
20 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Encoding Large Asynchronous Controllers
With ILP Techniques

Josep Carmona and Jordi Cortadella, Member, IEEE

Abstract—State encoding is one of the most difficult problems
in the synthesis of asynchronous controllers. This paper presents
a method that can solve the problem of large controllers specified
with signal transition graphs. The method is based on the struc-
tural theory of Petri nets and uses integer-linear programming
to insert state signals in locations that guarantee the consistency
and absence of critical races. The structural nature of the pro-
posed method makes it conservative, i.e., a solution cannot be
guaranteed, even if it exists. Nevertheless, the experiments show
that this limitation did not preclude finding a solution for all the
examples presented in this paper. The method can be customized
for area or delay optimization. The experimental results confirm
the quality of the circuits, as compared with state-based methods.
They also show the significant benefits that could be obtained if
logic synthesis would be incorporated in synthesis frameworks
that generate controllers by syntax-directed translation.

Index Terms—Asynchronous circuits, Petri net (PN), state
encoding, structural methods.

I. INTRODUCTION

THE AUTOMATIC synthesis of asynchronous controllers
has often faced a difficult and challenging problem, i.e.,

state encoding. The absence of critical races in the behavior of
clockless circuits with high concurrence is a property that is
not easy to meet. The strategies that have been proposed for
several decades are intrinsically related to the circuit’s mode of
operation.

In the fundamental mode of operation, based on the work
of Huffman [15] and Unger [33], the circuit and the environ-
ment sequentially work. Every burst of events produced by
the environment at the inputs is followed by a burst of events
produced by the circuit at the outputs. However, inputs and
outputs never simultaneously change. These circuits are usually
specified using flow tables, in which the rows represent states,
and the columns represent signals. The encoding problem aims
at producing a flow table, in which the input changes produce
a set of internal transitions that, after visiting unstable states,
always finish in terminal stable states [23], [32].

Manuscript received December 21, 2006; revised May 29, 2007. This work
was supported in part by the Comisión Interministerial de Ciencia y Tecnología
(CICYT) under Contract TIN2004-07925 and in part by the Generalitat de
Catalunya through a Distinction for Research Fund. This paper is an extended
version of [3]. This paper was recommended by Associate Editor S. Nowick.

The authors are with the Department of Software, Universitat Politècnica
de Catalunya, 08034 Barcelona, Spain (e-mail: jcarmona@lsi.upc.edu; jordi.
cortadella@upc.edu).

Digital Object Identifier 10.1109/TCAD.2007.907238

Another mode of operation is the burst mode [27], in which
the environment is allowed to produce different sets of in-
put bursts, with an associated output burst for each one. An
extension has also been proposed to allow some restricted
concurrence between inputs and outputs [38]. In [12], the
problem was solved by adding specific constraints to the input
encoding problem [25]. The additional constraints are the ones
that guarantee the absence of critical races in the encoding.

The state encoding problem becomes even more difficult for
the input/output mode of operation, in which no constraints
on the concurrence between inputs and outputs are imposed.
The signal transition graph (STG) [6], [29] is the most popular
specification formalism for this type of circuits. This is the
formalism used in this paper.

A. State Encoding for STGs

In [36], state encoding was formulated as a set of Boolean
constraints to find a state variable assignment with race-free be-
havior. Solutions could be found by using a satisfiability (SAT)
solver, but only very small specifications could be handled.
In [14], the specification was first decomposed to reduce the
complexity of the SAT problem proposed in [36]. However,
the approach could only find suboptimal solutions for some
subclasses of STGs.

In [19], the problem was solved by constructing a graph of
encoding conflicts and then coloring the graph with binary en-
coded colors. This method was limited to specifications without
choices.

A general method for state encoding was proposed in [7],
which is based on the theory of regions of Petri nets (PNs).
The insertion of new signals was restricted to regions and
intersections of regions, thus guaranteeing a race-free encoding.

In all the previous methods, the set of reachable states must
be generated to solve the encoding problem. Even though
the method proposed in [7] used binary decision diagrams to
symbolically represent sets of states, the applicability was re-
duced to specifications with not more than 20 signals. The state
explosion problem has been the main reason that the previous
methods have not been able to synthesize large controllers.

Recently, an approach for state encoding that combines
partial order techniques with SAT has been presented as an
alternative to state-based methods [17]. The underlying idea for
a consistent signal insertion as the resolution of an SAT problem
inspired the technique presented in this paper. The method in
[17] is exact and requires a larger computational complexity
than the conservative method presented in this paper.

0278-0070/$25.00 © 2008 IEEE

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 21

B. Structural Methods

To overcome state explosion, some approaches have tack-
led the encoding problem without generating the state space.
However, they have always been restricted to certain classes
of PNs.

The simplest subclass is marked graphs that can specify
choice-free behaviors. The approach proposed in [35] for
marked graphs introduced the notion of lock relations to iden-
tify sets of complementary sequences and break them with the
insertion of new signals.

The approach presented in [28] could handle free-choice
PNs, taking advantage of the property that this subclass of spec-
ifications can be decomposed into state machine components.
Similarly, Lin et al. [22] proposed an approach based on the
decomposability of free-choice nets into marked graphs.

C. Contributions

This paper proposes a novel method for solving the state
encoding problem that is not restricted to any subclass of PNs.
It is based on the structural theory of PNs and uses the marking
equation to conservatively characterize the reachability space of
the system. By using integer-linear programming (ILP) models,
it is possible to find insertion points for new state signals that
guarantee the consistency and absence of critical races. Struc-
tural methods for detecting encoding conflicts and synthesizing
speed-independent circuits have been presented in [2]. These
methods transform the problems of detecting encoding conflicts
and calculating support signals for synthesis to the feasibility of
an ILP model. The missing part was a method for encoding the
specifications, which is the contribution presented in this paper,
and therefore, together with previous work on the structural
detection of encoding problems and synthesis [2], a complete
framework for the structural synthesis of asynchronous con-
trollers can now be envisioned.

One of the main interests of the proposed approach is the
capability of handling large STGs that are generated from
hardware description languages (HDLs) such as Tangram [1]
and Balsa [10]. Moreover, the approach presented in this paper
can be combined with recent approaches for decomposition
[30], widening the capabilities of applying logic synthesis in
a complete synthesis flow. In fact, the main advantage of these
HDLs is that they are supported by complete synthesis flows
using the so-called syntax-directed translation (SDT) paradigm.
The state encoding problem is avoided by implicitly overen-
coding the system with a netlist of handshake components
that implement the parse tree of the specification. However,
SDT does not benefit from the power of logic synthesis that
manipulates the Boolean equations of the next-state functions,
thus leading to unoptimized implementations.

In [4], a back end to incorporate logic synthesis into the
Balsa system was presented. The work showed the tangible
improvements that can be obtained by optimizing the netlists
of handshake circuits. However, the underlying formalism for
the synthesis are burst-mode machines, which impose limita-
tions on modeling the inherent concurrence of asynchronous
systems.

Fig. 1. (a) PN. (b) Potential reachability graph. (c) Marking equation.

This paper is organized as follows. Section II reviews the
theory of PNs required for this paper and gives an overview
of the state encoding approach by means of a simple example.
The core of this paper is presented in Sections III and IV, where
the main algorithm for signal insertion is described. Section V
presents experimental results that validate the applicability of
the encoding method.

II. BASIC THEORY AND INTRODUCTORY EXAMPLE

The theory required in this paper is introduced by showing
how the encoding problem of a simple VME bus controller can
be solved.

A. PNs and STGs

A PN [26] is a four-tuple N = 〈P, T,F ,m0〉, where P is
the set of places, T is the set of transitions, F : (P × T) ∪
(T × P) → {0, 1} is the flow relation, and m0 is the initial
marking. A PN is marked by assigning a nonnegative integer
to each place. If k is assigned to place p by marking m, which
is denoted by m(p) = k, we say that p is marked with k tokens.
Given a node x ∈ P ∪ T , its preset and postset are denoted
by •x and x•, respectively. An example of a PN is shown in
Fig. 1(a).

A transition t is enabled in a marking m when all places in
•t are marked. When a transition t is enabled, it can fire by
removing a token from each place in •t and putting a token to
each place in t•. A marking m′ is reachable from m if there
is a sequence of firings t1, t2, . . . , tn that transforms m into
m′, which is denoted by m[t1, t2, . . . , tn〉m′. A sequence of
transitions t1, t2, . . . , tn is feasible if it is firable from m0. The
set of reachable markings from m0 is denoted by [m0〉 and
forms a graph called the reachability graph. A PN is k bounded
if no marking in [m0〉 assigns more than k tokens to any place.
A place p in a PN is implicit if the removal p and its incident
arcs do not affect the behavior of the system.

22 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Fig. 2. (a) VME bus controller. (b) Trace connecting an encoding conflict. (c) Signal insertion.

A PN is reversible if its reachability graph is strongly con-
nected. Systems that are not reversible often have some initial-
ization sequences that lead to a cyclic behavior. For simplicity,
we will assume that our PNs are reversible. The extension of the
methods in this paper to nonreversible nets is straightforward
and will be shortly discussed.

An STG is a triple 〈N,Σ,Λ〉, where N is a PN, Σ is a set
of signals (input, output, and internal), and Λ is the labeling
function Λ: T → Σ × {+,−}. Transitions are interpreted as
signal changes. a+ and a− respectively denote the rising and
falling transitions of a signal a ∈ Σ, whereas a∗ denotes a
generic rising or falling transition.1 An example of STG is
shown in Fig. 2(a). In this STG, three entities (the bus, the de-
vice, and the controller) interact through a bidirectional buffer
according to a given protocol. For simplicity, those places that
only have one predecessor transition and one successor transi-
tion are not depicted. In that case, the tokens are held on the
corresponding arcs.

B. State Encoding

Each marking of an STG is encoded with a binary vector of
signal values through a labeling function λ : [m0〉 → {0, 1}|Σ|.
The notation λs(m) will be used to denote the value of signal
s at marking m. All markings must consistently be encoded
by λ, i.e., no marking m can have an enabled rising (falling)
transition a+(a−) if λa(m) = 1(λa(m) = 0).

An STG is said to satisfy the complete state coding (CSC)
property if, when the same binary code is assigned to two
different markings, the set of internal and output signals en-

1We will use subindices to denote different occurrences of the same signal
transition, e.g., a+

1 , a+
2 .

abled at each marking is the same. The CSC property is a
necessary condition for the correct implementation of an STG
specification. When the CSC property holds, the events that
the circuit must produce at each reachable state are uniquely
determined by the binary code of the state. Encoding conflicts
can be detected by using existing techniques based on PN
unfoldings [18] or ILP models [2]. These methods would reveal
the conflict, as shown in Fig. 2(b), between the states with
the shadowed encoding 100011, corresponding to the vector
(dsr, dsw, dtack, d, lds, ldtack). A trace that connects the
conflicting states would also be reported by the aforementioned
methods.

Four conditions are required for an STG to be implementable
under the speed-independent delay model: consistency, CSC,
output persistency, and boundedness [8].

Therefore, to implement the protocol represented by the STG
in Fig. 2(a), the encoding problem must be solved. Notice
that the underlying PN of the STG does not belong to any
of the classes, for which there are structural methods for the
encoding problem, i.e., marked graphs or free-choice nets. With
the current state of the art, the encoding problem has to be
solved with state-based methods that may suffer from the state
explosion problem. The method proposed in this paper is the
first to solve the encoding problem directly on the structure of
the PN.

To solve the conflict, a new signal s can be inserted. Two
possible insertion points for s+ and s− are depicted in Fig. 2(b).
These points can easily be identified with their corresponding
events in the STG (e.g., dtack− for s+ and lds+ for s−).
Fig. 2(c) depicts how events s+ and s−1 have been inserted
before dtack− and lds+, respectively (we ask the reader to
ignore event s+

2 and the dotted places and arcs for the moment).
This insertion disambiguates the conflict depicted in Fig. 2(b).

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 23

In general, other conflicts can also be solved as a by-product of
any signal insertion.

However, any signal must have a consistent encoding. Our
example has a choice that selects between the read and write
cycles of the VME bus, and the insertion of signal s has
broken a conflict in the read cycle. Unfortunately, this insertion
is inconsistent with the write cycle, since traces with two
consecutive rising transitions of s are possible, e.g.,

dsw+d+lds+ldtack+d−dtack+dsw− s+ dtack−lds−ldtack−

leading to the same initial state, in which the same trace can
occur without having fired any s− event.

How can s+ and s− events be inserted in such a way
that, aside from solving the targeted encoding conflicts, they
guarantee a consistent behavior for any feasible trace of the
system?

Any expert designer would immediately detect that another
s− event is required and would manually insert the s−2 event
to guarantee consistency, as shown in Fig. 2(c). However,
PNs can have very intricate causality, concurrence, and choice
relations that make the behavioral analysis difficult, unless one
enumerates the state space explicitly.

The main contribution of this paper is a method for automat-
ically inserting all the events of a new signal in such a way that
consistency is guaranteed. The method is based on the structural
theory of PNs, which is presented as follows.

C. PNS and Linear Algebra

Given an occurrence sequence m0
σ→ m, the number of

tokens for a place p in m is equal to the tokens of p in m0

plus the tokens added by the input transitions of p in σ minus
the tokens removed by the output transitions of p in σ. If we
denote #(σ, t) as the number of times that a transition t occurs
in σ, we can write the marking equation for p as follows:

m(p) = m0(p) +
∑
t∈•p

#(σ, t)F(t, p) −
∑
t∈p•

#(σ, t)F(p, t).

The marking equations for all the places in the net can be
written in the following matrix form [see Fig. 1(c)]:

m = m0 +N · �σ

where �σ = (#(σ, t1), . . . ,#(σ, tn)) is called the Parikh vector
of σ, and N ∈ ZP×T is the incidence matrix of the net

N(p, t) = F(t, p) −F(p, t).

If a marking m is reachable from m0, then there exists a
sequence σ such that m0

σ→ m, and the following system of
equations has at least the solution X = �σ:

m = m0 +N ·X. (1)

If (1) is infeasible, then m is not reachable from m0. The
inverse does not hold in general: there are markings that
satisfy (1) but are not reachable. Those markings are said to be
spurious [31]. Fig. 1(a)–(c) presents an example of a net with

spurious markings: the Parikh vector �σ = (2, 1, 0, 0, 1, 0) and
the marking m = (0, 0, 1, 1, 0) are a solution to the marking
equation, as shown in Fig. 1(c). However, m is not reachable by
any feasible sequence. Fig. 1(b) depicts the graph that contains
the reachable markings and the spurious markings (shadowed).
The numbers inside the states represent the tokens at each place
(p1, . . . , p5). This graph is called the potential reachability
graph. The initial marking is represented by the state (1, 0, 0,
0, 0). The marking (0, 0, 1, 1, 0) is only reachable from the
initial state by visiting a negative marking through the sequence
t1t2t5t1, as shown in Fig. 1(b). Therefore, (1) provides only a
sufficient condition for the reachability of a marking.

For certain subclasses of PNs, e.g., a free-choice [26], live,
bounded, and reversible net, (1), together with a collection of
sets of places (called trap invariants) of the system, completely
characterizes reachability [9]. For the rest of the cases, the
problem of the spurious solutions can be palliated by using
trap invariants [11] or adding some special places, i.e., cutting
implicit places [31], to the original PN that remove spurious
solutions from the original marking equation. Unfortunately,
in general, it is not possible to remove all spurious solutions
from the marking equation [31]. See Section III-E for a further
discussion on this limitation of our approach.

D. Implicit Places

The key ingredient of this paper is the use of implicit places
for signal insertion. Intuitively, a place p is implicit if it is
never the unique place that prevents the firing of a transition.
A sufficient condition for a place p ∈ P to be implicit is the
nonexistence of a solution for m, σ, and s to the following LP
model [31], where P ′ = P\{p}:

m−N · σ =m0

m[P ′] −F [P ′, p•] · s ≥ 0

m(p) −F [p, p′] · s < 0

1l · s = 1

m,σ, s ≥ 0

The model is interpreted as follows. The vector s is a
“transition selector,” since the constraints 1l · s = 1 and s ≥ 0
imply that s has exactly one element at 1. The first constraint
corresponds to the marking equation and indicates that m
is potentially reachable (a necessary condition). The second
constraint indicates that all predecessor places, except p, of the
transition that was selected by s have enough tokens to enable
it.2 The third constraint indicates that p does not have enough
tokens to enable the transition, thus preventing it from firing.
Therefore, if this model has a solution, the place might not
be implicit. On the other hand, the inexistence of a solution
guarantees implicitness. The fact that the condition is only
sufficient comes from the fact that the marking m could be
spurious.

2The notation F [P ′, p•] denotes a matrix covering all places (rows) in P ′

and all transitions (columns) in p•.

24 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

The previous LP model can slightly be transformed and
converted to the dual problem (see the details in [31]). Finally,
the following result can be derived.
Theorem 2.1 [31]: If m0(p) is greater than or equal to the

optimal value of the following LP problem, then p is implicit:

min y ·m0[P ′] + µ

y ·N[P ′, T] ≤N[p, T]

y · F [P ′, p•] + µ · 1l ≥F [p, p•]

y ≥ 0 . (2)

Going back to the example of the VME controller, we now
give an intuitive idea of the consistent signal insertion technique
presented in this paper. In a consistent STG, each signal can be
modeled by a pair of encoding places p0 and p1 that indicate
when the signal value is 0 (p0 marked) or 1 (p1 marked). In
Fig. 2(c), they are called 〈s = 0〉 and 〈s = 1〉 for signal s and
are represented as dotted places. These places only interact with
the events of signal s with arcs 〈s = 0〉 → s+ → 〈s = 1〉 and
〈s = 1〉 → s− → 〈s = 0〉.

The reader can immediately realize that the behavior of
the PN in Fig. 2(c) is the same, regardless of the presence
of the dotted places. Therefore, the dotted places are im-
plicit. The proposed method for signal insertion is based on a
result in [13].
Theorem 2.2 [13]: Given an STG with signal s, two new

places s0 and s1 are added such that every s+(s−) transition
puts a token into place s1(s0) and removes a token from s0(s1),
and no other transitions are connected to them. Signal s is
consistent if and only if places s0 and s1 are implicit.

This result is crucial for the method presented in this paper.
The reader can realize that the dotted places would not be
implicit if the dotted arcs 〈s = 1〉 → s−2 → 〈s = 0〉 would not
be present in the STG with the dotted places.

The result from Theorems 2.1 and 2.2 enables us to not only
check whether a signal is consistently encoded but also auto-
matically find the insertion points that guarantee consistency.
The problem can be solved by using ILP models based on the
LP model from Theorem 2.1. Most of this paper will be de-
voted to formalizing the method for consistently automatically
inserting state signals in an STG.

E. Concurrency and Lock Relations

Concurrency and lock relations will be important criteria for
selecting insertion points for new signals. These relations will
be incorporated in the cost function of the ILP model presented
in Section IV.

Two transitions ti, tj are concurrent if there exists a reachable
marking m such that m[titj〉 and m[tjti〉. Although computing
the concurrence relation in a safe PN is PSPACE-complete
[5], there is an efficient algorithm that can approximate the
concurrence relation [20] and is exact for the class of free-
choice PNs.

A pair of signals a, b are in a lock relation if the firing of the
events of a and b alternates, i.e., between the firing of two events
of one of the signals, there is always a firing from the other

signal. Lock relations have been used as sufficient conditions
for CSC in some classes of PNs [35]. The existence of lock
relations helps in avoiding CSC conflicts and reducing the logic
for the implementation of output signals.

III. SOLVING CSC CONFLICTS

A. Example

Let us describe the approach with an example. The initial
STG and its state graph are shown in Fig. 4(a) and (c). The
conflicting states m1 and m2 are encoded with label 0000.
The sequences that connect the states are σ1 = x+a+x−

1 a
−

and σ2 = y+
1 y−. Events of signal s must be inserted in these

sequences to disambiguate the encoding conflict. In principle,
more than one s+ and s− events could be inserted at every
sequence, but the number of s+ events in σ1 must be one more
than the number of s− events. Similarly, the number of s−

events in σ2 must be one more than the number of s+ events.
This guarantees that λs(m1) = 0 and λs(m2) = 1.

Let us assume that we have decided to break the sequences
σ1 and σ2 by the transitions a− and y−, respectively. The
places associated with the new signal s will have arcs that are
connected to these transitions, as shown by the dotted lines in
Fig. 4(d). Accordingly, the chosen transitions are overloaded
with the corresponding label: transitions a− and y− now be-
come s+; a− and s−; y−, respectively. However, these new
events are not sufficient for s to be consistent: the sequence
b+x−

2 y
+
2 b−s−y−x+ can infinitely be repeated from the initial

state, and only s− events appear for signal s.
This inconsistency is related to the nonimplicitness of place

〈s = 0〉. Notice that 〈s = 0〉 is connected to the same transi-
tions as the implicit place p in Fig. 4(b) but x−

2 . The consistency
of s can be achieved by adding the arc 〈s = 0〉 → x−

2 and the
complementary arc x−

2 → 〈s = 1〉. This insertion point must
be labeled with an occurrence of s+, i.e., transition x−

2 now
becomes s+; x−

2 .
Therefore, the new events are inserted, overloading the

events of existing transitions. The overloaded transitions can
afterward be expanded by well-known PN rules (series or
parallel expansion) that preserve all the necessary properties
for synthesis [26]. The final STG is shown in Fig. 4(e), where
places 〈s = 0〉 and 〈s = 1〉 have been removed, because they
are implicit. The final STG has CSC.

B. Main Algorithm

The main algorithm for solving CSC is presented in Fig. 3.
Finding the conflicts and the corresponding traces can be done
by using existing methods to check for CSC [2], [18]. The core
of the algorithm is the creation of the implicit places s0 and s1

that determine the location of the events for the new state signal.
This will be discussed in the next section.

After having found the insertion points for the new s+ and s−

events, the transitions at these points are overloaded with these
new labels. The transition t at every insertion point will also
have a label a∗ from another signal. In case a∗ is an input event,
it is not possible to insert s∗ as a preceding event, since this
would change the input/output interface of the specification. In

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 25

Fig. 3. Main algorithm for solving CSC conflicts.

that case, the new s∗ event is inserted as a successor event.3 In
this paper, we only deal with the sequential insertion of events.
Insertions with more concurrence are also possible and are
applied if the goal is to improve performance and the transition
that was selected belongs to the critical cycle of the system. The
Appendix describes this enhancement of the method.

C. ILP Model to Find Insertion Points (Implicit Places)

The method for inserting a new state signal is based on the LP
model (2) in Theorem 2.1. Instead of checking for implicitness,
we aim at finding two implicit and complementary places
that mimic the value of a new state signal. To achieve this,
model (2) is transformed into a new ILP model as follows:

1) Two new sets of |T | variables (F(T, s0) and F(s0, T))
are added to the ILP model to encode N[s0, T] as
F(T, s0) −F(s0, T), with N(s0, t) ∈ {−1, 0, 1}. For
the sake if simplicity, in the rest of this paper, we will
only refer to variables N[s0, t]. These variables represent
the connections of the implicit place s0 to the locations in
the PN where the new events will be inserted. There is no
need to add rows for s1, since it is complementary to s0,
i.e., N[s0, T] = −N[s1, T].

2) Using the conflict traces σ1 and σ2, the new constraints

#(σ1,N[s1, T]) =#(σ1,N[s0, T]) + 1

#(σ2,N[s0, T]) =#(σ2,N[s1, T]) + 1

where

#(σ,X) =
∑

X[t]>0

#(σ, t)

guarantee that λs(m1) = 0 and λs(m2) = 1. They imply
that σ1 must contain one more occurrence of s+ than
s−, and similarly, with σ2 and the complementary events,
N[s1, T] can be substituted by −N[s0, T].4

3The cost function in our ILP model guarantees that an insertion point
between input events is never provided.

4The term #(σ,N[s0, T]) =
∑

N[s0,t]>0
#(σ, t) cannot be transformed

to a linear form if the N [s0, t] entries are variables in the range {−1, 0, 1}.
This is the reason for introducing the two rows of nonnegative variables
F(T, s0) and F(s0, T) instead of only one row N[s0, T] of unrestricted
variables. The term can then be expressed in a linear form as #(σ,N[s0, T]) =∑

t
F(t, s0) · #(σ, t).

Formally, the ILP model for solving for the insertion of a new
state signal is

ILP model for solving conflictm1
σ1−→ m2

σ2−→ m1 :
min y0 ·m0[P ′] + y1 ·m0[P ′] + µ

1) Constraints from (2) for s0 implicit (y0 is y)
2) Constraints from (2) for s1 implicit (y1 is y)
3) #(σ1,N[s1, T]) = #(σ1,N[s0, T]) + 1
4) #(σ2,N[s0, T]) = #(σ2,N[s1, T]) + 1

y0,y1 ≥ 0, N[s0, T],N[s1, T] ∈ {0, 1,−1}|T |. (3)

If model (3) is feasible and the initial markings of places s0 and
s1 satisfy the necessary conditions, the variables that encode
N[s0, T], and N[s1, T] represent the necessary arcs to make s0

and s1 implicit.
Theorem 3.1: If model (3) is feasible and m0[s0], m0[s1]

can be assigned such that m0[s0] + m0[s1] ≤ 1, m0[s0] ≥ y0 ·
m0[P ′], and m0[s1] ≥ y1 ·m0[P ′], then s0 and s1 are implicit
places in the PN represented by (N,m0).

Proof: Let y0, y1, N[s0, T], N[s1, T] be a solution of
the ILP model (3). Let us focus on the implicitness of s0 (the
reasoning for s1 is identical). If y0 is a solution of (3), it
particularly satisfies constraint 1) of the model, and therefore,
y0 is also a solution to LP (2) when N is used as the incidence
matrix. Notice that the cost function that was minimized in
(3) is y0 ·m0[P ′] + y1 ·m0[P ′] + µ, whereas the cost function
in LP (2) for p = s0 minimizes only the term regarding y0.
This implies that the minimization in (3) might not be optimal
for LP (2) when N is used as the incidence matrix, i.e.,
y0 ·m0[P ′] ≥ kmin, where kmin is the optimal value of LP
(2) when N is used as the incidence matrix. This, together
with m0[s0] ≥ y0 ·m0[P ′], implies that m0[s0] ≥ kmin, and
therefore, applying Theorem 2.1 s0 is implicit. �

Note that conditions regarding m0[s0] and m0[s1] are needed
in Theorem 3.1 because model (3) cannot compute their value.
For the example in Fig. 4(a), the ILP solver finds the solution

σ1︷ ︸︸ ︷
x+ a+ x−

1 a−

σ2︷ ︸︸ ︷
y+
1 y− x−

2 y+
2 b+ b−

N[s0, T] =[0 0 0 −1 0 +1 −1 0 0 0].

The transitions with N[s0, T] = −1 accommodate label s+,
whereas the ones with N[s0, T] = +1 accommodate label s−.
It is important to realize that transition x−

2 , which does not
belong to σ1 or σ2, is also defined as an insertion point for s+

to preserve the consistency of the signal. After the insertion of
signal s and the expansion of the relabeled transitions, the STG
in Fig. 4(e) is obtained.

Finally, the cost function used in the ILP model is an exten-
sion of the one in model (2)

min (y0 + y1) ·m0[P ′] + µ + c1 (N[s0, T]) + c2 (N[s0, T])

where, aside from the necessary minimization that was required
for the implicitness of place s0, two new subfunctions c1 and c2
are used to guide the ILP solver toward finding good solutions.

26 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Fig. 4. (a) Initial STG. (b) Implicit place p. (c) CSC conflict. (d) Incorrect insertion of s. (e) Final STG.

Furthermore, area or performance goals can be considered in
the cost function. Section IV contains a detailed description of
the cost function.

The complexity of the method mainly corresponds to the
difficulty of solving the ILP problems that correspond to each
iteration from the algorithm in Fig. 3. The number of variables
of each ILP problem is linear to the size of the PN: 2 · |P |
variables are needed to encode the implicitness of places s0 and
s1 [from model (2)], and 2 · |T | variables are needed to store
N[s0, T], as N(s0, T) = F(T, s0) −F(s0, T). The number of
constraints of each ILP problem is twice the number of the
constraints needed for the LP model (2), which is 3 · |T |.

The method presented in this section can easily be extended
to nonreversible systems by ignoring the trace σ2 in the ILP
model. This trace is not strictly necessary for the correct in-
sertion of signals; however, it helps in finding better insertion
points when the cost function is used for optimization.

D. Postprocess for Nonessential Signal Removal

As mentioned in the Introduction, there are very efficient
methods for checking CSC in the literature (see [2] and
[18]). Once CSC is achieved by the algorithm presented in
Section III-B, one can use any of those methods to remove
inserted signals that are not essential for having CSC.
Nonessential signals can appear if there are conflicts that are
disambiguated by two or more signal insertions. To check if a
given signal is nonessential, it can simply be relabeled as silent,
and the resulting STG can be checked for CSC. If CSC holds
in the new STG, then the signal is not needed, and therefore,
it can be removed from the net. Section V shows the signifi-
cance of applying this simple greedy process, even for small
benchmarks.

The insertion of nonessential signals can be avoided (or
alleviated) if all the encoding conflicts with their corresponding
conflict traces are computed first, and then, only the minimal set
of conflicts that ensure correct encoding are solved. The ILP
methods in [2], which were used to check the state encoding,
work as follows. The system is free from encoding conflicts if
a given model is infeasible. If the model is feasible, a solution
that represents the conflict trace will be returned. Unless solved,
this solution will always be the one that the ILP solver will
compute. Hence, obtaining a different conflict trace requires

Fig. 5. Example with an unsolvable CSC conflict.

changing the model, but modifying the model without affecting
the feasibility or completeness is not an easy task. This prevents
the methods in [2] from being easily adopted to compute all the
conflicts at once.

E. Incompleteness of the Method

The method presented in this paper cannot guarantee a
solution, even in the case that it exists. The incompleteness of
the method comes from the limitations of the structural theory
for characterizing the reachable markings of a PN.

An example of this situation is depicted in Fig. 5 (a and
c are inputs, whereas b, d, and e are outputs). The STGs in
Fig. 5(a) and (b) have the same behavior. However, the one
in Fig. 5(a) is more compact, since the transitions a+b+a−b−

represent two different subsequences of the behavior. A state-
based tool such as petrify [8] can easily find a solution
for Fig. 5(a), like the one in Fig. 5(c), with the insertion of
the signal s. However, this solution requires restructuring the
net (see Fig. 5(a)) by unfolding the shared subsequences and
enabling a signal insertion in one of the branches. The method
presented in this paper does not allow any restructuring of
the net, and for this reason, it can find an appropriate signal
insertion for Fig. 5(b) but not for Fig. 5(a).

Characterizing the class of STGs for which a solution can
be guaranteed is a difficult problem that has the same nature
as characterizing the reachable markings of a PN. However,
we have a strong belief that well-structured nets with sim-
ple causality and concurrence relations are more amenable to

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 27

accept the small structural transformations that are required for
solving the state encoding problem.

IV. OPTIMIZATION FOR AREA AND PERFORMANCE

In this section, we show how the CSC resolution technique
presented in Section III can be guided to take area or perfor-
mance into account.

A. Cost Function

The cost function of the model is designed to choose good
insertion points. This has a strong impact on the quality of the
solutions. By defining coefficients for the N[s0, T] variables
in the cost function, the obtained solutions are biased toward
optimizing the following aspects:

1) Minimize the number of events of signal s.
2) Maximize the number of CSC conflicts that were solved

in σ1 and σ2 (other conflicts, aside from the ones with m1

and m2, may exist).
3) Increase the number of lock relations with the other

signals in σ1 and σ2 (lock relations are strongly related to
the implementability of an STG as a speed-independent
circuit, as shown in the literature [21], [34]).

4) If optimizing the area, minimize the number of concurrent
transitions in the net.

5) If optimizing the performance, minimize the number of
critical transitions.

The main idea behind maximizing the solved CSC conflicts is
to reduce the number of extra signals that are needed to achieve
CSC. By creating lock relations with the newly inserted signals,
the logic usually becomes simpler.

Hence, apart from the minimization of the cost function from
the LP model in Theorem 2.1, the cost function is also defined
for each variable N[s0, t] to minimize two subcosts functions
c1, c2 for conflict sequences σ1 and σ2, respectively. In case
of conflict m1

σ1−→ m2, the cost function c1(N[s0, t]) can be
expressed as follows:

c1 (N[s0, t]) = k(t, σ1) − kcsc · ncsc(t, σ1) − klck · nlck(t, σ1)
(4)

where k(t, σ1) is a positive integer K. If transition t is at the
beginning or end of the sequence σ1, or when |(•t)•| ≥ 2, we
impose k(t, σ1) > K. This prevents the selection of transitions
that are in the borders of the conflict sequences or in a struc-
tural conflict, respectively. Selecting transitions that are in the
borders of the conflict sequences may not break the conflict and
is therefore discouraged. The other two terms of (4) represent
the two general goals on the list above: ncsc(t, σ1) indicates
the number of CSC conflicts that are broken in sequence σ1

when inserting at the insertion point that is represented by
t, and nlck(ai∗, σ1) represents the number of locked signals
with signal a in the loop σ1σ2.5 Factors kcsc and klck allow
one to weight the importance of these two aspects in the cost

5Functions ncsc and nlck are normalized, and together with the fact that kcsc

and klck are positive real numbers satisfying kcsc + klck ≤ 1, this allows us
to establish a value for K that is large enough to avoid degradated solutions of
the model that can arise if K < kcsc · ncsc(t, σ1) + klck · nlck(t, σ1).

function. In the experiments, we used kcsc = 0.5 and klck =
0.2. A symmetrical cost c2(N[s0, t]) will be obtained for the
conflict m2

σ2−→ m1.

B. Area and Performance Aware Insertion of Encoding Signals

Area: Given a specification, the complexity of its imple-
mentation strongly depends on the degree of concurrence that
was observed: among all possible implementations, those with
more concurrence also typically require more area. The reason
is that concurrent systems have larger spaces of reachable
states and, therefore, smaller don’t-care sets for logic mini-
mization. In the approach presented in this paper, if the goal
is to optimize the area, signals are inserted as sequentially as
possible. To accomplish this goal, the concurrence relations
(see Section II-E) are used. The area-aware subcost functions
cAi are computed from the ones in the previous section plus
a new factor: cA1 (N[s0, t]) = c1(N[s0, t]) + kconc · nconc(t),
where nconc(t) indicates how many transitions are concurrent
with t.
Performance: Assuming that the information about which

transitions are critical is available, i.e., for each transition t,
the assertion critical(t) indicates whether t is critical or not. A
method for estimating this information, which is based on event
simulation, is presented in the Appendix. To avoid increasing
the cycle time (CT), a performance-aware subcost function cPi
will be used. Function cPi is computed from ci plus a new factor:
cP1 (N[s0, t]) = c1(N[s0, t]) + kcr · critical(t).

Moreover, when a solution that was found by solving the
ILP model considers a critical transition t, the insertion can
be performed by expanding the transition in parallel, instead
of sequentially [26]. Once t has been expanded in parallel, the
newly created transition (t′ in the example in the following
figure) is inserted as concurrent with the transitions in the
conflict sequence as possible:

In the example, it is assumed that transitions t, a, and b
belong to the conflict sequence and are noninputs. Instead of
inserting t′ as a predecessor of a, it is inserted as a predecessor
of b, allowing t′ to be concurrent not only to t but also to a. The
method can be extended to consider other zones of the conflict
sequence for concurrent transition insertions.

In general, the parallel insertion will not increase the CT,
unless the transition that was inserted has a delay that is greater
than t.

Area and performance are not independent factors, i.e.,
sometimes, area reduction implies reducing the logic within
the critical paths, thus improving the latency of the system. The
opposite can also occur: increasing the area can alleviate the
length of the critical paths. This usually happens when a more
concurrent circuit is obtained. The main objective of this section
is to illustrate how the presented method can easily incorporate
those optimization goals. The theory can be seen as a starting
approach for more elaborated optimizations.

28 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

TABLE I
RESULTS (LITERALS/STATE SIGNALS)

V. EXPERIMENTAL RESULTS

The goal of the experimental results presented in this section
is threefold: 1) evaluate the quality of the method by comparing
the results with a state-based method; 2) evaluate the capability
of handling large specifications, and 3) show the potential
benefits of logic synthesis methods with regard to SDT.
Comparison With a State-Based Method: Table I evaluates

the quality of the results for area optimization when compared
to petrify [8]. The examples in [7] have been used.6 The
number of literals of the Boolean equations (in factored form)
and the number of state signals that were inserted to solve CSC
are reported.7 Columns ILP+ and ILP report the results with
or without the postprocess for eliminating nonessential signals
described in Section III-D. In general, the levels of complexity
of the circuits are similar, although the ILP+ approach has a
moderate 6% improvement in literals. The new method (ILP)
inserts more state signals than petrify. The reason is that
petrify attempts to maximize the number of conflicts that were
solved for each signal, whereas the new approach tries to reduce
the number of events of each new signal. Overall, increasing the
number of signals without increasing the number of literals is
beneficial, since it provides a better initial decomposition that
will reduce the number of additional signal decompositions for
technology mapping, thus resulting in better mapped circuits. In
other words, the average number of literals per signal decreases
when the number of signals increases and the number of literals
remains the same.

6Only four examples with irreducible conflicts have been omitted, since the
conflicts cannot be solved, unless timing assumptions on the environment are
used.

7Given that the examples are small, we do not report the CPU times, since
they are negligible and irrelevant for the comparison.

Some of the extra signals that were inserted in the new
approach can be regarded as nonessential (i.e., not needed for
having CSC) by the greedy process shown in Section III-D and
were consequently removed. The results of this postremoval
of nonessential signals are shown in column ILP+. The over-
all complexity of the circuits was never increased when a
nonessential signal removal was applied for the benchmarks
used. On the contrary, in some examples (e.g., mr0), this greedy
process significantly decreased the literal count.
Large Specifications: State-based methods cannot handle

large STGs like the ones in Table II. This table shows the
results for the two possible optimization goals described in this
paper: area and delay. For the case of delay, the CT has been
evaluated with the performance evaluation technique presented
in the Appendix. For each of the optimization goals, results with
or without the use of the corresponding heuristic (described in
Section IV-B) are presented.

The benchmarks ART(n,m) model n pipelines of length
m that were synchronized only on their starting points, thus
exhibiting a high degree of concurrence. Benchmarks PPWK

and PPARB are another type of pipelines, which were described
in [18]. VAR(n,m) models the handshakes of a set of n read
and m write processes into a 1-bit variable.

The rest of the examples are typical netlists of handshake
components from an HDL like Tangram [1] or Balsa [10].
Those examples were obtained by hiding all the internal chan-
nels of the netlists and keeping only the events of the external
signals:

1) Par(12): a 12-way parallelizer, as shown in Fig. 6.
2) Seq(12): a 12-way sequencer, with a tree structure that

is identical to Par(12).
3) SeqPar(21,10): a combination of 21 sequencers and

ten parallelizers, as shown in Fig. 7.
4) SPM(7,16,18): a combination of sequencers, paral-

lelizers, and mixers, as shown in Fig. 8. The actual circuit
has an eight-way sequencer on the top (implemented as
a tree of seven two-way sequencers), eight three-way
parallelizers in the middle (implemented with 16 two-
way parallelizers), and six four-way mixers (implemented
with 18 two-way mixers).

The columns report the number of places, transitions, and
input/output signals of the STG, respectively. The CPU time
for encoding when applying the algorithm presented in this
paper is also reported. For synthesis, structural methods that are
based on projections [2] have been used. None of the previously
existing techniques has been able to solve the encoding problem
with examples of such size. For state encoding, the greedy
postprocess for nonessential signal removal, which is presented
in Section III-D, has been applied. It is remarkable to realize
that the tool has been able to solve one of the examples
[ART(20,9)] by inserting 39 signals.

Based on Table II, it can be observed that for most of the
examples, there is a tradeoff between the area and the delay
optimization: gains in performance usually require an increase
in area. There are some examples [ART(10,9), ART(20,9), and
SEQ(12)], however, where this principle does not hold. In these
cases, the increase of concurrence implies a significant area

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 29

TABLE II
STATE ENCODING OF LARGE CONTROLLERS. AREA AND DELAY OPTIMIZATIONS

Fig. 6. Parallelizer Par(12).

Fig. 7. Sequencers and parallelizers SeqPar(21,10).

overhead that has a negative impact on the logic delays. The
parallelism at the level of events does not compensate the
complexity of the logic, thus making the circuits slower.
Heuristics: Table II also shows the impact of using the

heuristics for optimizing the area and performance presented
in Section IV-B. The two experiments executed for each bench-
mark aim at optimizing either the area or the performance. For
the area optimization, the significance of using the concurrence
relations when selecting insertion points for state encoding is
shown: the option taking this factor (column With nconc(t))
into account has less literals than not considering the concur-
rence relations (column Without nconc(t)). A similar circum-
stance happens for the delay optimization: column Without
critical(t) shows the delay optimization without considering
information on critical events, inserting events in parallel if
possible. In general, the information of criticality helps in
alleviating the degradation of the CT of the system.

Fig. 8. Sequencers, parallelizers and mixers SPM.

In general, by customizing the weighted terms in the cost
function, one could potentially find solutions that trade off both
characteristics.

There is a significant CPU overhead in the ART examples,
especially in ART(20,9). This shows that the effectiveness of
the ILP approach can be sensitive to the net structure and the
size of the problem. The experiments were performed with a
commercial solver [16].
Logic Synthesis Versus SDT: The major question is: how

much is left for optimization by using logic synthesis for
specifications generated by SDT from HDLs? Here, we will
demonstrate that there is significant room for optimization.

We will use an n-way parallelizer as an example. Fig. 9(a)
depicts a netlist of handshake components for a four-way
parallelizer. Each channel c is implemented by two handshake
signals: c0 and c1. In the conventional implementation of a
parallelizer, two internal signals are required for encoding the
state of the component. Each one is associated with one of the
output channels. Fig. 9(c) shows the behavior of the netlist,

30 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Fig. 9. Implementation of a four-way parallelizer. (a) Handshake components.
(b) STG from logic synthesis. (c) STG from SDT.

TABLE III
CHARACTERISTICS OF AN n-WAY PARALLELIZER IMPLEMENTED

USING SDT AND LOGIC SYNTHESIS

including the transitions of the internal channels and signals.
Fig. 9(b) describes the behavior of the system after hiding the
internal channels and adding state signals. This specification is
the one obtained by logic synthesis tools after state encoding.

Therefore, Fig. 9(b) and (c) represents the behavior of the
circuits obtained by logic synthesis and SDT, respectively.
Table III describes some characteristics of a general n-way
parallelizer: the number of noninput signals of the circuit and
the number of critical events.8 The following conclusions can
be drawn:

1) The number of noninput signals is linear to n in both
cases; however, the complexity is significantly larger for
the syntax-directed approach (5n versus 3n).

2) The length of the critical cycle is constant in logic syn-
thesis; however, it logarithmically increases in the syntax-
directed approach in the case of a well-balanced tree. This
growth is directly related to the number of levels in the
tree of handshake components.

8See the Appendix for the definition of critical events.

We now illustrate the effectiveness of logic synthesis in
different netlists of handshake components. Table IV compares
four possible synthesis approaches: column “HDL” reports
literals for a Tangram implementation,9 whereas column “SDT”
contains the results for the synthesis of the STGs that were
generated from the corresponding HDL specifications with all
the internal channels. Columns “ILP Area Optimization” and
“ILP Delay Optimization” present the results for the same
specifications but where internal channels are hidden and the
encoding method of this paper is applied afterward, optimizing
for the area and performance, respectively. The CT is also
reported for each approach. Some conclusions can be drawn:

1) There is a tangible reduction in the complexity of the
circuits. This reduction is mainly produced by the reen-
coding done by logic synthesis tools, i.e., the internal
channels and state signals are eliminated, and new state
signals are added for synthesis. The complexity of the
circuits has been estimated by the number of literals of the
Boolean equations. The reduction in area also has a sim-
ilar impact in power consumption, since the number of
events is reduced. Moreover, the power of logic synthesis
can be observed if column HDL is compared to the rest
of approaches. The results show drastic improvements,
e.g., up to 63% in the number of literals for SPM(7,16,18)
with respect to the ILP approaches. Even when only
logic synthesis is applied without reencoding (column
SDT), the simplification of the equations is significant
with respect to HDL.

2) The most important result is with regard to performance.
Handshake circuits are overencoded, since they are
designed for a proper behavior under any possible envi-
ronment. However, when embedded in a particular envi-
ronment, significant reductions in complexity and delay
can be achieved. The number of events in the critical cycle
of the system is drastically reduced (almost by a factor of
3). This has a direct impact on the CT of the circuit.

From the above results, one can conclude that there is enough
room for optimization by using the techniques presented in this
paper, especially with regard to performance. These techniques
can be combined with other approaches for optimization that
work at higher levels of abstraction, like the clustering methods
presented in [4].

VI. CONCLUSION

By solving the state encoding problem, logic synthesis can
be incorporated into the main design flow of large asynchro-
nous controllers. The method presented in this paper is a
crucial step toward taking advantage of the optimizations that
logic synthesis can do in the Boolean domain. This approach
opens new opportunities to integrate logic synthesis with high-
level design frameworks that generate asynchronous controllers
by SDT.

9The cost of sequencers, parallelizers, and mixers is 8, 21, and 12, respec-
tively [1]. The cost of a C element is considered to be five literals (c+ =
ab + c(a + b)).

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 31

TABLE IV
SYNTHESIS RESULTS FOR DIFFERENT NETLISTS OF HANDSHAKE COMPONENTS

APPENDIX

PERFORMANCE EVALUATION

We present the strategies used in this paper to estimate the
critical events and the performance of a concurrent system.
The strategies are related to previous work on determining
the average time separation of events in asynchronous systems
[24], [37].

A. Estimation of Critical Events

For state encoding that aims at performance optimization, it
is necessary to detect the critical events of the specification. A
simple strategy for deriving the critical skeleton of a concurrent
system is next presented.

The strategy is based on a simulation of the system by
using estimated delays for the transitions and estimated choice
probabilities for the choices. It is possible to use probability
distribution functions for any of them.

By performing an event-driven simulation of the system, the
following information can be obtained for every transition t and
every predecessor transition t′:

trig(t′, t) =
Number of times t′ triggered t

Number of firing times of t
.

We say that a transition t′ triggers t when t′ is the last to arrive
before the enabling of t. Based on this information, it is possible
to detect those events that will mostly likely be critical by
defining a triggering threshold ε ∈ [0, 1]. For example, ε = 0.1
will select those events that trigger another event more than
10% of the times.

The algorithm for selecting the critical events works as
follows.

1) Perform an event-driven simulation to calculate
trig(t′, t) for all pairs of adjacent transitions.

2) Select Tr = {t′|∃t : trig(t′, t) ≥ ε}. Remove all the
transitions that are not in Tr from the PN.

3) Remove all the remaining transitions that are not in
cycles.

The resulting PN will be a strongly connected subnet of the
original PN that contains the skeleton of critical events.

Fig. 10 illustrates this calculation. For simplicity, all events
are assumed to have a unit delay. The topmost place is a
choice with three branches and probabilities 0.35, 0.6, and 0.05,
respectively. The triggering threshold ε is 0.1.

After the simulation, the shadowed transitions are the ones in
Tr. For example, i never triggers m, since j is always the last
predecessor of m to arrive. On the other hand, l is a trigger of n

Fig. 10. (a) Triggering events (shadowed boxes). (b) After the removal of
nontriggering events. (c) Critical events.

but only for 5% of the times. Given that ε = 0.1, transition l is
considered to be noncritical.

Fig. 10(b) depicts the remaining PN after the removal of the
events that are not in Tr. Finally, Fig. 10(c) shows the final PN
after removing the events that are not in cycles.

B. Estimation of Event Delays

The detection of critical events requires an estimation of
the delay of each event of the system. The accuracy of the
estimation highly depends on the available information about
the implementation of each event. The technology-independent
delay estimation used in this paper is the following:

δ = δinv(1 + log2 n)

where δinv is the estimated delay of an inverter, and n is some
estimation of logic complexity. For example, if n is the number
of literals of a cube, then log2 n is the number of levels of an
implementation with two-input gates.

Several scenarios can be distinguished for delay estimation.

1) Before solving CSC, when the circuit cannot be imple-
mented. A good measure is the number of trigger signals
that has a high correlation with the logic required for
implementing a signal. Thus, the delay of each event
is estimated by the previous formula, with n being the
number of trigger events.

2) After solving CSC and before technology mapping. A
better estimation for the delay of the events of a signal

32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

can be obtained with the same formula, with n being the
number of literals of the Boolean equation for that signal
in factored form.

The delay for the input events depends on the behavior of the
environment. The designer must provide an estimation based
on the knowledge of the system. In the experiments, input
events are considered slow, with a delay representing a couple
of complex gates.

C. Performance Evaluation

Once the delay of each event has been calculated, the perfor-
mance of a system can be calculated by analytical methods or
simulations. Analytical methods are usually restricted to some
subclasses of concurrent systems, e.g., marked graphs or free-
choice nets.

Given a delay for each event, the performance of a system
can simply be estimated by simulation. In our experiments, the
CT is estimated as the average time separation between two
consecutive firings of the most frequent event. Thus, if T is the
simulation time and #e is the firing count of the most frequent
event, the CT C is estimated as

C =
T

#e
.

ACKNOWLEDGMENT

The authors would like to thank J. M. Colom for his sugges-
tions and helpful discussions.

REFERENCES

[1] K. v. Berkel, Handshake Circuits: An Asynchronous Architecture for VLSI
Programming, ser. International Series on Parallel Computation, vol. 5.
Cambridge, U.K.: Cambridge Univ. Press, 1993.

[2] J. Carmona, J. M. Colom, J. Cortadella, and F. García-Vallés, “Syn-
thesis of asynchronous controllers using integer linear programming,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 9,
pp. 1637–1651, Sep. 2006.

[3] J. Carmona and J. Cortadella, “State encoding of large asynchro-
nous controllers,” in Proc. ACM/IEEE Des. Autom. Conf., Jul. 2006,
pp. 939–944.

[4] T. Chelcea, A. Bardsley, D. Edwards, and S. M. Nowick, “A burst-
mode oriented back-end for the Balsa synthesis system,” in Proc. DATE,
Mar. 2002, pp. 330–337.

[5] A. Cheng, J. Esparza, and J. Palsberg, “Complexity results for 1-safe
nets,” Theor. Comp. Sci., vol. 147, no. 1/2, pp. 117–136, Aug. 1995.

[6] T.-A. Chu, C. K. C. Leung, and T. S. Wanuga, “A design methodology
for concurrent VLSI systems,” in Proc. ICCD, 1985, pp. 407–410.

[7] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “A region-based theory for state assignment in speed-
independent circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 16, no. 8, pp. 793–812, Aug. 1997.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, Logic Synthesis of Asynchronous Controllers and Interfaces.
New York: Springer-Verlag, 2002.

[9] J. Desel and J. Esparza, Reachability in Cyclic Extended Free-Choice
Systems, vol. TCS 114. Amsterdam, The Netherlands: Elsevier, 1993.

[10] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware
synthesis language,” Comput. J., vol. 45, no. 1, pp. 12–18, 2002.

[11] J. Esparza and S. Melzer, “Verification of safety properties using integer
programming: Beyond the state equation,” Form. Methods Syst. Des.,
vol. 16, no. 2, pp. 159–189, Mar. 2000.

[12] R. M. Fuhrer, B. Lin, and S. M. Nowick, “Symbolic hazard-free mini-
mization and encoding of asynchronous finite state machines,” in Proc.
ICCAD, 1995, pp. 604–611.

[13] F. García-Vallés and J. M. Colom, “Structural analysis of signal transition
graphs,” in Proc. Workshop PNSE—Modelling, Verification Validation,
D. H. I. B. Farwer and M. Stehr, Eds, 1997, pp. 123–134.

[14] J. Gu and R. Puri, “Asynchronous circuit synthesis with Boolean satisfia-
bility,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 14,
no. 8, pp. 961–973, Aug. 1995.

[15] D. A. Huffman, “The synthesis of sequential switching circuits,” in
Sequential Machines: Selected Papers, E. F. Moore, Ed. Reading,
MA: Addison-Wesley, 1964.

[16] ILOG Inc. Solver CPLEX. [Online]. Available: http://www.ilog.com
[17] V. Khomenko, “Efficient automatic resolution of encoding conflicts us-

ing STG unfoldings,” School Comput. Sci., Newcastle Univ., Newcastle,
U.K., Report CS-TR-995, Jan. 2007.

[18] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state coding
conflicts in STG unfoldings using SAT,” in Proc. Int. Conf. Appl. Con-
currency to Syst. Des., Jun. 2003, pp. 51–60.

[19] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky,
Concurrent hardware: The theory and practice of self-timed design,
Series in Parallel Computing. Hoboken, NJ: Wiley, 1994.

[20] A. Kovalyov and J. Esparza, “A polynomial algorithm to compute the
concurrence relation of free-choice signal transition graphs,” in Proc. Int.
WODES, 1996, pp. 1–6.

[21] K.-J. Lin, C.-W. Kuo, and C.-S. Lin, “Synthesis of hazard-free asyn-
chronous circuits based on characteristic graph,” IEEE Trans. Comput.,
vol. 46, no. 11, pp. 1246–1263, Nov. 1997.

[22] K.-J. Lin, J.-W. Kuo, and C.-S. Lin, “Direct synthesis of hazard-
free asynchronous circuits from STGs based on lock relation and
MG-decomposition approach,” in Proc. Eur. Des. Test Conf., 1994,
pp. 178–183.

[23] G. K. Maki and J. H. Tracey, “A state assignment procedure for asyn-
chronous sequential circuits,” IEEE Trans. Comput., vol. C-20, no. 6,
pp. 666–668, Jun. 1971.

[24] E. G. Mercer and C. J. Myers, “Stochastic cycle period analysis in
timed circuits,” in Proc. IEEE Int. Symp. Circuits Syst., 2000, vol. 2,
pp. 172–175.

[25] G. D. Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Optimal
state assignment for finite state machines,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. CAD-4, no. 3, pp. 269–285,
Jul. 1985.

[26] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–574, Apr. 1989.

[27] S. M. Nowick and D. L. Dill, “Automatic synthesis of locally-
clocked asynchronous state machines,” in Proc. ICCAD, Nov. 1991,
pp. 318–321.

[28] E. Pastor and J. Cortadella, “An efficient unique state coding algorithm
for signal transition graphs,” in Proc. ICCD, Oct. 1993, pp. 174–177.

[29] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed
to timed ones,” in Proc. Int. Workshop Timed Petri Nets, Torino, Italy,
Jul. 1985, pp. 199–207.

[30] M. Schäfer and W. Vogler, “Component refinement and CSC solving for
STG decomposition,” in Foundations of Software Science and Computa-
tional Structures (FoSSaCS). Berlin, Germany: Springer-Verlag, 2005,
pp. 348–363.

[31] M. Silva, E. Teruel, and J. M. Colom, “Linear algebraic and linear pro-
gramming techniques for the analysis of place/transition net systems,”
in Lectures on Petri Nets I: Basic Models, vol. 1491, W. Reisig and
G. Rozenberg, Eds. New York: Springer-Verlag, 1998, pp. 309–373.

[32] J. H. Tracey, “Internal state assignments for asynchronous sequential
machines,” IEEE Trans. Electron. Comput., vol. EC-15, no. 4, pp. 551–
560, Aug. 1966.

[33] S. H. Unger, Asynchronous Sequential Switching Circuits. New York:
Wiley-Interscience, 1969.

[34] P. Vanbekbergen, “Synthesis of asynchronous control circuits from
graph-theoretic specifications,” Ph.D. dissertation, Catholic Univ. Leuven,
Leuven, Belgium, Sep. 1993.

[35] P. Vanbekbergen, G. Goossens, F. Catthoor, and H. J. D. Man, “Optimized
synthesis of asynchronous control circuits from graph-theoretic specifica-
tions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11,
no. 11, pp. 1426–1438, Nov. 1992.

[36] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man, “A generalized
state assignment theory for transformations on signal transition graphs,”
in Proc. ICCAD, Nov. 1992, pp. 112–117.

[37] A. Xie, S. Kim, and P. A. Beerel, “Bounding average time separations of
events in stochastic timed Petri nets with choice,” in Proc. Int. Symp. Adv.
Res. Asynchronous Circuits Syst., Apr. 1999, pp. 94–107.

[38] K. Y. Yun, “Automatic synthesis of extended burst-mode circuits using
generalized C-elements,” in Proc. EURO-DAC, Sep. 1996, pp. 290–295.

CARMONA AND CORTADELLA: ENCODING LARGE ASYNCHRONOUS CONTROLLERS WITH ILP TECHNIQUES 33

Josep Carmona received the M.Sc. and Ph.D. de-
grees in science from the Universitat Politècnica
de Catalunya, Barcelona, Spain, in 1999 and 2004,
respectively.

He was a Visiting Scholar with the University of
Leiden, Leiden, The Netherlands, in 2003. He is cur-
rently a Lecturer with the Department of Software,
Universitat Politècnica de Catalunya. His research
interests include formal methods and computer-aided
designs of very large scale integration systems, with
special emphasis on asynchronous circuits, concur-

rent systems, logic synthesis, and nanocomputing.

Jordi Cortadella (M’88) received the M.S. and
Ph.D. degrees in computer science from the Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
in 1985 and 1987, respectively.

He was a Visiting Scholar with the University
of California, Berkeley, in 1988. He is currently a
Professor with the Department of Software, Uni-
versitat Politècnica de Catalunya. He is a coauthor
of numerous research papers. His research interests
include formal methods and computer-aided designs
of very large scale integration systems, with special

emphasis on asynchronous circuits, concurrent systems, and logic synthesis.
Dr. Cortadella has served on the technical committees of several international

conferences on design automation and concurrent systems and has been invited
to present tutorials at various conferences. He is a recipient of the Best
Paper Awards in the 10th International Symposium on Advanced Research
in Asynchronous Circuits and Systems (ASYNC 2004) and the 41st Design
Automation Conference (DAC 2004) and of a Distinction for the Promotion of
the University Research from the Generalitat de Catalunya in 2003.

