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Timing-Driven Logic Bi-Decomposition

Jordi CortadellaMember, IEEE

Abstract—An approach for logic decomposition that produces
circuits with reduced logic depth is presented. It combines two
strategies: logic bi-decomposition of Boolean functions and
tree-height reduction of Boolean expressions. Itis a technology-in-
dependent approach that enables one to find tree-like expressions
with smaller depths than the ones obtained by state-of-the-art
techniques. The approach can also be combined with technology
mapping techniques aiming at timing optimization. Experimental
results show that new points in the area/delay space can be
explored, with tangible delay improvements when compared to
existing techniques.

Index Terms—Bi-decomposition, delay optimization, logic
decomposition, tree-height reduction.

I. INTRODUCTION ¢

e abcdpgq s

ELAY optimization can be tackled at different stages of ©3
circuit synthesis, from high-level to layout. This paper.
. . . . Fig. 1.
focuses on technology-independent logic synthesis technlquegs
for combinational circuits [1] that typically precede technolog

mapping. ! .
Given the complexity of the problem, delay optimization i&re ignored). A DAG can be unfolded in such a way that

. no multiple-fanout nodes exist, except for the inputs of the
usually performed after the size of the Boolean network rep- . . )
4 A . _Circuit, thus obtaining a tree with the same depth. The numbers
resenting the circuit has been reduced. Numerous multilevel

. : . . . . annotated to each node indicate the number of paths crossing
logic synthesis techniques exist for that, either by using algt‘f"fe node that corresponds to the number of leaves of the tree

braic [2], [3] or Boolean methods [4]. Most of the tEChmque.eersion of the DAG. A lower bound on the depth of a DAG

on technology-independent delay optimization aims at redumlngqﬂog2 p], p being the number of paths @, and assuming

the depth of Boolean petworks by restructgrlng [51-171 Eye hf’;\t it can only be transformed by rules that cannot reduce the
the depth of a network is not an accurate estimation of the circui
delay; both have a high correlation. For this reason, the depthnclﬁg]ber of nodes [8].

' ) ’ ven though C1 and C2 have the same number of nodes and

the network is a parameter frequently used in technology-indé-z has more levels than C1, the lower bound on their depth is

pendent optimization techniques. different due to their sharing degree. Given that the tree version

Redgcmg the size of a Boolean'network often implies th C1 has 17 leaves, a lower bound on the depth of C1 is five
extraction of common subexpressions that can be shared In

several subnetworks. As a side effect, sharing may also lea %%els. Therefore, any restructuring of C1 that does not reduce

; . - .Ihe number of nodes, will never achieve a depth smaller than
increasing the depth of the network. Thus, when delay is the S !

R : o Ive. On the other hand, circuit C2 offers more chances for opti-
parameter under optimization, sharing logic is not always a.

00d anproach for logic decomposition. Even if we disreqar ization, since it has only 13 paths and the lower bound on its
9 pp g P . . 9 Zi} th is four levels. Circuit C3 depicts a possible restructuring
the delays produced by the fanout capacitances, mcreasmgoﬁ

degree of sharing may negatively affect the performance of 2, by applying the associative law, that reduces its depth.
a gircuit 9 y neg y P ‘Phis example shows that executing an aggressive area-oriented

Fig. 1 depicts three different circuits implementing the Samalgon.thm may prgvenF one f“’m qbtqlnlng the desired number
. T . of logic levels during timing optimization.

Boolean function. Each circuit is represented by a directed : : - :
: . In [9], a technique that performs logic decomposition during
acyclic graph (DAG) of two-input gates. The bubbles on the L . . .
. Lo téchnology mapping is proposed. With this approach, the inac-
arcs represent inverters. The depth of the circuitis calculatedas = .” "~ >
curacies introduced by splitting these two phases are reduced at

the expense of a high computational cost. More details on this
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The approach aims at finding the minimum-depth tree for a & ®)
Boolean function. It builds the tree from root to leaves by using * 2 )
bi-decomposition techniques [11], [12], and reduces the deptl ° O O
by means of rewrite rules that apply the associative, commutz @ O o b & . O .
C

tive and distributive laws of the Boolean algebra.

The relevance of field programmable gate arrays (FPGAs
based on look-up tables (LUTS) in the last decade has fostere
various efforts in finding effective methods to decomposed?
functions [13]-[15]. Since each LUT is able to realize any 2
arbitrary function up to a certain number of inputs, these method b

are mostly oriented to partition the support of the components ¢

Our goal, however, is to find efficient decompositions for (© & b
cell-based designs in which the functionality of each component
is relevant. Fig. 2. Equivalent factored forms.

The main contributions of the technique presented in this Delay

paper are the following.

» Bi-decomposition and depth reduction are interleaved
during the global decomposition of a function (Sec- 5
tion V). The existing approaches perform both functions
as clequy separated steps. o _ — Area

* A heuristic search for the application of transformations 7809
for tree-height reduction is proposed (Section IV-C).

» A new strategy for bi-decomposition based on functioRg. 3. Area/delay tradeoff for the trees.
approximations is proposed. This technique subsumes
previous existing approaches based on decompositidagnd by applying simple transformations (associative and dis-
of binary decision diagrams (BDDs). Moreover, algebraitibutive laws) to the original tree. It is shown in Fig. 2(c) with
factorization is also used as an alternative method fér = 8, d = 5). Finally, by further applying transformations,
bi-decomposition (Section V-A). the tree in Fig. 2(d) can be obtained with £ 9, d = 4). It

The paper is organized as follows. Section Il gives afould not be difficult to prove, for this particular example, that

overview of the approach and is illustrated with an exampléhe solutions shown in Fig. 2(a) and (d) are optimal in area and

Section Il introduces the representation of binary DAGEelay, respectively. The tree obtained dyyeed up is subop-

and the rewrite rules. Section IV proposes algorithms for dinal, since there are other equivalent trees with the same area
efficient exploration of the transformations for tree-heigt@nd shorter delay [Fig. 2(d)] or the same delay and smaller area
reduction. Section V presents the main algorithm for logi€ig. 2(c)].

decomposition. Experimental results are reported in Section VI.Fig. 3 shows a diagram representing the space of feasible de-

Finally, Section VII discusses related work. signs for expression (1). The points (7,7), (8,5), and (9,4) are
optimal in the sense that there is no other design that can im-
Il. OVERVIEW prove area and delay. However, the point (9,5) obtained by the

. L . . d_up command is suboptimal.
This section illustrates the main paradigm of the approagﬁee P P
for logic decomposition. First, some background on tree-height a|gorithm
reduction is presented. Next, a step in the recursive progress

of. . o
the main algorithm is described with an example. If—'|g. 4 depicts an example of the approach presented in this

work. The boxes represent sums of products in matrix form
(each row is a term). The main algorithm uses recursion to de-

. ) . . compose a Boolean function from root to leaves. Each call in
Tree-height reduction [16] was originally proposed in thg,q recyrsion tree consists of the following steps.

scope of optimizing compilers for the generation of code in . .

P P 9 Pr . 9 1) The Boolean function is decomposed into two sub-
multiprocessor systems. Fig. 2. illustrates an example. The functions and a Boolean operator (bi-decomposition)
tree in Fig. 2(a) represents a factored form for the Boolean . peralc mp 7

The methods for bi-decomposition are discussed in

expression Section V-A.
ab + acd + acef + acegh. (1) 2) The two subfunctions are decomposed into a binary tree
by a fast algebraic factorization algorithm [17].

If we assume zero arrival time for all inputs and unit area 3) The binary tree is heuristically balanced by using tree-
(a = 1) and unit delay(d = 1) for each node, the tree is height reduction transformations. In the figure, the shad-
characterized by the pait (= 7, d = 7). owed nodes indicate the points where the distributive law

The tree in Fig. 2(b) is the one obtained by SIS after executing  is applied. The tree is further balanced by applying the
the speed_up command [6]. This tree is characterized by the associative law. The algorithms for tree-height reduction
pair @ = 9, d = 5). A more efficient implementation can be are presented in Section IV.

A. Tree-Height Reduction: An Example
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$

We can also represent trees as triples

abcdefghi T = (T.op T.left T'.right).
S Tree-height , , ,
0o e reduction Note that, for binary treed?’| is equivalent to thg num_ber
0---111-- Factorization = of nodes of the tree plus one. The depth of a tree is defined as
°'"1lf11 . b follows:
* Bi-decomposition
0 D(T) = {0, _ if T.op = 1
3= [3bdsEgni 1+ max(D(T.left), D(T.right)), otherwise
11-| [0-1--—--
1-11/00-10000 The definitions above can easily be extended to BDAGs. The
0--11-11 number of leaves of atree is analogous to the number of paths of

a BDAG. The number of paths of a BDAG, denoted byI(G)
/@\ ol . is defined as follows:

1222 [s6za0s (@) ={ & o nGop = &
II(G.left) 4+ II(G.right)

1-1-|[0-111-- .
0--1||0-11-11 , otherwise
+ + Theorem 1.
Fig. 4. Example of timing-driven bi-decomposition. I(G) = |GA.

) ) Proof. Obvious from the one-to-one correspondence be-
4) The left and right children of the tree are collapsed ang,cen BDAGs and binary trees.

the process is recursively repeated for each child.

A. ACD Rewrite Rules
Step 1 uses the full power of Boolean algebra for decomposi-

tion. Steps 2 and 3 laebraic. For thi Step 4 coll Trees and BDAGs can be transformed by using the commu-
Ion. Seps  and sare algebraic. Forthis reason, Step = Collanafge (C), associative (A), and distributive (D) laws of Boolean
subtrees in such a way that Boolean decomposition is applie

each node of the tree. fbtebra (ACD-rules)

A: (T (+ T Ts)=(H (+Th 1) 1)

* T1 (* T2 Tg)) = (* * T1 TQ) T3)

(
[1l. BINARY DAGS AND TREES ( (
Single-output circuits are represented by rooted DAGs. Each C: (+ThTh)=(+TT)
internal node has two children and is labeled with a Boolean op- (xTy Ty) = (xTa Ty)
erator (AND or OR). Leaf nodes are labeled with (possiblycom- D . (+ Ty (+ To Ts)) = (% (+ T Tn)(+ 11 T3))
plemented) literals. Henceforth, we will assume that all DAGs (

T T T3)) = T T T T3)).
are reduced, i.e., they do not have more than one instance of TR T) = R T) (T 1)

isomorphic sub-DAGs under the application of commutativity One of the main subproblems in this work is the exploration of
to the children. In case they are not reduced, isomorphic copifierent BDAG representations for Boolean expressions. This
of sub-DAGs can be removed by keeping only one of them aagiploration is done under the assumption that a minimum-size
changing the arcs accordingly. This transformation must be BDAG is given (e.g., point a in Fig. 3). By iteratively applying
eratively applied until no more isomorphic sub-DAGs appeatansformations, different solutions are obtained. These solu-
Henceforth, we will call binary DAGs (BDAGs) the DAGSs rep-tions draw the curve determined by the optimal solutions with
resenting circuits as described above. regard to the area/delay tradeoff.

A BDAG can be unfolded and uniquely represented by a bi- |n order to have a monotonic behavior of the exploration, the
nary tree (see Fig. 1). This tree is called the tree version oDarule is only applied from left to right, i.e., no transformations
BDAG (denoted byG*). Similarly, a tree can be uniquely rep-extracting common factors will be used. Although this strategy
resented by a BDAG by sharing all isomorphic subtrees. Giv@fipedes a wider exploration of BDAGS, it guarantees termina-
that BDAGs are reduced, there is a one-to-one correspondefigg and works reasonably for multilevel netlists whose size has
between BDAGs and binary trees. been reduced by an iterative extraction of divisors.

Given a binary treel’, we will refer to7" as the root node A side effect of using the D-rule from left to right is that
or the tree itself. The following nomenclature will be used fothe number of paths of the transformed graph is never reduced.

binary trees: Hence, the following theorem holds.

T left, T.right Left and right children Theorem 2 (Lower bound on depthlet G’ be a BDAG ob-
CHILDREN(T) ={Tleft, T.right} tained fromG by applying the ACD-rules. A lower bound for
T.0p Type of nodet, *, or L(literal) D(G') is

7] Number of leaves of the tree

D(T) Depth of the tree. D(G") > [log, TI(G)]. )
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arrival time tiple leaves with nonzero arrival times, thus leading to the in-
equality (3). The extension to real numbers for the arrival times
is straightforward. [ ]

Note that the expression (3) reduces to expression (2) when
AT (p) = 0, for anyp.

C. BDAG Representation

The algorithms presented in this paper have been imple-
mented in a data structure to represent circuits with two-input
gates. This representation is very similar to that of Boolean
Ty B 27 leaves Expression Diagrams [18]. A common manager represents all
BDAGs and a single instance of each sub-BDAG in the man-
ager is guaranteed. Internal nodes only representoperators
and edges can be complemented to represent negations. For
%he sake of simplicity, in this paper we will still distinguish
betweemND andor nodes when depicting circuits.

The BDAG manager also has cache tables to speed up the re-
cursive algorithms that traverse the circuits from top to bottom
in such a way that operations on reconvergent paths are not re-
peated. The details of the cache management are not shown in
, i , ) o the algorithms presented in this paper.

. Arrival times at the. primary inputs of a circuit can be taken The circuits in the manager are also organizeedjnivalence
into account by redefining the depth of a BDAG as follows:  ¢assesan equivalence class is a list of circuits that are known
AT(T), if op= L1 tobeequivalent. For example, assume thial’, andZ are cir-
D(T) = { 1+ max (D(1'left), D(T'right)), otherwise cuits in the manager and that there also exists another circuit
Cy = X(Y + Z). This circuit belongs to the equivalence class
whereAT(T') is the arrival time of the primary input associatedc,]. After applying the distributive law, the following circuit
to the leaf noddl". can be obtained’, = XY + X Z. Assume that’, already ex-

The lower bound on the depth of a BDAG can now be recalcigted in the manager with its own equivalence clggg. Since
lated taking into account arrival times at the primary inputs. F@r, and C, are now known to be equivalent, both classes are
that, one can assume that an input with arrival tit#(7') can merged in such a way thi | = [Cs] = [C1] U [C).
be represented as a tree with” (") leaves. This tree mimics  |n practice, equivalence classes are implemented as chained
the delay of the input. lists that occupy one pointer in each node. For efficiency rea-

Theorem 3 (Lower bound on depth)et G’ be a BDAG 0b- sons, the list is ordered by depth and size of the BDAGs. An
tained fromG' by applying the ACD-rules. A lower bound for auxiliary table keeps track of all equivalence classes in the man-

Fig. 5. lllustration of the proof of theorem 3.

Proof: Given that the ACD-rules never reduce the numb
of paths, we have thai(G’) > II(G). By Theorem 1, we also
know thatll(G) = |G*|. The theorem immediately follows
from the fact that the depth of a binary tree witlheaves cannot
be smaller tharflog, n].

B. Arrival Times

D(G") s ager in such a way that knowing whether two functions are in
the same class takes constant time. Equivalent functions under
D) > |log Z 9AT(p) 3) complementation are also kept in the same class.
= 2
pEpaths(@)

IV. ALGORITHMS FORTIME OPTIMIZATION USING ACD RULES
whereAT (p) is the arrival time of the primary input associated This section presents algorithms for the exploration of

to the leaf of patlp in G. BDAGs aiming at reducing their depth. First, algorithms for

Proof: The proof is similar to that _Of Th_eorem 2._We f_irStminimaI depth by using only the AC-rules are presented. Next,
prove the result for the particular case in which all arrival timeg,, algorithm incorporating the D-rule is proposed
are zero except for one, whichdgsee Fig. 5). We also assume '

thata is a natural number. Itis easy to see that a perfectly bal- \jinimal-Delay Clusters (AC-Rules)
anced tree with depth will have at mos™ — 2 + 1 leaves,

which comes from the sum The topmost cluster a@f is the set of sub-BDAGs closer to the

root that have an operation different fragh Formally, the top-

gn—1 4 on=2_ 4 gotl 9o 1 most cluster of a BDAG is obtained by the algorithmuSTER
in Fig. 6.
(the term 1 corresponds to the leaf with late arrival, as shown inGjyven a cluster, a minimum-delay tree can be built by com-
Fig. 5). The expression above can be rewritten as bining the elements of the cluster in an appropriate way, trying

the tallest subtrees to be closer to the root. Baer and Boven [19]
proposed an algorithm to build such a tree. It is an iterative al-
gorithm that maintains all elements of the cluster in a priority

which |n<_j|cate_s th?-t a leaf W'th_ arrival timeaccounts fo* IThis distinction is also maintained in the package by properly keeping track
leaves with arrival time zero. This result can be extended to mudt-the complemented edges found in the paths.

2a(2n7a71_|_2n7a72+___+2_|_1)+1:
202" — 1) 41=2"—2"+1
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CLUSTER (G)
{ Pre-cond: G.op # L. Returns a set of sub-BDAGs }
If G.op = G.left.op then Cf := CLUSTER(G.left); — >
else Cr = G.left; £
1
T, T, T,

1f G.op = G.right.op then Cgr := CLUSTER(G right);
else Cgr := G.right;
return Cr UCpg;

T, T, T,

Fig. 8. Distributive law.
MIN_DELAY_CLUSTERS (G)
{ Returns a BDAG with min-delay clusters }
{ Q is a list ordered by depth }
if G.op =1 then return G;
C := CLUSTER(G); Q := 0;
for eachce C do
INSERT (Q, MIN_DELAY_CLUSTERS(¢));
while |Q| > 1 do
X := EXTRACT_-MIN_DEPTH(Q);
Y := EXTRACT-MIN_DEPTH(Q);
INSERT(Q, (G.op X Y));
return EXTRACT(Q);

Fig. 6. Algorithm for minimum-delay clusters.

Fig. 9. Application of ACD rules to optimize performance.

the depth of the resulting BDAG is not shorter than the depth
of the original BDAG. It can even produce some performance
degradation if

Fig. 7. Application of MN_DELAY _CLUSTERS D(Ty) > max (D(Tg) D(Tg)).

EH)wever, the distributive law changes the structure of the clus-

the two shortest elements are extracted and a new tree is bﬁf? aqd enables the application of AC-r_uIes that can potentially
and inserted in the queue. The algorithm terminates when ortn?)?.u" n shor_ter depths. The complnatlon of D- and A.C'rl.“es
one element is left in the queue, which is the returned tree. Thsrfslllustrated in Fh_e example of F|g. 9. Af_ter the appll_catlon
simple algorithm was proven to be optimal in [20]. It is alsi‘l a D-rule, a m|n|mum-del_ay tree is obtained by running the
the algorithm used in SIS for minimum-delay decomposition IN-DELAY_CLUSTERSalgorithm (AC-rules).
AND andoRr gates [6], though no proof of optimality was givenc_ ACD _Speed

The algorithm MN_DELAY _CLUSTERSto obtain a minimum- L . .
delay BDAG by only using the associative and commutative Th€ solution in Fig. 9(e) can only be obtained by applying
laws is shown in Fig. 6. The algorithm was proposed in [2d€ D—r_ule to certain nodes of the.tree..One can |mmed|atgly see
and was proven to minimize delay. It is a recursive algorithfat this solution cannot be obtained if the D-rule is applied to

that invokes the algorithm by Baer and Boven to build minimuffi€ root node of Fig. 9(a). Therefore, the order in which rules
delay clusters (thewhile” loop). are applied is relevant for searching optimal solutions.

Fig. 7 depicts an example on the solution derived by the Fig- 10 presents an algorithm for speeding-up a BDAG by
algorithm. The shadowed areas correspond to the clusters visi§id ACD-rules. Itassumes theis an initial BDAG with min-
when traversing the tree. Note that the algorithm produci8@l number of nodes, e.g., obtained by area minimization trans-
another tree with the same size, since the associative dfgnations onaBoolean network. The required time, in terms of
commutative laws do not change the size of the tree. This afd¢mber of logic levels, is also another parameter. The algorithm
implies thatII(G) remains the same, although the sizecsf 'Mplements a dynamic programming approach with memoiza-
may vary (increase or decrease) if the sharing of reconverg8fP that alternatively applies the D-rule to one of the nodes and

queue ordered by the depth of the elements. At each iterati

paths is modified. MIN_DELAY_CLUS.TERStO the BDAG. The sepxplored col-
lects all the solutions generated in the algorithm.
B. Distributive Law (D-rule) In order to control the explosion of solutions, a frontier with

gmited width is selected at each layer of the search. The width
of the frontierk is a factor that can be tuned according to the
exhaustiveness of the search. The selection of “best” solutions
ny ECHILDREN(n1) A nj.op#ns.op A mg.op #L . iSdonebygiving priority first to delay (depth of the BDAG) and
second to area (size of the BDAG).
The transformation is shown in Fig. 8. By itself, the distribu- Lower_BoundDepth(F) calculates a lower bound on the
tive law cannot provide any performance improvement, sincepth of the circuit. It corresponds to expression (3). The

The distributive law can only be applied to two nodes of
BDAG, n; andns, for which the following condition holds:
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ACD_SPEED (F, ReqTime) ACD_DECOMPOSE (ON, DC, ReqTime)
{ F is a BDAG. Returns a BDAG } { ON and DC are covers. Returns a tree }

{ ReqTime is the required time (in logic levels) } Gy := Bi1-DEcOMP (ON, DC, ReqTime, method,);
Best := MIN_DELAY_CLUSTERS (F); .
MaxTime := MAX(ReqTime, Lower_Bound_Depth(F));

frontier := {Best}; explored := {Best}; G, := BI-DECcoOMP (ON, DC, ReqTime, methody);

while depth(Best) > MaxTime A “improving” do G := Choose_Best BDAG (Gy, - ., Gn);
new := 0; F; := collapse (G.left); {cover of the left subgraph}
for each F. € frontier do F,. := collapse (G.right); {cover of the right subgraph}
for each node n € F. if D(G.right) > D(G.left) then swap(Fi, F;.);
such that D-rule is applicable do
F/ := APPLY_DISTRIBUTIVE (Fr’ n); {Decompose the fastest child (left)}
F" := MIN.DELAY.CLUSTERS (F"); D, := ACD_DECOMPOSE (F;, DC, ReqTime -1);

if F" ¢ explored then .
explored := explored U {F"'}; {Update DC for the slowest child of the tree}

new := new U {F"'}; F; := collapse (Dy); {cover of the left subtree}

Best := Best_Delay_Area (Best, F"'); if G.op = AND then —

frontier := Select_Best_k_Circuits (new, k); F.:=F.-F; DC=DC + Fj;

return Best; else {G.op ’;_QR}

F.:=F.-F;DC=DC + Fj;

Fig. 10. Algorithm for speeding-up.
g 9 P gup {Decompose the slowest child of the tree}

D, := ACD_DECOMPOSE (F;, DC, ReqTime -1);

algorithm stops when the depth of the best circuit is not larger return (Gop, Dy, Dr);

than the maximum of the required time and the lower bound  Bi-Decomp (ON, DC, ReqTime, method)

on depth. The calculation of this bound contributes to prune E ON and DC are covers. Returns a tree } )
; iynifi ; “method” determines the decomposition strategy

_the exploration significantly. The algon_thm also s_tops yvhen no Fy = Decompose2input.gates (ON, DC, method;

improvement has been observed during a few iterations. The F, := ACD_Speed (Fy, ReqTime);

“improvement” criterion is another tunning parameter of the return F;

algorithm.

Fig. 11. Algorithm for logic decomposition.

V. LOoGIC DECOMPOSITION ) ) ) ) )
ReqTime defines the desired required time for the function.

The decomposition of a Boolean functidn is performed ReqTime is measured in logic levels and it is decreased each
recursively from root to leaves by finding an operation opme a new recursion level is invoked.
and two functionsfy and F5, such that” = Fy op F». This  The main algorithm, ACCDECOMPOSE chooses the best
type of decomposition was originally called quasi-algebragpaG ¢ obtained from all bi-decompositions. This selection
decomposition [21] and often referred to as bi-decompositig§ done by first giving priority to speed. If the required time
[11], [12], [22]. Each level of recursion defines a logic levejs met by several BDAGs, the one with the smallest area (the
of the function. number of nodes) is selected. At this point, the root nodé of

The main algorithm is shown in Fig. 11. In order to imdetermines the operator for a new level of logic. The rest of the
prove the quality of the search, different bi-decompositiofetlist is collapsed and prepared for a new level of recursion.
methods can be used in the same framework. The actis@ler the decomposition has been done for one of the children
implementation uses two methods, hidden in the functiqm,), the observability dc is calculated for the other. As an
Decompose_2input_gates. One of them is based on findingexample, in case the topmost operation is an AND, the dc-set
algebraic factored forms and the other is based on finding BB F, is enlarged whetF; is zero. Since the definition of the
approximations. dc-set for each children depends on the order in which they are

The recursive paradigm behind the AQIECOMPOSE decomposed, the slowest one is always decomposed last. In
algorithm interleaves the generation of bi-decompositions withis way, it has more chances to have a larger dc-set.
the speed optimization by means of ACRPEED. The function  The satisfiability and observability dcs calculated at each
Decompose_2input_gates WOrks in two steps. node of the tree are propagated down during the recursive

1) It finds a bi-decompositiot; op F of the incompletely decomposition.
specified function defined by (ON,DC), whekg and F;
are now completely specified functions. The bi-decom-
position is performed by one of the methods explained f\ Bi-Decomposition Methods
Section V-A.
2) It decomposed’; and F into a factored form of two- ~ Two bi-decomposition methods are used in the actual imple-
input operators by using fast methods for algebraic fagientation of the decomposition algorithm.
torization. This step is an attempt to find a reasonable rep-The first is a factorization based on the search of kernels and
resentation of the functions and estimate their delay. algebraic division [17]. In the current implementation, this fac-
After these two steps, the two-input netlist is optimized fdiorization is implemented by the functidactor_good in SIS
speed(F; := ACD_SpeedF,, ReqTimg). The parameter [23].
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0[O JHI[L]O o[- JITJIL]J-
orfojOo [T [0 ol = T - [T -
nmfojoJo[T n{ -1 -J7-Jx
[0 [0 T[T 10 - -[I[T
go = bé(a + d) + ac(b+ d) ho =1
00 01 11 10 00 01 11 10 =
W[O[I[IT]O oO[-JITJI]J-
oo [T [TT]O o[- [0 [T -
11 0|01 n{ -1 -J1-711
w[oJo o[ o[- - [T [T
g1=ac(l_7+')+bé h1=a+¢z :
00 01 11 10 00 01 11 10 remspping
0[O A IO 8(1) - g % - abc’ + ab’c +acd’ +bc’d’
o[0T [T ]O - -
11 [0 8 ]11 % }(1) -1 - g % Fig. 13. BDD-based decomposition.
100 i
gg:ac+b5 h2=5+¢f+aé ) i . )
00 01 11 10 00 01 11 10 much (adenseover-approximation). In the figure, the approxi-
[O0O[IT[TT1 oo -TTJTT]O mation is calculated by remapping the natimto the constant
O0[0 [T [T ‘l’i - 10 g g 1. f is reduced by two nodeg) and the number of minterms
i(l) g g ]11 % 0 T—TT 71 is increased by two. Oncgis known, h can be calculated by
g3 = a+ be hs = b(a&+ d) + bc BDD minimization:g C h C f + g. This process is iteratively
0 o1 11 10 00 01 11 10 executed to generate a sequence of approximations as in Fig. 12.
00 T IJ1 [ -JIJILIJO A cost function based on BDD sizes is used to select one of the
o101 [1&][1 o0 -JTOJTT]O approximationsd;, k;) in the sequence.
}(1) g i ]11 % i(l) - 8 g % The actual BDD-based approach used in this paper is similar
p——— ha = bo(a+ ) + o(b + ad) to the one in [24], but considers many more nodes as candidates
9= * for replacement (same level, children, and grandchildren).
0 0l 11 10 00 01 11 10 P 9
Wl T TTTIT I WO TTTT]oO It is important to notice that the approximation approach
o111 [T [1 o1[0JO0O[DT]O subsumes the conjunctive and disjunctive bi-decompositions
n[r 111 i(l) g 8 g % proposed by other authors [22], [25] in which the BDD transfor-
[T ]1 - 1]1 hs = be(a 1 @) + acb+ 9) mations can be reduced to remapping some nodes into constants
gs = 5 = bc(a

or other nodes of the same BDD. Only the particular heuristics
Fig. 12. Conjunctive decomposition by function approximations. used in each approach may lead to different decomposition
results in practice.
lgerative Calculation of Observability Don’t Cares (ODC):
observing the example in Fig. 12, it is easy to realize that
ODC forg; can be recalculated after the minimization of
This process can be repeated until a satisfactory solution

The second approach uses the power of Boolean algebra a
computationally more expensive. It is based on the calculati
of function approximations. Fig. 12 depicts an example of tthe

approach for the conjunctive decompaosificof a function f. is found. The following loop could be executed to improve a

The cells with labell denote the originadN-set of the function. . . e . , P
The cells with label 1 represent over-approximations. The aico.njunctlve decompositiofi = g - h with a given satisfiability

of the method is to calculate two functiopsand i such that
f = g - h. A necessary condition is that
repeat
fCg N fCh dc = SDC U h;
_ _ o g = miminize (g, dc);
The method iteratively calculates over-approximatignef de = SDC U g;
f and the associated conjundts by Boolean minimization 1, — miminize (h, dc);
using the observability dc derived frogy. The more accurate yntji  no improvement.
the approximatiory; is, the larger the dc is to minimizk;.
The K-maps in Fig. 12 represent a sequence of approximations ] ) o
starting with an initial exact approximatiay. _ In practice, the experimental results have shown that the ini-
The actual method presented in this paper uses BDDs to {4l decomposition is rarely improved by this loop.
culate function approximations; it is inspired on the approach
presented in [24]. Fig. 13 presents an example for the same func- VI. EXPERIMENTAL RESULTS

tion depicted in Fig. 12. The approach consists of remappingThe strategy presented in this paper has been implemented in
some nodes of in such away that the BDD size is reduced bug|s_ The results have been compared with SIS and the method
the number of minterms of the new BDD is not increased tqgy pi-decomposition presented in [11]. The experiments have
2The approach for disjunctive decomposition is similar, but using under-ag-een runon a subset Of_ small and medium size M'Croek_aCtron'Cs
proximations instead. Center of North Carolina benchmarks. Table | describes the
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TABLE | Fig. 15 plots the normalized average results. It is interesting
SCRIPTSUSED FOR THEEXPERIMENTAL RESULTS to see thatugged andbidec produce suboptimal results for the
[ ACD area/delay tradeoff. It is also important to observe that there is a
deebraic | yugged | pitec [ [ e [ pAG o chter potential space of configurations between the paigts— DAG
algebraic*4_| rugged*4 | bidecomp acd_decompose andACD — tree. This space can be explored by partially sharing
speed.up [: I 'jf;‘gn':pse; = the isomorphic subtrees produced by ACD-tree (e.g., by sharing
map -nl -AFG____(library 1ib2.genlib) subtrees in noncritical paths only). We believe that results with

delay similar ta\CD — tree and area similartaCD — cluster

could be obtained by using DAG covering [26] and gate dupli-

cation techniques [27] during technology mapping.
ijk The overall CPU time of th&CD algorithms is about a factor
of two the CPU time of theslgebraic script, and compa-
rable to that of theugged script. Inalgebraic, rugged and
Fig. 14. Cluster collapsinfcl_collapse) of the circuit in Fig. 7. bidec, most of the CPU time is spent on theeed up com-
mand, whereas th&CD scripts evenly distribute the effort be-
scripts used for the experiments. The suffid”™ indicates that tween finding decomposﬂmqs and balancmg them.

The results were all obtained by collapsing the whole net-

the script has been run four times. : .
. . .. . work. This brute-force approach cannot be applied for large net-
All the benchmarks were multilevel netlists. Initially, the cir- . . .
. . works. In the future, we foresee combining partial collapsing
cuits were collapsed and converted into two-level forms. After

) . . - and decomposition to manage much larger examples. The two
that, the algebraic scriptlgebraic was the one deriving the :
; N : .~ largest examples that we decomposed vegrex6 (135 inputs,
best results for SIS. The script€D-* are the ones implementing .
. : 99 outputs, and 803 gates) and vda (17 inputs, 39 outputs, and
the strategy of this papeiCD — tree derives a tree decom-

o : . : 1237 gates).

position (no sharing between isomorphic subtreg&). — DAG . . . .
transforms the tree into a DAG by sharing all isomorphic Sub_.ResuIts were also obtglnec_i with thﬂgek.’ralc scrl_pt.
trees. This is achieved by algebraic resubstitution without collapsing the netlist, i.e., transforming the original

Fin.ally ACD — clusteryals% tries to share comn."non Subex_netlist described by the benchmark. The results were, in
pressions within the final clusters of the DAG. For example, ﬁeneral, worse than those obtained by collapsing.
one cluster implements the expressfan-b) + (c+d) andan- 5 Impact of Different Bi-decomposition Methods
other implements$a + (e + (¢ + f)), they will be re-expressed ) N )
as(a+c)+b+dand(a+c) + e + f, sharinga + ¢, even The current approach for bi-decomposition combines two
though the depth of the circuit can be increased by sharing fR&th0ds, algebraic and BDD-based approximations, but which
common subexpressions. This is achieved by collapsing all clig "€ |mgact of each method on the quality of the bi-decom-
ters in the DAG (commandl_collapse, see Fig. 14) and ex- POSitions? To study this impact, the scrigth — tree was
tracting common cube divisors. run with different bi-decomposition methods. The results are

Table I reports the results. After logic decomposition, all theUmmarized in Table Iil. _ _
circuits have been mapped into the librasp?2, which includes ~ The first two rows report the results obtained by using the
a rich set of static CMOS gates up to four-inpup/NOR and algebraic bi-decomposition without and with the BDD-based
six-input AOI/OAI gates. The column reports the number of Pi-decomposition, - respectively. The contribution of the
levels of the circuit before technology mapping, counted as tRDPD-based bi-decomposition is manifested in the reduction of

depth of the circuit represented with two-input gates (invertefsimber of levels and delay after technology mapping.
are ignored). Itis important to mention that the BDD-based decomposition

ACD — tree obtains a 20% delay reduction at the expenééonly chosenin asmgll percentage of times (typically between
of 35% area increase. If sharing is allowettl — DAG and 7 @nd 10%, depending on the example). In many cases, the
ACD — cluster) the delay reduction is more moderate (110)§DD—based decomposition derives the same solution as the al-
and 8%, respectively), but area is significantly better (On%ebraic decomposition. But the most interesting aspect is that

8% and 4% increase, respectively). The delay increase Bf contribution of the BDD-based decomposition is more im-
ACD — DAG andACD — cluster with regard toACD — tree is Portant at the topmost nodes of the tree, when the function is

due to two factors, mainly: 1) the capacitive load of the shar&fj!l c0mplex and offers many different possibilities for nonal-
nodes and 2) suboptimality of the tree-mapping algorithﬂwebra'c decompositions. It is at the topmost levels when the de-
when working on DAGs. In some circuits, (e.g., 9symml angisions have a more tangible impact on the final solution. The

frgl) area is drastically reduced due to the power of Boole&i§compositions close to the leaves of the tree are almost always
bi-decomposition. algebraic, especially when the functions become unate.

It is important to emphasize that the ACD scripts could re- Another experiment was also performed to check the con-

duce, on average, almost one level of logic with regard to alggPution of the method proposed in this paper with regard to
braic (6.36 — 5.49). the approximation method presented in [24], subsumed by the

former. The results reported in the third row of Table Il show

3Experimentally, we found this number to be adequate to obtain good-qual@at, althOUgh small, there is still a contribution of the new
results. method in number of levels and delay.

abec de fgh
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TABLE I
EXPERIMENTAL RESULTS

algebraic rugged bidec ACD-tree ACD-DAG | ACD-cluster
circuit PI PO L D A L D A L D A L D A D A D A
9symml 9 1 11 1043 1950 11 1.02 0.75 11 1.06 0.66 8 067 046 | 071 035 ] 070 0.32
alu2 10 6 11 9.99 3357 14 141 0.71 12 119 1.20 10 083 1.11 | 086 097 | 0.88 0.93
apex6 135 99 11  11.61 649.3 15 137 1.02 9 078 1.26 7 063 163 | 072 126 | 0.74 1.20
apex7 49 37 9 990 2577 12 128 1.05 12 123 237 8 082 221|089 1.15 | 090 1.06
bl 3 4 3 2.86 9.0 3 100 1.00 3 118 1.07 3 1.00 093099 085|095 096
b9 41 21 6 6.80 109.7 7 110 095 7 111 126 6 076 1.48 | 091 0.99 | 091 1.02
c8 28 18 7 6.99 1083 6 100 1.00 6 084 120 6 078 140 ) 097 1.07 | 1.06 1.07
cc 21 20 5 591 56.7 5 111 090 5 109 122 4 089 140 | 094 1.14 | 1.06 1.11
cht 47 36 4 6.03 121.7 4 102 1.08 4 086 179 4 076 156 | 086 1.44 | 1.00 1.48
cm138a 6 8 3 4.68 223 3 103 116 3 097 1.09 3 079 166 | 082 1.69 | 0.99 1.22
cml150a 21 1 8 7.25 45.7 7 084 1.18 7 1.02 152 7 082 120 | 0.88 1.18 | 0.89 1.01
cmlSla 12 2 6 5.80 21.3 6 101 1.20 6 119 184 6 097 220|099 1.03 | 1.00 1.19
cml52a 11 1 5 4.96 23.0 5 102 107 6 109 139 5 102 099 | 1.01 101 | 1.03 1.00
cml62a 14 5 5 5.93 60.0 6 106 0.71 6 1.13 0.99 5 076 096 | 082 078 [(093 0.83
cml63a 16 5 6 6.19 44.0 5 092 0.98 6 096 1.06 5 069 110 | 089 1.11 | 092 1.02
cmd2a 4 10 2 4.21 27.3 2 100 1.00 2 095 111 2 075 09508 100|095 095
cm82a 5 3 5 5.24 243 7 129 123 5 096 0.92 5 08 1.15]099 077 {093 079
cm85a 11 3 6 5.57 49.0 6 107 095 7 117 0.99 5 080 083 ) 08 082 08 086
cmb 16 4 4 4.85 27.7 4 100 1.00 4 091 1.07 4 08 143 | 100 1.18 | 1.01 1.13
count 35 16 7 8.65 186.7 7 100 093 7 085 1.17 7 08 176 | 097 096 | 1.02 0.88
cu 14 11 7 537 46.0 6 120 140 6 104 1.28 5 084 151 | 1.00 130 | 099 1.22
f51m 8 8 8 7.80 1223 15 203 097 9 112 063 7 081 120 | 0.87 1.02 | 0.85 1.01
frgl 28 3 11 9.17 100.7 10 095 1.26 7 070 0.57 7 058 057 | 063 046 | 062 0.55
il 25 16 6 5.80 40.7 5 09 103 6 091 133 5 070 136 | 079 1.20 | 0.87 1.30
lal 26 19 6 7.25 90.7 10 155 146 6 09 121 6 074 167 | 087 1.04 | 0.89 1.03
majority 5 1 4 3.06 6.0 4 100 1.00 4 092 0.89 4 089 08| 08 089 ] 089 0289
mux 21 1 8 7.71 447 7 082 1.15 10 1.19 195 6 079 136 | 078 133 | 079 1.16
pcle 19 9 6 6.37 753 6 1.08 0.98 7 107 142 6 087 131|097 1.09 | 1.04 1.00
pcler8 27 17 6 7.70 1147 7 104 0.72 7 096 140 5 073 157|078 1.19 | 0.85 1.06
pml 16 13 5 5.25 38.3 5 121 143 4 0.8 149 4 079 156 | 083 133 ] 1.01 1.10
sct 19 15 6 6.76 66.0 9 149 176 6 095 1.57 5 072 180 | 105 1.18 | 0.99 1.17
tcon 17 16 2 3.65 27.0 2 100 1.00 2 1.00 1.00 2 092 102|097 1.07 | 099 1.07
term1 34 10 10 9.50 107.0 8 087 116 11 112 206 8 074 227|076 1.64 | 0.83 1.49
ttt2 24 21 7 8.66 166.3 17 221 137 7 092 134 6 075 146 | 089 1.04 | 097 098
unreg 36 16 4 6.07 1113 4 097 098 4 1.04 1.02 4 077 101|077 095 ]| 077 1.00
vda 17 39 9 1142 7437 14 142 098 13 116 1.94 8 079 202 083 137 | 0.87 1.30
x1 51 35 7 6.78 263.3 7 105 1.00 9 121 145 6 08 133|089 1.04 | 097 095
x2 10 7 6 5.20 457 7 138 1.20 7 144 1.09 5 08 101 | 0.87 1.10 | 0.92 1.02
z4ml 7 4 6 6.27 44.0 8 121 083 7 099 1.02 5 079 142094 095 (| 089 098
average 6.36 1.00 100 [ 733 115 1.07 [ 661 103 127 [[ 549 080 135 ] 0.89 1.08 | 091 1.04

PI: primary inputs; PO: primary outputs; L: depth (levels of two-input gates); D,A: delay and area (normalized with respect to algebraic). Takyebeaiin

has been divided by the area of a NAND2 gate. The average values for delay and area in algebraic have also been normalized to 1.00. The numbé¢hef levels for

three ACD methods is the same.

delay
1201
@ rugged
114
bidec
[ J
algebraic
10Q $ t ; area
\ 1.1 12 13
\
\
*\ ACD~cluster
09+ ©- . gACD-DAG
R -ACD-tree
08—+ N

Fig. 15. Summary of results in Table I.

TABLE I
IMPACT OF BI-DECOMPOSITIONMETHODS USING THE ACD-TREE SCRIPT
[ Average results
Bi-decomposition methods L D A
only algebraic 564 082 1.36
algebraic + approx. (this paper) | 549 080 1.35
algebraic + approx. [24] 564 081 1.36

VII. RELATED WORK AND DISCUSSION

Speed_up [6] uses a strategy of partial collapsing and resyn-
thesis of critical paths. Resynthesis of each node is performed
by extracting kernel-based divisors that reduce the arrival time
at the output.

Restructuring by applying the ACD rules works at a finer
level of granularity than kernel-based decomposition and may
potentially lead to better results, as it was illustrated by the ex-
amples in Section II-A. Additionally, the ACI3PEEDalgorithm
has been designed in such a way that it can explore more so-
lutions even though no global improvement has been observed
during few iterations. These two features resultin a better explo-
ration of the space of solutions, at the expense of more compu-
tational cost. However, the experimental results show that this
cost is still affordable.

A. Sharing Before Reducing Depth

The experimental results also manifest the problems of
speeding up networks that have been highly optimized for
area. The results obtained by thegged script are inferior,
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on average, than those obtained by #igebraic script. forthealgebraic andACD — cluster Scripts forcm82a with
As an example, we tookpex6 from the benchmark suite this technology mapper are the following:
and compared the networks before executing ¢heed up

command. Here are the results: algebraic with | ACD-cluster with
: graph map [9] graph map [9]
algebraic rugged delay area delay area
nodes levels nodes levels 463 233 435  18.0
before speedip | 718 14 | 711 22
after speedip 733 11 | 750 15 This result confirms that: 1) the algorithm by Lehman and

_ . ] ] _ Watanabe can find better solutions than a conventional tree
The algebraic script initially derives a slightly larger ”et“SFnapper (see the corresponding result in Table I) and 2) the

(718 nodes, each node is a two-input gate) with regard 0 fghnique presented in this paper is not subsumed by Lehman
rugged script (711 nodes). However, the number of logic levelgq \watanabe’s approach.

is much higher for theugged script, due tothe more aggres-
sive sharing. This fact has a tangible impact when trying to speed
up the netlist. The result obtained by the rugged script ends up
having a larger number of nodes and logic levels. This example,This paper has presented an approach for decomposing logic
in particular, and the average results in Table Il illustrate the pHéinctions. It aims at reducing the number of logic levels of the
nomenon mentioned in the introduction of this paper (Fig. 1)hetwork and succeeds in doing so for many examples, compared
with previous existing techniques. However, there are still many

B. Logic Decomposition During Techno|0gy Mapp|ng questic.)ns on the air: hOW far are. we from Optimum SOIUtionS?
\Would it be possible to calculate tight lower/upper bounds on the

In [9], a comblned approach for logic decomposition ange th of a circuitimplementing a Boolean function? How much
technology mapping was proposed. The strategy consg{

t generating all ible decompositions of rcuit a must we pay to reduce one logic level? More research is
of generating all possible decompositions of a circuit and, .. in this direction.

representing them compactly encoded in a graph. The decomThis paper has shown that the area/delay tradeoff can be fur-

positions are generated by applym_g IOC.aI tr_ansformanons tl?ﬁgr explored and tangible improvements can still be obtained
correspond to the ACD rules described in this paper. ¥vith regard to previous techniques

In principle, one might think that the exploration power o
both techniques is the same, except for the inaccuracy intro-
duced by heuristics. However, the approach in [9] only uses the
D-rule in its factoring direction, i.e., The author wishes to thank the reviewers for their suggestions

to improve the paper.

VIII. CONCLUSION
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