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Evaluation of A + B = K Conditions
Without Carry Propagation

Jordi Cortadella and José M. Llaberia

Abstract—The response time of parallel adders is mainly determined
by the carry propagation delay. This paper deals with the evaluation of
conditions of the type A+ B = K. Although an addition is involved in the
comparison, we show that it can be evaluated without carry propagation,
thus drastically reducing the comp time. Dependencies produced
by branches degrade the performance of pipelined computers. The
evaluation of conditions is often one of the critical paths in the execution
of branch instructions. A circuit is proposed for the fast evaluation

of A+ B = K conditions that can significantly improve processor
performance.
Index Terms— Addition, carry propagati comparison, conditional

branches, parallel adders, pipelined architectures.

I. INTRODUCTION

Carry propagation determines the critical path in the response time
of parallel adders. Several approaches have been proposed to reduce
it [1], [2]. VLSI techniques have also been used to minimize design
costs and chip area [3], [4]. All the efforts to design fast adders
are focused on speeding up the carry computation. Regardless of the
technique used, the minimum response time of a feasible n-bit adder
is O(logn).

The problem addressed in this paper is closely related to parallel
adders. A circuit for evaluating when the addition of two numbers is
equal to another number (A4 B = K') is presented. The usual way to
design such a circuit involves the inclusion of an adder, which makes
the computation time depend on the delay produced by the carry
propagation. The approach we propose avoids the carry propagation
and, therefore, drastically reduces the response time.

An immediate application of this approach can be found in the
execution of conditional branches. The evaluation of conditions is
one of the most frequent operations performed in computer instruction
execution. Conditional branches must perform a comparison to deter-
mine whether or not a branch must be taken. This dependency may
produce hazards that delay the execution of the following instructions.
This problem becomes very important in pipelined computers, where
the overlapped instruction execution increases the probability of
generating hazards. The circuit presented in this paper can be used
to alleviate the dependencies produced by conditional branches.
Considering the execution frequency of this kind of instruction,
processor performance can be significantly improved.

The paper is organized as follows. Section II formulates the
problem addressed in the paper. Section III shows how carry prop-
agation can be eliminated from the condition evaluation. Section IV
presents the design and evaluation of the circuit and its inclusion
in a conventional ALU. Section V proposes the utilization of the
circuit for the efficient execution of conditional branches in pipelined
computers. This utilization is illustrated with some examples in the
scope of RISC architectures.
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II. FORMULATION OF THE PROBLEM

Given three n-bit vectors A = (an.an-1,-'-,a1).B =
(bpnibn_1,---.b1), and K = (kn.kn—1,-++, k1) which represent
two’s complement integers, a circuit must be designed that evaluates
the condition 4 + B = K'. Hereafter, we will call it Fast Adder-
Comparator (FAC). The conventional way to compute this condition
is to carry out first the addition A + B and, afterwards, to compare
the result with A". The behavior of an adder computing A + B can
be described as follows:

pi=a;, b (Carry propagation) 9)
gi =a; \b; (Carry generation) (10)
ci=(piANcic1) Vg (Carry. co =0) 11)
i =pi S cioa (Addition result). (12)

Vector R = (7,,.Tn—1.---.r1) is the result of the addition 4 + B.
If E is the result of comparison R = I, E can be defined as

e, =71, bk (ei=1er =k)

(13)

n

E:Enz/\e,.

=1

(14)

The response time of a circuit computing E' in such a way is mainly
determined by the delay produced by the recursive definition of ¢;
in (3), which is of order O(n) for a ripple-carry adder and O(log n)
for faster techniques, like a carry-look-ahead adder.

III. ELIMINATION OF THE CARRY PROPAGATION

In this section, we propose an alternative expression for evaluating
E. To avoid the use of the recursive equation (3), we define the
required carry out (v) and the required carry in (w) as follows:

vi=(piNki) Vg (vo =0)

w; = pit1 = ki

(15)
(16)

where v; is the carry out of the adder stage ¢ when k; = 7;. Similarly,
w; is the corresponding carry in to the adder stage ¢ + 1 required for
ki = r;. We define = as the equivalence of v and w:

= Vi T Wi

(17)

and

Z=2,= /= (18)
=1

The role of Z is to substitute E' for the evaluation of the condition.
The computation of Z is based on the definition of the required carry
in and carry out, whose expressions are not recursive. Now, we only
have to prove that the definitions of Z and E are equivalent. This is
the purpose of the following theorem:

Theorem: E, = Z,

Proof: By induction on n.

First, we will prove the theorem holds for n = 1(F; = Z;). From

(7) and (8) we have

Zy =z = v wo = p1 = k1.

From (5) and (4), and since ¢o = 0 we have

and therefore £, = Z;.
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Fig. 1.

Next, we will prove that the theorem holds for n > 1. Let us
assume it holds for n — 1 bits (E,—1 = Z._1). Equations (6) and
(10) can also be defined as

E.=e . AE,_yand Z, = zn A Zn—1.

Thus, if En—1 = Zn—1 =0then E, = Z, =0 and the theorem
holds. If E,_1 = Zn—1 = 1, we also have en_1 = za1 = 1,
E, = en, and Z,, = z,. So, to prove the theorem, we must prove
that e, = Zn.

From (9), (7), and (8) we have

Zp = Un—1 @ Wn—1 = ((pn—l A knAl) \% gn—l) S (pa T k).
Since e,_; = 1 then rp—1 = kn—1, and from (4) we have

kn-1 = Pn-1 T Cn-2.

By substituting kn_1 and using (3) and (4) we obtain

tn = (Prna A Cne2) V gn-1) & (pn 2 ka) = (cno1 5 pn) T kn

k, = en.

D

=7Tn

Therefore, the theorem also holds when Ey,—1 = Zn_y = 1. [ ]

The basic contribution of this theorem is the substitution of the
carry defined in (3) by the required carry in and carry out defined
in (7) and (8). Since these definitions are not recursive, the required
carries can be computed in parallel for all the stages of the circuit,
thus drastically reducing the computation delay. While the delay time
for e; is O(i) by using a ripple carry adder, or O(log1) by using a
carry-look-ahead adder, the delay time for z; is O(1) by using the
Fast Adder-Comparator. The computation of E and Z from e, and z;,
respectively, requires an n-input AND gate, which can be implemented
as a tree of constant fan-in AND gates, thus resulting in a delay time
of O(logn).

IV. CIRCUIT DESIGN AND PERFORMANCE EVALUATION

Fig. 1 shows a realization of the circuit described in the previous
section. Two main parts can be distinguished: an array of cells
computing z; and an n-input AND gate that yields the condition result.
The area complexity of the circuit is O(n). The delay time of the
array of cells is constant since there is no signal propagation through
the array.

Fast Adder-Comparator.

Z

Fig. 2. Adder and comparator.

TABLE 1
DELAY AND SILICON AREA FOR SEVERAL ADDER-COMPARATOR CIRCUITS.
(IMPLEMENTATION WITH A 1.5 pim STANDARD CELL LIBRARY)

RCA CLA FAC
n Delay Area Delay Area Delay Area
(ns) (mmz) (ns) (mmz) (ns) (mmz)

8 26.95 0.28 23.35 0.45 13.53 0.30
16 45.75 0.58 29.22 1.16 14.56 0.64
32 85.47 1.53 37.51 3.59 15.63 1.53
64 164.17 3.79 44.80 8.71 17.80 3.55
128 320.30 10.80 53.54 24.22 18.93 9.80

A. Delay Time Evaluation

The delay time improvement of this approach compared to other
conventional ones has been evaluated by means of the simulation
of several VLSI implementations. The evaluated circuits have the
following structure:
* A ripple-carry adder, n bit-comparators (EXOR gates), and an
n-input NOR gate, as shown in Fig. 2 (RCA in Table I).

« The same structure with a carry-look-ahead adder instead of
a RCA. The adder is built as a tree of 4-bit carry-look-ahead
circuits as described in [1] (CLA in Table I).

+ The Fast Adder-Comparator, depicted in Fig. 1 (FAC in Table D).

Although the delay times of the FAC and the circuit with the CLA
are of the same order (O(log n)), their constant factor is significantly
different. The logarithmic delay of the FAC is only determined by
the n-input AND gate. The delay of the CLA structure is mainly
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Fig. 3. ALU with the “4 + B = K evaluator.

TABLE 11
Pi AND g; EXPRESSIONS FOR AN OPERAND MODIFIER UNIT.
(logop™: ANY LOGICAL OPERATION (AND, OR, XOR, ...))

Operation pi 9i <o
add a; < b; a;b; 0
sub a; = b; a;b, 1

logop™ a; logop b; 0 0

determined by the computation of the carry. For this reason, an
important time saving can be obtained by using the FAC. The area
of the FAC is similar to that of the circuit with a Ripple-Carry
Adder.

B. ALU and Fast Comparator

The FAC can also be used in combination with an adder-based
ALU, such as the one described in [5] and depicted in Fig. 3.
This type of ALU can perform additions, subtractions and logical
operations. It consists of two modules: the Operand Modifier Unit
(OMU) and the adder. The OMU computes the carry propagation and
generation signals (p; and g¢;) from the input data and the operation
to be performed. Table II details the expressions for p,, g;, and co
depending on the ALU operation. The adder behaves according to
expressions (3) and (4) in Section II.

This model of ALU is suitable for use in RISC-like processors.
Since one of the most important features of these processors is
the simplicity of its pipeline, multiple-cycle operations, such as
multiplication and division, are not directly supported in hardware
[6]. With this scheme, not only the conditions of the type A+ B = K
can be detected, but also any condition of the type A op B = K,
where op is any of the operations the ALU can perform. In this way,
the comparison result can be detected long before the ALU result
is known. A particular application of this circuit is the advanced
computation of the flag Z of the ALU (before the ALU result is
known). In this case, the circuit must detect the condition A op B = 0
and its design becomes much simpler than the one presented in Fig.
1. A similar approach for the case of zero-sum detection has been
presented in [7].

The design of an ALU with a fast computation of conditions is the
basis of the technique proposed in the next section for the efficient
execution of conditional branches in pipelined processors.

Ri=0
for: .
for (i=0; i<N; i++)| e— Ri-Ris1
cmp Ri, N
br <, for

Ri=Ri+1 [ IF | RD [ALU [MEM] wr ]

cmpRi,N [ | [ ]
br <, for | m | L J

i delay; slot -

IF:  Instruction Fetch
RD: Register Read

ALU: Operation
MEM:Memory Data Access
WR: Register Write Back

et Condition Codes
% Add C tati
%//ﬁ and ::eosrsldi:i)tﬂpllllv?llllfz:ion

Fig. 4 Branches on condition codes.

V. A CASE STUDY: FAST CONDITIONAL BRANCHES

The dependencies produced by the execution of conditional
branches have been extensively studied by many authors [8], [9].
The operation that mainly restricts the potential performance a
pipelined processor can reach is the condition evaluation. Next,
different approaches for conditional branches in pipelined processors
are presented: branches on condition codes, compare&branches, and
fast conditional branches. The latter is the mechanism proposed in
this paper to execute branches efficiently, based on the Fast Adder-
Comparator described previously.

A. Branches on Condition Codes

Fig. 4 depicts the execution of a conditional branch in a RISC-like
pipeline structure. The control flow code shown in this figure detects
the stop condition of a loop. A compare instruction sets the values
of the condition codes, while the branch instruction evaluates the
condition based on the values of the condition codes. In the pipeline
model used in this example, the condition codes are set at the same
stage as the condition is evaluated.

The arrow depicted in Fig. 4 represents the control dependency
produced by the condition evaluation. The branch target address is
also computed during the second stage of the branch execution. These
dependencies delay the execution of the instruction that follows the
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Ri=0
for:
for (i=0; i#N; i++) | m———Sp- Ri=Ri+1
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Ri=Ri+1 ﬁr [ rD ‘ALUIMEMI WR |

br RizN, for

i delay!slot

N N

Register Read,
Address Computation,
and Condition Evaluati
(Ri#N)

Fig. S. Compare&Branch instruction.

branch. To reduce the negative effect of this delay, some techniques
have been proposed. The one most used in RISC processors is the de-
layed branch [10], which consists of the execution of a fixed number
of instructions following the branch—the delay slots—regardless of
the result of the branch. The compiler must fill the slots with useful
instructions that have no dependencies with the branch. In case not
enough instructions are found, NOP’s must be inserted. In our model,
there is one delay slot after the branch. The cost (in cycles) of a
control flow instruction sequence is the following:

C=2+4u

where u is the number of useless instructions inserted in the delay
slots. The two cycles correspond to the comparison and branch
instructions.

B. Compare&Branch Instructions

A conditional branch is usually preceded by a comparison that sets
the condition codes. The frequency of joint execution of both instruc-
tions has given rise to designing architectures with compare&branch
instructions. Katevenis also observed that most conditional branches
evaluate conditions for equality (=.#) and any relation with zero
(@ > 0.a > 0.---) [11]. These comparisons are called fast
comparisons, since their computation requires no carry propagation.
Further studies have shown that the frequency of this type of
comparisons within all the comparisons can be higher than 90% [9].

Compare&branch instructions can be combined with fast compar-
isons allowing, first, one cycle saving in the cost of the control flow
sequence, and second, evaluation of the condition in the second stage
of the pipeline (Register Read), thus not increasing the number of
delay slots. The cost of a control flow instruction sequence is now

C=1+u.

Fig. 5 depicts a timing diagram of the execution of a compare&branch
instruction. This mechanism has been used, for instance, in the MIPS
R2000 architecture [12].

C. Fast Conditional Branches

The ALU scheme with a Fast Adder-Comparator presented in
Section TV can be used to improve the efficiency of the execution
of conditional branches. The new proposed approach consists of
including a new instruction that combines an operation, a fast
comparison, and a branch. We call it operate&compare&branch
(och). The functional description of this instruction is the following:

dst = srcl op src2

branch if (not) dst = src3

This instruction is a general case for other simpler instructions
that have been already included in some architectures. This is the
case of the ACB instruction (Add Compare and Branch) in the DEC
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Ri=0
for: .

for (i=0; i£N; i++4)| ——

ocb (Ri=Ri+1)#N, for

och (Ri=Ri+1)#N, for

Register Read, r I I I
Address Computation, and
Condition Evaluation (Ri+1#N)

%////% ALU operation (Ri+1)

Fig. 6. Fast conditional branch.

VAX [13] or the DBcc instruction (Test Condition, Decrement and
Branch) in the MC68020 [14]. In case of including ocb in a particular
instruction set, ocb should be simplified or adapted to properly fit
the implementation constraints of the architecture (i.e., instruction
format).

Fig. 6 illustrates the use of the och instruction in our pipeline
model. By using the 4 op B = K comparator, the condition
evaluation (srcl op src2 = src3), which does not require carry
propagation, can be scheduled before the ALU yields the result (dst),
such as in the case of fast comparisons explained in the previous
technique. Now, the cost of a control flow instruction sequence is

C = u.

The execution frequency of conditional branches (15-30% of
all the executed instructions) and equality comparisons make this
approach attractive for significantly improving the performance of
pipelined architectures.

V1. CONCLUSIONS

Carry propagation is the most limiting factor in the response
time of parallel adders. The computation of conditions of the type
A+ B = K has been conventionally performed by means of a
full n-bit addition and equality comparison. This paper has proposed
an alternative way to avoid the carry propagation involved in the
addition. The elimination of the carry propagation drastically reduces
the computation time.

This contribution introduces new possibilities for reducing the
negative effect of conditional branches in pipelined architectures.
An example has been presented in the scope of RISC architectures.
Taking into account the execution frequency of branches, the inclu-
sion of the Fast Adder-Comparator in a pipelined execution unit can
significantly improve processor performance.
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Comments on “Tolerance of Double-Loop
Computer Networks to Multinode Failures”

Jon M. Peha and Fouad A. Tobagi

Abstract— A previous TRANSACTIONS ON COMPUTERS paper' quanti-
tatively evaluated the ability of a class of double-loop networks called
forward-loop-backward-hop (FLBH) networks to tolerate node failures.
Their approach was based on the ation of all possible sets of
failures. In this correspondence, we prove that their results are incorrect,
and demonstrate that it is difficult to solve this problem using an approach
based on the enumeration of failure sets, suggesting other approaches
may be preferable.

Index Terms— Double-Loop network, fault tolerance, forward-loop-
backward-hop (FLBH) network, network topology, reliability.

1. INTRODUCTION

Because of its simplicity, the single-loop topology has been widely
used as a basis for network architectures [1]. However, one liability of
this topology is that any link or node failure disrupts communication.
This problem can be alleviated by the addition of redundant links
to a single-loop network. One such topology of particular interest
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An FLBH network, N = 12,5 = 3.

Fig. 1.

is the forward-loop-backward-hop (FLBH) network [2]-[5]. In this
topology, each node has two incoming and two outgoing links.
If the nodes are assigned the numbers € {0,1,2,---.N — 1},
node ¢ has a “forward” outgoing link to node (i + 1) mod NV,
and a “backward” outgoing link to node (i — S) mod N for some
S € {1.2.3.---. N ~2}. An example is shown in Fig. 1. The subject
paper’ attempts to quantify the tolerance of an FLBH network to node
failure, given .V and 5. This allows a network designer to determine
whether an FLBH network can meet reliability requirements, and if
so, for which values of S.

As the measure of fault tolerance, the subject paper uses the
“system working ratio” O™, which is defined as follows. Assume
the probability of node failure is equal and independent for all nodes.
If @ and b are randomly selected nodes (a # b), then O™ is the
probability that a path exists from Node a to Node b given that Node
a is up, Node b is up, and m nodes are down. Links are assumed
to be reliable. Their approach is to group all N choose m unordered
sets of node failures (i.e., failure sets) into classes, and, for each
class, determine the number of source-destination pairs for which
functioning paths exist. For example, if exactly two nodes, i and j,
have failed, all failure sets for which the distance between failures
is D can be grouped together because the number of communicating
source-destination pairs is the same, where this distance between
failures is D if D = |i — j| or D = N —|i — j|. Tables are presented
for both m = 2 and for m = 3 stating the number of communicating
source-destination pairs for each class, where the classes are disjoint
and their union comprises all possibilities. Based on these results, the
authors of the subject paper extrapolate to evaluate O™ for m > 3.

These tables for m = 2 and m = 3, as well as the resulting
conjecture for m > 3, are incorrect. In the next section we present
two classes of counterexamples that directly contradict stated results
even for the relatively simple cases in which m = 2 and m = 3, and
the significance of these counterexamples is likely to increase with
m. We then explicitly demonstrate that the conjecture for m > 3 is
incorrect. We conclude with a discussion of the difficulties inherent
to an approach to measuring fault tolerance based on enumeration,
suggesting that other approaches may be preferable.

II. COUNTEREXAMPLES TO THE SUBJECT PAPER’S RESULTS

For m = 2, the subject paper rightfully concentrates on the case
where the distance between node failures is S + 1, because any
such failure set disrupts communication between some functioning
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