same size,
i.e., active area corresponds to a graph Gr,s. In the picture, the p
and n transistors are allocated in the p and n rows, respectively.
The numbers on top of the picture represent transistor sizes
(e.g., number of tracks). The dots represents the terminals of
one signal and the dashed and solid lines represent local and
global wires for that signal.

If a signal is present in k transistor groups, there will be at
least k − 1 global wires across these groups, i.e., the number
of edges of the spanning tree connecting the groups.

We propose to enhance the cost function of the MILP model
with a term that aims at minimizing the local and global wiring
cost in the layout. The experimental results will show that this
minimization has a positive impact on routing the cell.

We define a set of new binary variables, called
InGroup(n, r, s), that denote the presence of a signal n in graph
Gr,s. If we call T (n) the set of transistors connected to node

n (gate, source or drain), the following constraint enforces
InGroup(n, r, s) = 1 when a transistor connected n is present
in Gr,s

K · InGroup(n, r, s) ≥
∑

t∈T (n)

λ(t, r, s)

where K is a big constant. The total cost of global wires across
groups is directly related to the number of groups in which
each signal is present and can be estimated as follows:

CostGlobalWires =
∑
∀n,r,s

InGroup(n, r, s).

The number of local wires is directly related to the number
of transistor pins in the netlist. The exact number of pins
requiring wires in the netlist will finally depend on how
transistors are placed and diffusions are shared. The total cost
of local wires can be estimated by calculating the total number
of transistors in the netlist, that is

CostLocalWires =
∑
∀t,r,s

λ(t, r, s).

Finally, the total cost of wires can be estimated as

CostWires = α · CostLocalWires + β · CostGlobalWires (9)

where α and β are constants that define the relative weight of
each term. Empirically, it has been observed that α = 1.5 and
β = 1 deliver good results.

The minimization of global wires can be incorporated in the
cost function as a new term weighted with a small constant
(γ), that is

min : Area + γ · CostWires.

The experimental results in Section VIII-C will confirm the
positive impact of the wire minimization.

VII. Heuristics for Transistor Folding

This section presents two heuristics for transistor folding as
an alternative to the MILP model. The comparison of the re-
sults delivered by the MILP model and the two heuristics will
contribute to emphasize the importance of a good transistor
folding.

Before folding, each transistor t has an interval of legal
discrete sizes [Sizemin(t), Sizemax(t)]. Each leg can have a
size in {1, . . . , S}. The two proposed heuristics always use
the minimum number of legs for folding transistor t

L =

⌈
Sizemin(t)

S

⌉
. (10)

Both heuristics are myopic, in the sense that the distribution
of legs for each transistor does not depend on the other
transistors in the same netlist. The difference between the
heuristics comes from the way sizes are distributed among
the legs.

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1717

A. Greedy Heuristic

This is a naive heuristic biased toward generating legs with
size S. Every transistor is folded into L legs, with L − 1 legs
of maximum size (S) and one leg with the remaining size (S′)
such that

(L − 1) · S + S′ = Sizemin(t).

B. Balanced Heuristic

This is a Euler-friendly heuristic with two main goals.
1) For large transistors, use only legs with size S whenever

possible. If not possible, use only legs with size S and
S − 1.

2) Whenever possible, use an odd number of legs with size
S.

The first goal reduces the diversity of sizes used for tran-
sistor folding, thus reducing the area penalty associated with
the gaps between differently sized transistors.

The second goal aims at preserving the evenness of the
nodes in the graphs. By folding one transistor into an odd
number of legs with the same size, the evenness of the degree
of the source/drain nodes is not modified. Bearing in mind
that the original transistor netlists have a tendency to have
good Eulerian properties, this approach contributes to maintain
them.

Assuming that L is the minimum number of legs required
to fold the transistor, according to (10), the rules to fold a
transistor t are the following.

1) If Sizemax(t) ≤ S, use only one leg with size Sizemax(t).
2) If Sizemin(t) ≤ S < Sizemax(t), use only one leg with

size S.
3) If L · S ≤ Sizemax(t), use L legs with size Sizemax(t).
4) Otherwise, use L′ legs with size S and L′′ legs with size

S − 1 such that L′ + L′′ = L and

Sizemin(t) ≤ L′ · S + L′′ · (S − 1) ≤ Sizemax(t).

In the latter case, the valid values for L′ are in the range

Sizemin(t) − L · (S − 1) ≤ L′ ≤ Sizemax(t) − L · (S − 1).

To preserve the evenness of the nodes with size S, the
algorithm will select the smallest odd value for L′, unless
Sizemin(t) = Sizemax(t) in which case L′ is uniquely deter-
mined.

The following table shows some examples on how some
transistors would be folded using both heuristics and assuming
S = 4.

[Sizemin(t), Sizemax(t)] Greedy Balanced
[13, 15] 4+4+4+1 4+3+3+3
[14, 17] 4+4+4+2 4+4+4+4
[17, 19] 4+4+4+4+1 4+4+4+3+3
[21, 23] 4+4+4+4+4+1 4+4+4+3+3+3

As an example, the case [17, 19] could have been imple-
mented with three different balanced distributions: 1) 4 + 4 +
3+3+3; 2) 4+4+4+3+3; or 3) 4+4+4+4+3. The distribution
4 + 4 + 4 + 3 + 3 is preferred to preserve the evenness of legs
with maximum size.

VIII. Experimental Results

This section describes various experiments performed to
evaluate the MILP model and heuristics presented in this
paper. The experimental setup is first described and the results
are later reported. Finally, the impact in area, routability, and
computational complexity are discussed.

All the experiments have been performed in a quad-core
CPU runnning at 2.67 GHz and 8 GB of memory. Gurobi [10]
has been used as the MILP solver. Gurobi can efficiently
exploit the architecture of multicore CPUs when solving
complex MILP problems.

A. Experimental Setup

Transistor folding has been applied to the 45-nm Nangate
standard cell library [15], which contains 127 cells. The
original cells already have large transistors that have been
folded to fit in the active area. The procedure applied to obtain
the netlists for transistor folding is as follows.

1) The SPICE netlists have been parsed and functionally
equivalent transistors have been merged (unfolded) into
one larger transistor with a size equivalent to the sum
of sizes of the original transistors.

2) A horizontal pitch P of 130 nm has been defined for
each track of active area. With this pitch, most transistors
in the small cells end up by taking 5 p tracks and 3 n

tracks.7 The minimum and maximum number of tracks
for each transistor has been calculated as follows:

Sizemin(t) =

⌈
Size(t)

P
· (1 − ε)

⌉

Sizemax(t) =

⌊
Size(t)

P
· (1 + ε)

⌋

where ε determines the flexibility in size by defining the
maximum deviation of the size of the folded transistor
with regard to the original size. As an example, for
ε = 0.25, a transistor with width 1260 will be allowed to
take between Sizemin(t) = 8 and Sizemax(t) = 12 tracks.

The experiments have been executed to synthesize standard
cells with a maximum number of five and three tracks for the
p and n transistors, respectively. The gaps for diffusion breaks
have been defined to be 1 and 2 depending on whether the
gaps were located between equally sized or differently sized
transistors, respectively.

In these experiments, flexibility has been defined uniformly,
i.e., the same value of ε is applied to all transistors. In a real
cell design, flexibility can be nonuniform, e.g., giving more
flexibility to internal transistors and less flexibility to those
transistors that need to drive the output capacitive loads.

B. Area Minimization for Single-Height Cells

Table IV reports the total area of the complete library using
the MILP model (optimal) and the two heuristics (greedy and
balanced) presented in Section VII for different degrees of
flexibility (ε). The total area is calculated by adding the area

7As an example, INV X1 has a p and n transistor of 630 and 415 nm,
respectively.

1718 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

TABLE IV

Total Library Area for Different Folding Methods and

Flexibilities (ε) in Transistor Sizes

of one instance of each cell in the library (127 cells). The area
of a cell is calculated as the number of columns (polysilicon
slots) occupied by the cell. No separation columns between
cells are accounted for the area calculation.

Several conclusions can be drawn from the table. The
greedy method delivers highly suboptimal solutions as the
flexibility in transistor sizes increases. The balanced method is
still competitive for small flexibilities and shows a monotonic
behavior, i.e., area is reduced as the flexibility increases.
However, the lack of global optimization produces a growing
deviation from the optimum when the flexibility increases,
especially for ε ≥ 0.25.

Table V reports individual area results for those cells in
which the optimal solution is better than the one provided by
the balanced heuristic.

A transistor placement tool for single-height cells has been
implemented to find an area-optimal layout with minimum
wire length. A dynamic programming algorithm based on the
approach proposed in [1] has been designed and adapted to
the specific aspects of litho-friendly regular fabrics, consid-
ering the constraints about gaps between diffusion breaks.8

The algorithm aims at minimizing the horizontal wire length
required to connect all transistor terminals.

Fig. 9 depicts a symbolic layout produced by the placement
tool from the netlists generated by the balanced and optimal
methods for one of the cells (SDFFR X1). The routing chan-
nel depicted between the active areas represents a symbolic
view of the wiring resources required to connect the pins. The
actual layout after detailed routing would use wires over the
active areas. The picture also shows the difference in diffusion
gaps when bridging active areas between equally sized (one
slot) or differently sized (two slots) transistors.

Both cells have the same number of p and n devices.
However, the heuristic approach does not consider the global
combination of diffusion sizes to reduce the gaps between
diffusion breaks and to create more internal Eulerian paths,
thus resulting in a larger cell.

The first conclusion is that the strategy used for transistor
folding can have a significant impact in area. The balanced and
greedy heuristics are local strategies that lack a global view
of the graph in terms of diffusion chains between different
transistors.

The second conclusion is that the balanced heuristic is
superior to the greedy heuristic. The main reason is because

8The details of the transistor placement tool are out of the scope of this
paper.

TABLE V

Area Results for Nangate Library (ε = 0.25)

Fig. 9. Symbolic layouts for cell SDFFR X1 obtained from the netlists
generated by the balanced (top) and optimal (bottom) methods.

the balanced heuristic tries to minimize the number of different
sizes used for each transistor. This tends to reduce the costly
diffusion gaps between differently sized transistors. Another
reason is that it also tries to generate an odd number of
instances of each transistor, thus preserving the evenness of
the degree of the nodes in the transistor graph.

Experiments for double-height cells led to similar conclu-
sions in terms of area. For this reason, no results are reported.

C. Wire Optimization for Single-Height Cells

The MILP model for transistor folding has been also
executed with the cost function for wire optimization (see
Section VI). The transistor placement tool has been used to
find an area-optimal layout with minimum horizontal wire

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1719

TABLE VI

Wire Optimization for Single-Height Cells (ε = 0.25)

length (HW), measured as the total length of horizontal wires
to connect the transistor pins.

Table VI reports the set of cells in which the MILP
model provides a different solution when wire optimization
is incorporated in the cost function. Column TR reports the
number of transistors in the cell that corresponds to the term
CostLocalWires in (9). Column GW reports the value of
CostGlobalWires in the same equation. Finally, HW reports
the horizontal wire length after placement.

The results show a clear impact of the cost function on the
final wire length. Out of 127 cells, the MILP model delivered
different solutions for 26 cells. In most of them, there was
a clear improvement of HW, which contributes to a better
routability and efficiency of the cell. Interestingly, many of
the optimized cells were sequential. This is understandable
given the fact that wire optimization has more impact on
gates with complex nonseries/parallel structures. Most of the
conventional static CMOS cells with series/parallel structures
(NAND, NOR, AOI, OAI) and with small transistor sizes (X1 or
X2) do not show differences in the final netlists after transistor
folding.

Fig. 10 depicts the two layouts for one of the cells
(CLKGATETST X4) after transistor placement. In this case,
the optimized layout has one less n device and one less global
wire. This contributed to a better reorganization of active areas
to reduce the wiring cost. The figure clearly demonstrates the
reduction in wire length when using the wire optimization term
in the cost function.

Wire optimization has more impact when more flexibility
(ε) is provided, given that the solution space is vaster and
more configurations can be explored.

The transistor placement tool provides a lower bound on the
number of routing resources (horizontal and vertical) required

Fig. 10. Symbolic layouts for cell CLKGATETST X4 after transistor place-
ment without (top) and with (bottom) wire optimization.

to route the nets in the cell. These lower bounds are the ones
that are symbolically depicted in Figs. 9 and 10. With 1-
D GDRs, these resources will correspond to different metal
layers (e.g., M1 and M2). In technologies from 20 nm and
below, new layers of local interconnects are usually provided
for the contacts with poly and active areas [21]. The results
reported in Table VI for HW correspond to the lower bound
on horizontal routing.

D. Wire Optimization for Double-Height Cells

Multiple-height cells are usually laid out to improve the
routability of complex cells. By having a more balanced aspect
ratio, congested channels of signals that go across long cells
are avoided.

As discussed in Section V-B, the MILP model can be
adapted to handle multiple-height cells. In this section, we
estimate the impact of wire optimization in double-height cells.

Table VII reports results on wire optimization for cells
using active areas organized as n-p-p-n strips with a maximum
number of 3-5-5-3 tracks, respectively. The table reports the
number of transistors (TR) and the estimation of global wires
(GW) in the solution delivered by the MILP model with and
without wire optimization.9

The number of cells affected by the optimization is much
larger than for single-height cells.10 (88 out of 127). The
reason is because the amount of solutions with the same area
is larger for double-height cells, since devices are allocated
in a larger set of active areas with different sizes distributed
in the top and bottom rows of the cell. The most relevant
information in the table is that the number of global wires is

9The estimation of horizontal wire length is not provided since the place-
ment tool is not supporting multiple-height cells and no experiments could
be run.

10The table only reports the details for the largest cells, even though the
totals are referred to the 88 cells.

1720 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2013

TABLE VII

Wire Optimization for Double-Height Cells (ε = 0.25)

reduced from 1493 down to 1198 (almost 20%), which may
have a positive impact in the routability of the cell.

E. Computational Complexity

An important aspect to evaluate is the computational com-
plexity of this problem. MILP is NP-hard, but the instances of
the problem evaluated in this paper can be solved in affordable
CPU times.

The last column of Table VII reports the CPU time re-
quired to deliver the optimal solution when including wire
optimization, which is the most complex model instance of the
problem. On average, each instance took about 4 s. However,
the worst case was observed for cell SDFFRS X1 (164.91 s).

An important observation is that Gurobi [10] contains very
sophisticated heuristics to solve MILP efficiently. Similar
experiments were done using Glpk [7] with a CPU time
between one and two orders of magnitude longer.

Another interesting aspect is that MILP solvers usually
offer a timeout option that allows to deliver the best solution
obtained when the timeout expires. With this option, an order
of magnitude can often be reduced while still obtaining a
probably optimal solution.

Finally, it is important to discuss the behavior of
Algorithm IV with regard to the number of iterations
of the main loop. A new iteration is executed when
Milp Area(S) �= Graph Area(S) in line 8 of the algo-
rithm, unless the maximum number of iterations has been
exceeded. In the experiments reported in Table VII, all so-
lutions were guaranteed to be area-optimal. For 119 cells (out
of 127), optimality was achieved with only one iteration. For
the rest of cases, two iterations were required for two cells,
three iterations for four cells, and four iterations for two cells.

TABLE VIII

Library Area for 1-D and 2-D Design Styles

The main reason for obtaining the optimal solution at
the first iteration is that equally sized transistors are usually
grouped in only one connected component (Vdd/Vss are
common nodes of the component). In this way, there is no
error in the Eulerization cost estimated by the MILP model.

F. 1-D Versus 2-D Design Rules

The adoption of the 1-D design style implies a new tradeoff
between area and performance. On one hand, the diversity
of transistor sizes has a negative impact in area due to the
overhead introduced by the diffusion breaks. On the other
hand, the diversity of sizes is convenient to have a larger space
of solutions for gate sizing.

This section analyzes the area cost for the adoption of a
gridded 1-D style with regard to the usage of a gridded 2-D
style. The only difference between both styles is the area cost
of the diffusion breaks between differently sized transistors.

For this purpose, the MILP model has been modified in
such a way that the diversity of transistor sizes is ignored
when calculating the Eulerization cost of each solution. The
details of this modification are not explained, but the reader
can easily devise them by assuming that no breaks are used
for differently sized transistors.

As a byproduct, the modification of the MILP model sub-
sumes previous approaches and provides an optimal solution
for the folding problem in the 2-D design style also.

Table VIII summarizes the results for the area of the
complete library using different degrees of flexibility (ε). For
1-D, two different gaps have been considered for differently
sized diffusions: one and two slots. The following facts can
be observed.

1) The area overhead introduced by 1-D GDRs is 5–10%
(for gap = 1) depending on the flexibility. This overhead
is produced by the diffusion breaks enforced by different
diffusion sizes.

2) As expected, the area overhead approximately doubles
when the cost of the diffusion breaks also doubles (gap
= 2).

3) The overhead is smaller if more flexibility is tolerated
(large value of ε). This is also expected, since the MILP
model uses this flexibility to reduce the diversity of
transistor sizes.

For area minimization, it may be more convenient to de-
crease the diversity of transistor sizes and reduce the number
diffusion gaps. This can be achieved by increasing the flex-
ibility of transistor sizes. However, this will limit the space
of solutions for gate sizing, thus having a negative impact in

CORTADELLA: AREA-OPTIMAL TRANSISTOR FOLDING FOR 1-D GRIDDED CELL DESIGN 1721

performance. On the other hand, by allowing a higher diversity
of transistor sizes, performance can be better adjusted at the
cost of increasing the area produced by the diffusion breaks.

Indeed, any impact in area and/or performance has a corre-
sponding impact in power. The exploration of this tradeoff is
something that should be further investigated in the future.

IX. Conclusion

The 1-D design style is becoming a major trend in current
nanometric technologies and will be unavoidable in the future.
Layouts with regular patterns are becoming a viable alternative
to handcrafted layouts for semicustom design. When severe
manufacturability constraints are imposed, the design of a
standard cell is progressively evolving from an art to a
combinatorial problem. In this context, design automation is
playing a predominant role.

Transistor folding is one of the subproblems in the design
flow of standard cells. 1-D GDRs enforce active areas to be
rectangular, thus reducing the chances to find area-efficient
transistor chains for netlists with multiple transistor sizes. This
constraint originates a new formulation of the folding problem
that can be efficiently solved algorithmically.

The method presented in this paper has an important feature:
it can guarantee area optimality without calculating the exact
location of the devices. With this approach, folding and
placement can be decoupled without sacrificing area, which is
essential to provide automation with affordable computational
cost.

References

[1] R. Bar-Yehuda, J. A. Feldman, R. Y. Pinter, and S. Wimer, “Depth-first-
search and dynamic programming algorithms for efficient CMOS cell
generation,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 8, no. 7, pp. 737–743, Jul. 1989.

[2] K. S. Berezowski, “Transistor chaining with integrated dynamic folding
for 1-D leaf cell synthesis,” in Proc. Euromicro Symp. Dig. Syst. Design,
2001, pp. 422–429.

[3] F. T. Boesch, C. Suffel, and R. Tindell, “The spanning subgraphs of
eulerian graphs,” J. Graph Theory, vol. 1, no. 1, pp. 79–84, 1977.

[4] E. Y. C. Cheng and S. Sahni, “A fast algorithm for transistor folding,”
VLSI Design, vol. 12, no. 1, pp. 53–60, 2001.

[5] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Com-
mentarii Academiae Scientiarum Petropolitanae, vol. 8, pp. 128–140,
1741.

[6] R. S. Ghaida and P. Gupta, “DRE: A framework for early co-evaluation
of design rules, technology choices, and layout methodologies,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 9,
pp. 1379–1392, Sep. 2012.

[7] GNU linear programming kit [Online]. Available:
http://www.gnu.org/software/glpk/glpk.html

[8] R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen,
Z. Rao, and M. C. Smayling, “Interference assisted lithography for
patterning of 1D gridded design,” Proc. SPIE, Alternative Lithographic
Technol., vol. 7271, pp. 72712U-1–72712U-11, Mar. 2009.

[9] A. Gupta and J. P. Hayes, “Optimal 2-D cell layout with integrated tran-
sistor folding,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
Nov. 1998, pp. 128–135.

[10] Gurobi Optimization, Inc. (2012). Gurobi optimizer reference manual
[Online]. Available: http://www.gurobi.com

[11] J. Kim and S. M. Kang, “An efficient transistor folding algorithm for
row-based CMOS layout design,” in Proc. ACM/IEEE Design Autom.
Conf., Jun. 1997, pp. 456–459.

[12] L. Liebmann, L. Pileggi, J. Hibbeler, V. Rovner, T. Jhaveri, and
G. Northrop, “Simplify to survive, prescriptive layouts ensure profitable
scaling to 32 nm and beyond,” Proc. SPIE, Design Manuf. Design-
Process Integr. III, Mar. 2009, pp. 72750A-1–72750A-9.

[13] R. L. Maziasz and J. P. Hayes, Layout Minimization of CMOS Cells.
Norwell, MA, USA: Kluwer, 1992.

[14] C. T. McMullen and R. H. J. M. Otten, “Minimum length linear
transistor arrays in MOS,” in Proc. IEEE Int. Symp. Circuits Syst., Jun.
1988, pp. 1783–1786.

[15] Nangate 45nm open cell library [Online]. Available: http://nangate.com
[16] M. A. Riepe and K. A. Sakallah, “Transistor placement for noncomple-

mentary digital VLSI cell synthesis,” ACM Trans. Des. Autom. Electron.
Syst., vol. 8, no. 1, pp. 81–107, Jan. 2003.

[17] N. Ryzhenko and S. Burns, “Physical synthesis onto a layout fab-
ric with regular diffusion and polysilicon geometries,” in Proc. 48th
ACM/EDAC/IEEE Des. Autom. Conf., Jun. 2011, pp. 83–88.

[18] M. Smayling, “Gridded design rules: 1-D approach enables scaling of
CMOS logic,” Nanochip Technol. J., vol. 6, no. 2, pp. 33–37, 2008.

[19] J.-F. Tsai, M.-H. Lin, and Y.-C. Hu, “Finding multiple solutions to
general integer linear programs,” Eur. J. Oper. Res., vol. 184, no. 2,
pp. 802–809, 2008.

[20] T. Uehara and W. M. Vancleemput, “Optimal layout of CMOS functional
arrays,” IEEE Trans. Comput., vol. C-30, no. 5, pp. 305–312, May 1981.

[21] K. Vaidyanathan, S. H. Ng, D. Morris, N. Lafferty, L. Liebmann, M.
Bender, W. Huang, K. Lai, L. Pileggi, and A. J. Strojwas, “Design and
manufacturability tradeoffs in unidirectional & bidirectional standard
cell layouts in 14 nm node,” Proc. SPIE, vol. 8327, p. 83270K,
Feb. 2012.

[22] P.-H. Wu, M. P. Lin, T.-C. Chen, T.-Y. Ho, Y.-C. Chen, S.-R. Siao,
and S.-H. Lin, “1-D cell generation with printability enhancement,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 32, no. 3,
pp. 419–432, Mar. 2013.

[23] H. Zhang, M. D. F. Wong, and K.-Y. Chao, “On process-aware 1-D
standard cell design,” in Proc. 15th Asia South Pacific Design Autom.
Conf., Jan. 2010, pp. 838–842.

Jordi Cortadella (M’88) received the M.S. and
Ph.D. degrees in computer science from the Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
in 1985 and 1987, respectively.

He is currently a Professor with the Department
of Software, Universitat Politècnica de Catalunya. In
1988, he was a Visiting Scholar at the University of
California, Berkeley. He has coauthored numerous
research papers and has been invited to present
tutorials at various conferences. His current research
interests include formal methods and computer-aided

design of very large scale integration systems with special emphasis on
asynchronous circuits, concurrent systems, and logic synthesis.

Dr. Cortadella has served on the technical committees of several interna-
tional conferences in the field of design automation and concurrent systems.
He received the Best Paper Awards at the International Symposium on
Advanced Research in Asynchronous Circuits and Systems in 2004, the
Design Automation Conference in 2004, and the International Conference on
Application of Concurrency to System Design in 2009. In 2003, he received
a distinction for the promotion of the university research by the Generalitat
de Catalunya.

