
Symbolic Performance Analysis of Elastic Systems

Marc Galceran-Oms
Universitat Politècnica de Catalunya

Barcelona, Spain

Jordi Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

Mike Kishinevsky
Strategic CAD Lab, Intel Corporation.

Hillsboro, OR USA

Abstract—Elastic systems, either synchronous or asynchronous, can be
optimized for the average-case performance when they have units with
early evaluation or variable latency. The performance evaluation of such
systems using analytical methods is a complex problem and may become
a bottleneck when an extensive exploration of different architectural
configurations must be done.

This paper proposes an analytical method for performance evaluation
using symbolic expressions. Two version of the method are presented: an
exact method that has high run time complexity and an efficient approxi-
mate method that computes the lower bound of the system throughput.

I. Introduction

Synchronous elastic systems [8], [15], [12] are insensitive to latency

variations. The latencies of computations and communications in these

designs are decoupled from the functional correctness.

Elastic designs provide a natural framework for design optimizations

using variable-latency (or telescopic) units [4] and early evaluation [5],

[11], [9]. These methods allow the designer to optimize systems for

the typical case rather than the worst case.

Performance analysis of synchronous elastic systems is closely

related to the performance analysis of asynchronous systems. Their

dynamic behavior can be modeled by marked graphs, a subclass of

Petri nets [20]. Different approaches have been taken to analyze the

performance of these systems, such as computing the minimum mean-

weight cycle [17], performing timing simulations [21], or analyzing

systems with min-max functions [14]. However, none of these methods

work directly for systems with early evaluation or variable-latency. A

method for computing the upper bound of the system throughput has

been proposed in [16] using linear programming. An exact method

using Markov chains with an exponential complexity is also presented

there.

This paper presents an alternative method that combines timing

simulations and symbolic algebraic expressions for analyzing the per-

formance of elastic systems with early evaluation and variable-latency

units. First, an exact version of this method with an exponential worst

case complexity is presented. Then, a fast approximate version of this

method is presented that prunes away low impact event correlations

and computes a lower bound of the system throughput.

Elastic systems can be used to automatically perform architectural

exploration [10]. Even for small architectural graphs, there can be

hundreds of different configurations whose performance must be ana-

lyzed. A fast method to estimate the throughput can significantly speed

up such exploration. Furthermore, a lower bound on the throughput

provides extra value to the already available upper bound method.

II. Overview

Figure 1(a) shows an example timed marked graph with early

evaluation and variable-delay transitions. Timed multi-Guarded marked

Graphs with Variable-delay (TGVs) will be presented formally in

Section III-A. In this Figure, transitions of the marked graph are repre-

sented as thick vertical lines, places as the edges between transitions,

and tokens as dots over the edges.

When a transition fires, it removes one token from each input place

and it adds one token to each output place, as shown in Figure

1(b). The enabling of regular transitions is based on AND-causality,

a transition can fire when all inputs have at least one token. Early

evaluation transitions can fire even if some of the inputs have no

t0

t3

t4
t5 t6 t7

t1 t2
1

0.6

0.4
10 1 1

[(0,0.8),(4,0.2)]1 1

(a) (b) (c)

Fig. 1. (a) A TGV with early evaluation and variable-delay, (b) AND-causality
firing, (c) early evaluation firing

tokens. Their main purpose is to model multiplexors. The selection

of the required branch in the datapath is abstracted in the model

by using nondeterministic choices. After each firing, the transition

chooses which of the inputs will be required for the next firing. Then,

the transition becomes enabled once the selected place has a token

available. A negative token is inserted into every input place that does

not have a token at the moment of transition firing in order to avoid

premature firing at the arrival of these irrelevant tokens and to preserve

correct behavior. Early evaluation firing is shown in Figure 1(c). Early

evaluation transitions are drawn as special boxes, like transition t4 in

Figure 1(a).

Each input of an early evaluation transition is assigned a probability

to allow performance analysis. After each firing, early evaluation

transitions choose which input will be required for the next firing using

these probabilities. In Figure 1(a), the input from t3 is selected with

probability 0.4, and the input from t0 is selected with probability 0.6.

Each transition is assigned a delay, drawn on top of the transition

in Figure 1(a). Once it is enabled, t1 needs 1 time unit to fire, and

transition t4 fires in zero time. It is possible for a transition to have

several possible delays, modeling variable-latency units. Each possible

delay is assigned a probability. For example, transition t3 will need 0

time units to fire with probability 0.8 and 4 time units with probability

0.2. It may represent an ALU with a short operation that finishes

combinationally and a long operation that needs 4 clock cycles. The

delay of variable-delay transitions is represented as a set of delay-

probability pairs: [(0, 0.8), (4, 0.2)].

The throughput of a TGV is defined as the number of times a

transition can on average fire per one time unit. Therefore, it is a number

between 0 and 1. Performance analysis of choice-free systems has been

extensively studied. The throughput can be found by computing the

minimum cycle mean [17]. However, to the best of our knowledge, the

only work that has studied the performance analysis of systems with

early evaluation is [16]. The paper proposes to use linear programming

(LP) in order to obtain an upper bound of the throughput. For variable-

delay transitions, the average delay of the transition (0.8 for t3) is used.

We propose to compute the throughput by extracting the probability

distribution of the firing times of transitions. Instead of directly deriving

the probability distribution for each firing time, the presented method

derives a symbolic expression first. Symbolic expressions are able to

correctly capture and manipulate correlations between events. Then,

the expressions are evaluated in order to obtain the firing times of

transitions. Finally, the throughput is computed by extracting the

average separation between firing times of the same transition.

The throughput of the system in Figure 1(a) is 0.397, which can

be obtained by simulating it. However, the linear programming upper

bound method measures 0.449. Consider t2 in Figure 1(a). Since it is

enabled at the beginning of the simulation and it has delay 1, its first

firing occurs at time 1 (f (t2,0) = 1, where f (ti, j) means the firing time of

the j-th firing of transition ti). Similarly, t5 and t7 are initially enabled

and they can fire (f (t5,0) = 1, f (t7,0) = 1).

Then, t0, t3 and t6 are enabled. Their firing times are obtained by

adding their delays to their arrival times: f (t0,0) = f (t5,0) + 1 = 2,

and f (t6,0) = f (t5,0) + 1 = 2. Since t3 is a variable-delay

transition, the firing time becomes probabilistic. Its firing

time is 2 with probability 0.8, and 6 with probability 0.2:

f (t3,0) = f (t2,0) + [(0, 0.8), (4, 0.2)] = [(1, 0.8), (5, 0.2)]

Transition t4 has an early evaluation enabling function. Therefore,

if it chooses the lower edge, which happens with 0.6 probability, its

arrival time is the firing time of t0,0. If it chooses the upper edge, its

arrival time is the firing time of t3,0:
f (t4,0) = 0.6 · f (t0,0) + 0.4 · f (t3,0) = [(1, 0.32), (2, 0.6), (5, 0.08)]

When a transition has more than one input and it is not early

evaluated, the maximum of the firing times of the inputs must be

computed in order to obtain the arrival time of the transition. For f (t5,1),

one arrival time is [(1, 0.32), (2, 0.6), (5, 0.08)] from t4,0 and the other

one is 1 from t7,0. If each arrival time has several possible delays, the

expression is evaluated by taking each combination, and assigning to

the maximum of the delays the multiplication of the probabilities. In

this case, f (t4,0) ≥ f (t7,0).

f (t5,1) = 1 +max(f (t4,0), f (t7,0))

= 1 + f (t4,0)

= [(2, 0.32), (3, 0.6), (6, 0.08)]

We can calculate the average firing time of a transition by computing

a mean of the above expression:

f (t5,1) = 2 · 0.32 + 3 · 0.6 + 6 · 0.08 = 2.92

The following table shows the firing times of t2, the time distance

between firings and the average firing time distance , (f (t2,i) − f (t2,0))/i.

f (t2,0) f (t2,1) f (t2,2) f (t2,3) f (t2,4) f (t2,5) f (t2,6) f (t2,7) f (t2,8)

1 4 5.92 8.43 10.86 13.37 15.88 18.40 20.92

− 3 1.92 2.51 2.43 2.51 2.51 2.52 2.52

− 3 2.46 2.48 2.47 2.48 2.49 2.49 2.50

Only two decimals of the firing time are shown for space reasons.

The separation between two consecutive events stabilizes at 2.52, and

the average distance between events would also converge to 2.52 if

more firings where shown, or if the first firings where ignored to

compute this average. By definition, the throughput is the inverse of

the average separation between firings of the same transition. Indeed,

1/2.52 = 0.3968, which is very close to the throughput obtained by

simulation, 0.397.

III. Problem Formulation

This section defines the problem to be solved. We assume the reader

is familiar with basic Petri nets concepts (see [20] for a tutorial).

A. Multi-guarded Marked Graph

Definition 1 (TGV): A Timed Multi-Guarded Marked Graph with

Variable-Delay (TGV) is a tuple N = 〈P,T, Pre, Post,G,m0, δ, α〉

where:

• P is a finite set of places, and T is a finite set of transitions. The

preset and postset of a node x ∈ P∪ T are denoted as •x and x•.

The Petri net is a marked graph: ∀p ∈ P, |•p| = |p•| = 1.

• Pre : P × T → N ∪ {0} and Post : P × T → N ∪ {0} are the pre

and post incidence functions that specify the arc weights. The

incidence matrix of the net is C = Post − Pre.

• m0 : P→ Z assigns an initial number of tokens to each place (the

initial marking).

• G : T → 22P
assigns a set of guards to every transition. The

following conditions must be satisfied: a) ∀g ∈ G(t) g ⊆ •t; b)

∪g∈G(t)g =
•t.

• α : G → R+ assigns a strictly positive probability to each guard

such that for every multi-guarded transition t,
∑

g∈G(t) α(g) = 1.

• δ : T → {(d, p)} assigns a list of delay-probability pairs to

every transition. It must hold that di ∈ R
+ ∪ {0} and for every

t,
∑

(d,p)∈δ(t) p = 1.

This definition is an extension of the definition of a Timed Multi-

Guarded Marked Graph in [16]. The difference is that each transition

is assigned a list of possible delays, instead of a single real delay. The

delay of each transition t, described by a set of pairs delay-probability

{(d, p)}, represents the number of time units (clock cycles in a latency

insensitive design) that t spends computing. If the delay is equal to 0,

it means the transition fires immediately, acting like a combinational

circuit. The average delay of a set of delay-probability pairs is the mean

of the distribution.

δ(t) =
∑

(d,p) ∈ δ(t)

d · p (1)

The guards of transitions model early evaluation. A regular transition

has a single guard corresponding to its inputs G(t) = {•t}. On the other

hand, a multiplexor with two possible input places, p0 and p1, will

have the guards G(t) = {{p0}, {p1}}. Without losing expressive power,

we assume that all early evaluation transitions have one guard for each

input. An early evaluation transition with input places p0, . . . pn will

have n guards, {{p0}, . . . {pn}}. For example, t4 from Figure 1(a) has two

guards, one for the edge (t0, t4) and one for the edge (t3, t4). Each guard

is assigned a probability, α(g), used on simulations and performance

analysis to decide how often a guard is selected.

Note that the marking of a place can be negative, modeling the

counters that are used in the different early evaluation implementations

that have been presented in the literature [9]. Negative tokens appear

when an early evaluation transition fires and one of the input places

does not have a positive token, as shown in Figure 1(c).

Definition 2 (Firing semantics): The dynamic behavior of a TGV

system is determined by its firing rules. The execution of a transition

t can be described as follows:

• Guard selection. A guard g(t) ∈ G(t) is selected nondeterministi-

cally. Once it is selected, it cannot change until t fires.

• Delay selection. A delay d ∈ δ(t) is selected nondeterministically.

Once it is selected, it cannot change until t fires.

• Enabling. Transition t becomes enabled if every place p ∈ g(t) is

positively marked.

• Firing. Given a marking m, an enabled transition t can fire leading

to a new marking m’ such that m’ = m + C(P, t), where C(P, t) is

the column of C corresponding to t. The firing is performed right

after d time units starting from the enabling of the transition.

• Single-server semantics. No multiple-instances of the same tran-

sition can fire simultaneously. A guard selection is produced for

each transition firing, and a transition cannot be enabled again

while the previous firing has not completed.

For simplicity, we restrict ourselves to bounded strongly connected

graphs.

B. Unfoldings

An unfolding of a marked graph [13], [19] is an acyclic marked

graph, where each transition corresponds to the firing of one of the

transitions in the original marked graph. An unfolding can be divided

into periods. The i-th period contains the i-th instantiation of each

event.

For example, the marked graph in Figure 2(c) is an unfolding of four

periods from the marked graph in Figure 2(a) (if dashed arrows are not

considered). At the beginning of the unfolding, t1, t3, t0 are enabled.

t
0

t
2

t
1

t
3
t
4

t
5

(a)

ty,i

tz,i

tw,itx,i

......

(b)

t0,0 t1,0 t3,0

t0,2

t4,0

t1,3 t3,3

t2,3
t4,3t5,3

t2,0t3,1

t2,1

t1,1

t5,1
t4,1

t5,0
t0,1

t0,3

t4,2

t3,2

t5,2

t2,2

t1,2

(c)

Fig. 2. (a) example TGV, (b) portion of an unfolding with re-convergent
paths, (c) 4-period unfolding of Figure 2(a), tk,i stands for the i-th instantiation
of transition tk

Thus, in the unfolding they are the first ones to fire (t1,0, t3,0, t0,0), where

tk,i means the i-th firing of transition tk. The firing of t0 enables the

second firing of t1 and t3 (t1,1, t3,1), and so on. Each transition ti in

the unfolding can be mapped to a transition π(ti) = t in the original

marked graph, and the same can be applied to the places. For example,

π(t1,1) = t1.

C. Single-Server Semantics

In order to ensure single-server semantics, some extra edges must

be added to the unfolding. These edges make sure that the transition

is not re-entrant, i.e. the (i + 1)-th occurrence of a transition is not

enabled before the i-th occurrence has been fired. For each transition

t, a single-server semantic place must be added from ti to ti+1, for all

i. These places correspond to the dashed edges in Figure 2(c), which

ensure single-server semantics for transition t5.

Adding single-server semantics places for all transitions can signifi-

cantly increase the number of edges in the unfolding. Fortunately, it is

not necessary to add them for all transitions. It is sufficient to add them

for transitions with delay greater than 1 and for transitions which have

a fan-in greater than one. It is easy to show that the rest of single-server

semantics places become redundant.

D. Throughput

Definition 3 (Steady state throughput): The steady state throughput

of a transition t, Θ(t), of a TGV is defined as:

Θ(t) = lim
τ→∞

σ(t, τ)

τ
(2)

where τ represents time and σ(t, τ) is the firing count of t at time τ,

i.e., it indicates how many times t has fired at time τ.

The firing process is weakly ergodic if the limit in equation 2

exists [7]. It can be shown that this limit does exist for a TGV and

that it is the same for all transitions [16].

E. Timing Simulation of a TGV

The objective of this work is to determine the throughput of an

elastic system by determining the firing time or occurrence time of each

transition in an unfolding which is long enough. In [21], the occurrence

time of the events of an unfolding is computed in order to obtain

the cycle time of an asynchronous circuit with only AND-causality

transitions. The firing time of a transition becomes a probability

distribution if there is early evaluation or variable-latency in the system.

Definition 4 (Firing time of a transition of an unfolding): The

probability distribution for the firing time of a transition t in an

unfolded TGV can be defined as follows:

P(f (t) ≡ X) = P(δ(t) +max{ f (t′) | t′ ∈ •G(t)} ≡ X) (3)

where δ(t) is a shortcut for δ(π(t)).

If t belongs to the set of initial events of the unfolding (•t = ∅), then

the probability that the firing time is equal to X it the probability that

its delay is X. Otherwise, the probability that f (t) is X is the probability

that the chosen delay for t plus the maximum of the firing times of the

transitions of the chosen guard is X. The average of the firing time for

a transition t in the unfolding is denoted as f (t).

Theorem 1 (Steady state throughput using firing times): Let G be a

TGV, and t be a transition of G. The steady state throughput of t is:

Θ(t) = lim
i→∞

i

f (ti)
(4)

where ti is the i-th instantiation of t in the unfolding of G.

By definition 3, the throughput is σ(t, τ)/τ, where the time τ tends

to infinity. Since ti is the i-th instantiation of t in the unfolding of G, t

will have fired on average i times at time f (ti). Therefore, if τ = f (ti),

then
σ(t, τ)

τ
=

i

f (ti)

�

IV. Max-plus Algebra with Early Evaluation

Instead of directly computing the firing time of each event in

the unfolding, our method creates a symbolic expression for each

firing time first. The advantage of using symbolic expressions is that

they can capture correlations that are lost otherwise. Consider the

portion of an unfolding shown in Figure 2(b). Assume that the firing

time of tx,i is f (tx,i) = [(4, 0.2), (5, 0.8)]. Then, f (ty,i) = f (tx,i) + δ(ty,i)

and f (tz,i) = f (tx,i) + δ(tz,i). If both ty,i and tz,i have unit delay, then

f (ty,i) = f (tz,i) = [(5, 0.2), (6, 0.8)]. In order to compute the arrival time

of tw,i, one must compute the maximum of f (ty,i) and f (tz,i). The

resulting firing time if each possible combination is taken into account

is:

max

([

(5, 0.2)
(6, 0.8)

]

,

[

(5, 0.2)
(6, 0.8)

])

=



























(max(5, 5), 0.04)
(max(5, 6), 0.16)
(max(6, 5), 0.16)
(max(6, 6), 0.64)



























=

[

(5, 0.04)
(6, 0.96)

]

The previous computation is not correct. Firing times f (ty,i) and f (tz,i)

are correlated, because they both depend on f (tx,i). It is never the case

that f (ty,i) , f (tz,i). The correct computation is max(f (ty,i), f (tz,i)) =

[(5, 0.2), (6, 0.8)]. Using symbolic expressions, some correlations can

be structurally detected and fixed. For example, if δ(tw,i) = 0, f (tw,i)

from Figure 2(b) is:

f (tw,i) = 0 +max(f (tx,i) + δ(ty,i), f (tx,i) + δ(tz,i))
= f (tx,i) +max(δ(ty,i), δ(tz,i))
= [(4, 0.2), (5, 0.8)] +max(1, 1)
= [(5, 0.2), (6, 0.8)]

This section shows how to build and evaluate symbolic expressions

that represent the firing time of each transition of an unfolding. Two

algorithms are provided. The first one, A exact, computes the exact

probability distribution of each firing time, but it has an exponential

worst case complexity. The second one, A prune, is an efficient

algorithm that obtains a statistical upper bound of each firing time.

Since A prune returns upper bounds of the actual firing times f (t),

the throughput of the system obtained from this method will be a lower

bound of the actual throughput (see equation 4).

A. Definitions

Max-plus algebra [2] has been used in the literature in order to find

the cycle time during the steady state of asynchronous circuits with

AND-causality. It has also been extended to Min-Max functions in order

to perform timing analysis of asynchronous circuits with OR-causality

and latch-controlled synchronous circuits with clock schedules [14].

In these papers, AND-causality join structures are translated to max

functions and OR-causality to min functions. In order to adapt max-plus

algebra to elastic systems with early evaluation and variable-latency,

besides max operation, a new early evaluation operation is needed.

Furthermore, leaf variables are sets of delay-probability pairs instead

of positive real numbers. While some properties of Max-Min functions

are probably lost, some basic useful properties are still maintained in

this algebra.

Definition 5 (MPEE expression): A max-plus expression with early

evaluation (MPEE), e, is a term in the grammar:

e ≔ δ | x | e1 + e2 | e1 ∧ e2 | e
α1

1
∨ e
α2

2

where δ is a constant, x is a variable, e1 and e2 are MPEE expressions,

and αi are early evaluation probabilities. Constants are sets of delay-

probability pairs, and variables must be assigned to sets of delay-

probability pairs for evaluation. For every early evaluation operator,

the sum of probabilities must be 1.

Operator +,∧,∨ represent the sum, max and early evalua-

tion operations for sets of delay-probability. Let us define a

grouping operation on sets of pairs by a simple example:

group{(1, 0.1), (2, 0.3), (1, 0.6)} = {(1, 0.7), (2, 0.3)}. Now the operations

on delay-probability pairs can be defined as follows:

Definition 6 (Addition of two sets of delay-probability pairs):

Given two sets of delay-probability pairs, δ1 = {(d, p)},

δ2 = {(d, p)}, their addition is the set of delay-probability pairs

group{(d1 + d2, p1 × p2) | (d1, p1) ∈ δ1 ∧ (d2, p2) ∈ δ2}. For example:

[

(2, 0.4)
(3, 0.6)

]

+

[

(1, 0.8)
(2, 0.2)

]

=



























(3, 0.32)
(4, 0.08)
(4, 0.48)
(5, 0.12)



























=

















(3, 0.32)
(4, 0.56)
(5, 0.12)

















In all operations, different pairs that have the same delay are grouped

into a single pair, and their probabilities are added, like the pairs with

delay 4 in the previous example.

Definition 7 (Maximum of two sets of delay-probability pairs):

Given two sets of delay-probability pairs, δ1 = {(d, p)},

δ2 = {(d, p)}, their maximum is the set of delay-probability pairs

group{(max(d1, d2), p1 × p2) | (d1, p1) ∈ δ1 ∧ (d2, p2) ∈ δ2}.

For example:

[

(2, 0.4)
(3, 0.6)

]

∧

[

(1, 0.8)
(4, 0.2)

]

=



























(2, 0.32)
(4, 0.08)
(3, 0.48)
(4, 0.12)



























=

















(2, 0.32)
(3, 0.48)
(4, 0.20)

















Definition 8 (Early evaluation operation): Given two sets of delay-

probability pairs, δ1 = {(d, p)}, δ2 = {(d, p)}, and two real num-

bers, α1, α2 such that 0 ≤ α1, α2 ≤ 1 and α1 + α2 = 1, the early

evaluation operation results in the set of delay-probability pairs

group{
⋃

i∈{1,2}{(d, p × αi) | (d, p) ∈ δi}}. For example:

[

(2, 0.4)
(3, 0.6)

]0.1

∨

[

(1, 0.8)
(4, 0.2)

]0.9

=

[

(2, 0.04)
(3, 0.06)

]

⋃

[

(1, 0.72)
(4, 0.18)

]

=



























(1, 0.72)
(2, 0.04)
(3, 0.06)
(4, 0.18)



























All operations have arity two, but they can be easily extended to arity

n. We assume that + has a higher binding than ∧ or ∨. Operations ∧

and ∨ are associative and commutative. Addition distributes over both

∧ and ∨.

e1 + (e2 ∧ e3) = e1 + e2 ∧ e1 + e3

e1 + (e
α1

2
∨ e
α2

3
) = (e1 + e2)α1 ∧ (e1 + e3)α2

(5)

B. Building MPEE Expressions

Given an unfolding of a TGV, an MPEE expression is built for

each transition. Expressions have a unique pointer in memory, using

a technique similar to BDD databases [6]. This way, memory usage

is lower and evaluation of expressions is faster, since results can be

reused. This is useful, for example, when several transitions share the

same set of inputs, since the expression built to compute the arrival

time will be shared. Notice that it will cause the expression to form an

acyclic graph instead of a tree.

Algorithm 1: BuildMPEE

Input: A TGV G and a transition t

Output: An MPEE expression for the firing time of t

if t ∈ BuiltExpressions then
return BuiltExpressions[t]

arrival = ∅
for p ∈ •t do

e = BuildMPEE[•p]
arrival = arrival ∪ {e}

if Early(t) then
ea = MakeEarly(arrival,Probs(t))

else
arrival = SimplifyMax(arrival)
ea = MakeMax(arrival)

ea = FactorOut(ea)
e = MakePlus(ea,MakeLeaf(δ(t)))
BuiltExpressions[t] = e

return e

x2

x1

x0

y2

y1

y0

5,2f(t)

2,2f(t)
4,2f(t)

5,1f(t)

1

1 1

1

1

Fig. 3. Graph representation of an MPEE expression for unfolding in Figure
2(c). xk represents δ(t2,k) and yk represents δ(t4,k)

Algorithm 1 calls the following procedures:

• Early. Checks whether the given transition is early evaluation.

• Probs. Returns the guard probabilities for the input transitions.

• MakeLeaf. Returns an expression associated with the delay of a

transition. If it is not a variable-delay transition, then a constant

is returned. Otherwise, a new variable is generated.

• MakePlus, MakeMax, MakeEarly. Given a list of expressions, a

new expression is created which is either the addition, max or

early of the given list. MakeEarly receives a list of probabilities.

If an expression with the same operators and operation already

exists in memory, then the existing expression is returned. A lower

and upper bound for the expression is computed and recorded.

Some basic simplifications are done, e.g., constants are grouped

(0 ∧ 1 ∧ e0 = 1 ∧ e0).

• SimplifyMax. Given a list of expressions, it checks whether some

of them is subsumed by the rest when computing the maximum

of the expressions. It uses the upper and lower bounds of the

expressions.

• FactorOut. Given an early or max expression, it applies the dis-

tributive property in order to factor out common sub-expressions.

Given the following delays δ(t0) = δ(t5) = 0, δ(t1) = δ(t3) = 1,

δ(t2) = δ(t4) = [(1, 0.5), (2, 0.5)]; the firing time of t5,2 (f (t5,2)) in

Figure 2(c) is described by the expression graph in Figure 3. In this

Figure, xk is a short-cut for δ(t2,k) and yk is a short-cut for δ(t4,k). It

can be seen how expressions are reused to compute different firing

times, such as f (t5,2) or f (t5,1). In fact, there is a unique expression

graph which receives pointers from the firing times of all transitions.

They are not drawn in this Figure in benefit of simplicity.

C. Lower and Upper Bounds of Expressions

In order to discard redundant expressions when a new max expression

is added, the lower and upper bound of each expression is recorded.

These bounds can be computed using the following rules:

e = δ(t) → ub(e) = ub(δ(t)) lb(e) = lb(δ(t))
e = e1 + e2 → ub(e) = ub(e1) + ub(e2) lb(e) = lb(e1) + lb(e2)
e = e1 ∧ e2 → ub(e) = max(ub(e1), ub(e2)) lb(e) = max(lb(e1), lb(e2))
e = e1 ∨ e2 → ub(e) = max(ub(e1), ub(e2)) lb(e) = min(lb(e1), lb(e2))

For leaf expressions, the upper and lower bounds are the upper and

lower bounds of the corresponding set of delay-probability pairs. If the

expression is a sum of the expressions, then the upper bound is the

sum of upper bounds, and the lower bound the sum of lower bounds.

The same rationale can be applied to the upper and lower bound of

a max operation. For an early evaluation operation, the upper bound

corresponds to the case where the selected branch is the one with the

greatest upper bound. Similarly, the lower bound corresponds to the

case where the selected branch is the one with the lowest lower bound.

The SimplifyMax operation discards redundant expressions given a

list of expressions whose maximum is going to be computed. In order

to do so, the maximum of the lower bounds is computed (max lb).

Then, for each expression with bounds lb, ub, if ub < max lb, the

expression is discarded.

Although more sophisticated methods to discard redundant branches

have been tried, none of them was fast enough so that it could be

used while the MPEE expressions are generated. For example, an

SMT [3] solver was called in order to discard redundant expressions.

This solution could take into account correlations between expressions

in order to determine if an expression is redundant (e.g., it could detect

that a+ c and b+ c are redundant in a+ b+ c∧ a+ c∧ b+ c), but it was

computationally too expensive, specially when the depth of the MPEE

expression is very big.

D. Exact Evaluation of MPEE Expressions

Once an MPEE expression has been built for every transition,

the expressions must be evaluated in order to be able to obtain the

throughput. The accuracy of the solution decreases for every max

operation in which the operands are correlated. In this case, the result

does not correspond any more to the result that would result by correctly

evaluating equation 3.

The cause of these correlated expressions are re-convergent paths,

like the one shown in Figure 2(b). Both [1] and [18] identify this

problem when doing statistical timing analysis of circuits and propose

exact solutions with exponential time cost. They identify nodes that

are the sources of re-convergent paths, and then they obtain an exact

result by evaluating each possible delay by itself in the sources of

re-convergent paths. Given an MPEE expression, it is possible to

identify which sub-expressions are the sources of re-convergent paths

by traversing the expression.

Definition 9 (Correlated Expression): Given an MPEE expression

e = e1 ∧ e2 ∧ . . . en, an expression e′ is correlated with regard to e

if there exists at least two sub-expressions of e (ei, e j), such that there

is a path in the expression graph from ei to e′ and from e j to e′.

Correlated expressions are the sources of a re-convergent path in

the expression graph, which means there is a re-convergent path in the

unfolding which could not be factored out. We are only interested in

the correlated expressions that may introduce a set of delay-probability

pairs with more than one element, even if their inputs are a single delay-

probability pair. These are leaf expressions which represent variable-

delay transitions, and early evaluation expressions. The set of correlated

expressions for a given max expression can be found by traversing its

expression graph.

Symbolic MPEE expressions may alleviate the problem of re-

convergent paths since expression manipulation can factor out common

expressions in a max operation. However, there are some cases where

this is not possible. For example, in Figure 3, either x2 and y2 are

correlated expressions or x0 and y0 are correlated expressions. It is not

possible to transform the expression using the algebra properties so that

none of them is a correlated expression.

Algorithm 2: Evaluate

Input: Expression e, an integer i, a list of CorrelatedExpressions and
a probability prob

if i < 0 then
Eval(e)
Scale(e,prob)

else
ce = CorrelatedExpressions[i]
if Early(ce) then

for each guard (g, p) of ce do
SelectGuard(ce, g)
Evaluate(e, i − 1,CorrelatedExpressions, prob × p)

else
ce is a leaf expression with variable-delay

for each delay (d, p) of ce do
SelectDelay(ce, d)
Evaluate(e, i − 1,CorrelatedExpressions, prob × p)

To obtain the exact result of an expression e even if there

are correlated expressions, we must do a case by case evalua-

tion. For each possible selection of delays in the correlated expres-

sions, e must be evaluated and its result scaled to the selection

probability. Algorithm 2 shows how evaluation case by case can

be computed using a recursive algorithm. The top most call must

be Evaluate(e, size(CorrelatedExpressions),CorrelatedExpressions, 1),

where CorrelatedExpressions is the list of correlated expressions with

regard to e.

For each correlated expression, it selects all possibilities one by one

and calls the algorithm recursively. The accumulated probability is kept.

Once all the correlated expressions have been traversed, the procedure

Eval is called, which evaluates the expression using definitions 6, 7

and 8. Eval is a recursive function that will evaluate sub-expressions

if it is needed. After evaluation, the partial result is stored after scaling

it with the accumulated probability prob.

For the example in Figure 3, the correlated expressions are x0 and

y0. If all variables xi and yi have a delay equal to [(1, 0.5), (2, 0.5)], the

four different evaluations to do are:

Delays Result

x0 = 1, y0 = 1 [(4, 0.0625), (5, 0.5), (6, 0.4375)]

x0 = 1, y0 = 2 [(5, 0.125), (6, 0.625), (7, 0.25)]

x0 = 2, y0 = 1 [(5, 0.125), (6, 0.625), (7, 0.25)]

x0 = 2, y0 = 2 [(5, 0.0625), (6, 0.5), (7, 0.4375)]

Each combination has a probability of 0.25. The

final probability distribution is obtained by scaling each

distribution by its probability and combining them together:

[(4, 0.015625), (5, 0.203125), (6, 0.546875), (7, 0.234375)]. The final

average firing time is 6.0.

After evaluation for the case x0 = 1, y0 = 1, the evaluation for the

case x0 = 1, y0 = 2 is performed. Notice that not all expressions must

be reevaluated, only the ones that depend on the value of y0, since x0

has not changed. For this example, this would save 5 evaluations. This

optimization is taken into account by the evaluation algorithm.

Algorithm A exact(k) creates an unfolding of k periods. Then,

Algorithm 1 is called in order to build the expression graph for all the

transitions in the unfolding. Finally, Algorithm 2 obtains the probability

distribution for the firing time of each transition. Assuming k is large

enough, the throughput can be obtained by using equation 4. The

running time of this method is exponential with regard to the number

of correlated expressions in the expression graph.

E. Upper Bound Evaluation of MPEE Expressions

For most examples, A exact is infeasible because correlations

cannot be factored out when building the expressions and the run-

time becomes exponential. Algorithm A prune introduces a couple

of heuristics that significantly reduce its complexity. First, the size

of the sets of delay-probability pairs must be kept small enough so

that operations do not take too much time. Second, some correlated

variables and early evaluation expressions can be ignored and computed

as if they did not add re-convergent paths. A prune computes an upper

bound of the firing times of each transition. Therefore, the obtained

throughput will be a lower bound of the actual throughput.

1) Size of Sets of Delay-Probability Pairs: As the expressions grow

and have a larger depth, the number of possible delays in the solution

also grows. Computing max and plus operations has a quadratic cost

on the size of the operands. Thus, if δ0∧δ1 is computed, and δ0 is a set

of delay-probability pairs with 20 possible delays, and δ1 has another

20 possible delays, 400 max operations plus 400 multiplications of

probabilities will be computed.

Corner cases tend to have smaller and smaller probabilities. If a

variable-delay transition t has delay 1 with probability of 0.1, after 10

periods of the unfolding, there will be one delay-probability pair with

probability 10−10 corresponding to the case where all instantiations of

t selected delay 1.

The probability distribution of the firing time of transitions after some

periods of the unfolding typically has the form of a mountain chain,

where the greatest delays and the smallest delays have the smallest

probabilities. One optimization that can reduce the running time with

no significant cost on the accuracy of the results is to remove delays

with low probability. Neighboring expressions with probabilities lower

than a threshold are grouped together into a single pair with a value

that does not change the average of the set.

For example, consider the delay [(10, 10−4), (11, 1.5 ×

10−4), (12, 0.1), (13, 0.2), . . .]. If the threshold is 10−3, then the

first two delays should be grouped into the third one. The resulting

delay d and probability p are computed as follows:

p = 10−4
+ 1.5 × 10−4

+ 0.1 = 0.10025

d = (10 × 10−4
+ 11 × 1.5 × 10−4

+ 12 × 0.1)/p = 11.9965

A high threshold may force too much grouping, which may actually

slow down the computation. Empirically, this value has been set to

10−20. To ensure that results do not grow too much, if the size of the

set is larger than some value, for example, 64, some extra grouping

may be performed with a larger threshold.

2) Ignoring Correlated Expressions: Some correlations may be

completely ignored. The condition to end the recursion in Algorithm 2

(i < 0) can be changed to:

i < max(0, size(CorrelatedExpressions) − max correlated expr + 1)

If max correlated expr = 0, then all correlations are ig-

nored by Algorithm 2, which directly evaluates the expression. If

max correlated expr = 2, then the only the two first correlated

expressions in CorrelatedExpressions will be considered. Notice that

even if max correlated expr is 0, some correlations are still taken

into account, since they are captured and simplified away when building

the MPEE expression in Algorithm 1.

For the example in Figure 3, if only correlations due to x0 are taken

into account, only two evaluations must be done:

Delays Result

x0 = 1 [(4, 0.015625), (5, 0.296875), (6, 0.5625), (7, 0.125)]

x0 = 2 [(5, 0.09375), (6, 0.5625), (7, 0.34375)]

Since each combination has a probability of 0.5, the final re-

sult is [(4, 0.0078125), (5, 0.1953125), (6, 0.5625), (7, 0.234375)], which

has an average of 6.02. The exact average firing time was 6.

If no correlations are taken into account, then the final result

[(4, 0.003906), (5, 0.1875), (6, 0.574219), (7, 0.234375)], which has an

average of 6.04. In general, the average firing time increases as the

number of correlations considered decreases.

3) Upper Bound Theorem: As the previous example shows, ignoring

correlations yields an upper bound of the firing time. Since the through-

put of an elastic system is computed using i/ f (ti), the throughput

computed ignoring correlated expressions will be a lower bound of

the real throughput.

Definition 10 (Definition 5 from [1]): A cumulative distribution

function (CDF) Q(x) is a statistical upper bound of another CDF S (x)

if and only if for all x, Q(x) ≤ S (x).

Using definition 10, we can state that, for each transition ti of

the unfolding, the firing time probability distribution that A prune

computes for ti is a statistical upper bound of the actual firing time

probability distribution of ti.

Theorem 2: Let e be an MPEE expression representing the firing

time of transition ti of the unfolding. Let Q(x) be the CDF of the

probability distribution computed by using definitions 6, 7 and 8 on

e, and let S (x) be the probability distribution which is the solution of

equation 3 for transition ti. Q(x) is a statistical upper bound of S (x).

The proof for this theorem is omitted due to space limitation. It is

done using a technique similar to the proof of Theorem 2 in [1] with

an extension to handle the early evaluation operation.

V. Number of Periods of the Unfolding

The final question that needs to be answered is how many times the

TGV should be unfolded, for both A exact and A prune algorithms.

In [21], an upper bound of the periods of an unfolding is found,

so that it can be guaranteed that the exact cycle time is correctly

computed. Unfortunately, variable latency and early evaluation make

this result invalid, although some other results from the paper still

hold. A dynamic algorithm is used in order to determine the number

of periods for the unfolding. This section presents some theoretical

background to justify this dynamic algorithm.

A. Convergence of A exact

Definition 11 (Average separation between occurrences): The aver-

age separation between two occurrences of the same transition t, ti and

t j, is defined as:

∆i(t j) =
f (t j) − f (ti)

j − i
(6)

The first firing times of a timing simulation can have some perturba-

tions because the steady state has not been reached yet. However, using

a technique similar to [21], it can be proven that for any transition t,

after some initial number of periods i0,

max
∀ j>i≥i0

{∆i(t j)} ≤ 1/Θ (7)

That is, the throughput estimate computed as an inverse of the

average separation between occurrences over some length of simulation

is an upper bound on the exact throughput.

The limit from the throughput definition (equation 4) exists, as

pointed out in Section III-D. Equation 7 is monotonically improving the

bound because of the maximum operation. The longer the unfolding,

the closer equation 7 gets to the exact throughput. While this equation

may only reach its limit in the infinity, the following property can

be shown based on a desired error ǫ > 0 for computing the average

separation between the occurrences:

∀ǫ > 0, ∃ k > 0, max
∀k≥ j>i≥i0

{∆i(t j)} ≥ (1 − ǫ) · 1/Θ (8)

This equation justifies the following algorithm. Iteratively, a number

of periods is added to the unfolding and then the firing times for the new

transitions are computed. Let A exact(k) be max∀k≥ j>i≥i0 {∆i(t j)}, the

result obtained by running A exact algorithm on a k-period unfolding.

First, A exact(T/2) is computed, where T is the number of tokens in

the TGV. Next, T/2 periods are added at each iteration, until the re-

sult stabilizes, i.e., A exact(i · T/2) + (1 − ǫ) ≥ A exact((i + 1) · T/2),

where ǫ is a small number that can be tuned to decide the acceptable

error of the algorithm. The number of tokens T is chosen since it scales

together with the size and the complexity of the TGV.

B. Convergence of the Upper Bound Method, A prune

The dynamic method to decide when to stop adding periods to the

unfolding can also be applied to A prune algorithm. For every tran-

sition in the unfolding ti, A prune computes a firing time probability

distribution f ub(ti) which is a statistical upper bound of f (ti). There are

two important facts to consider::

1) By construction, the upper bound of both distributions is the

same, ub(f ub(ti)) = ub(f (ti)).

2) Since each max expression which has correlated expres-

sions adds some extra overhead to the upper bound, and no

other type of operation modifies the accuracy of the result,

f ub(ti) = f (ti) + k =⇒ f ub(ti+1) ≥ f (ti+1) + k

Due to the second item, the estimation of the average occurrence

distance based on the upper bound, f ub(ti), cannot decrease with

iterations, and due to the first item, it is always limited from above.

Hence the difference between the actual firing time and its computed

upper bound is bounded, and it cannot decrease if more periods are

added to the unfolding.

Let Θlb be the throughput returned by applying A prune to an

infinite unfolding. Considering that f ub(ti) ≥ f (ti), it can be derived

that Θlb ≤ Θ. If the previously defined dynamic method is applied to

A prune, it will return a throughput Θlb/ǫ, where ǫ ≤ 1. It must be

ensured that Θlb/ǫ ≤ Θ, because our objective is to obtain a lower bound

of the throughput. Since A prune is a fast algorithm, the accuracy

parameter ǫ in the dynamic algorithm can be set to a small enough

value so that the resulting throughput will either be a lower bound of

the Θ or it will be equal to Θ for enough significant digits.

C. Example

Figure 4(b) shows the throughput of the TGV in Figure 4(a) with

different number of unfoldings and different correlation strategies. In

Figure 4(a), the number below each transition is its delay. There is

one early evaluation transition and one variable-delay transition. The

throughput obtained by simulating the elastic system is 0.537. The

throughput obtained by the linear programming method in [16] is 0.618.

The two horizontal lines in Figure 4(b) correspond to the sim-

ulation throughput and the LP throughput. The other three lines

correspond to A exact(k), A prune(k), and a third algorithm where

max correlated expr (presented in Section IV-E2) has been set to 12.

The reader should keep in mind that the Figure shows the throughputs,

which are the inverse of the average firing times.

It can be seen that A exact(k) complies with equation 7. The

computed throughput is always greater than the simulation throughput,

and after 5 periods it converges, returning the exact throughput.

A prune is initially over the throughput, but after 3 periods it

crosses the line representing the simulation throughput. As it has been

explained, it is possible that this happens if the unfolding does not have

1 1 1 1 1

1

0

[(2,0.89), (3,0.11)]

0.25

0.75

(a)

(b)

Fig. 4. (a) TGV with early evaluation and variable-delay (b) Throughput
of Figure 4(a) computed using different numbers of unfoldings and different
correlation strategies

enough periods. Afterwards, it converges at 0.470, which is indeed a

lower bound of the throughput.

While the firing time expression has less than 12 correlated

expressions, which happens for the first 6 periods, the line for

max correlated expr = 12 behaves like A exact. Afterwards, it

starts losing accuracy, and it converges at 0.475.

VI. Experimental Results

This section presents a set of experiments with random graphs. The

relative error of the different methods is evaluated.

A. Random Graphs

To show the accuracy of the presented method, a set of experiments

has been performed on sequential circuits from the MCNC bench-

marks. For each circuit, the graph structure was extracted, and the

largest strongly connected component was saved. Then, each edge was

assigned a token with a random probability between 0.25 and 0.6.

Next, each transition was assigned unit delay with a random probability

greater than 0.5, otherwise its delay was set to zero. Variable delays

were added to 10% of the nodes. These nodes were assigned two

random possible delays between 0 and 10. Each delay was assigned a

random probability. Finally, 25% of the nodes with 2 or more inputs

were configured as early evaluated. The probability of each input was

generated randomly.

Table I shows the list of graphs and their throughputs. For each

graph, three versions were saved. One with only variable-delay nodes,

one with only early evaluation nodes, and one with early evaluation

and variable-delay. We compare our results against the upper bound

method (LP) in [16] that uses linear programming.

The maximum number of correlations taken into account by the

evaluation algorithm was set to 0 in order to obtain the fastest

possible run-times. When building the expressions, some correlations

can already be factored out. For the case where there is only early

evaluation and no variable-delay, the average errors for the upper bound

method and the lower bound method are 6.8% and 3.5% respectively.

Both methods are quite accurate, although there are two graphs where

the error of the upper bound method is over 10%.

The LP method is less accurate on graphs with variable-delay nodes

since it does not know the possible delays of these transitions. For

TABLE I
Experimental results. N: nodes, E: edges, EV: early evaluation nodes, VD:

variable-delay nodes, T: tokens, D: nodes with δ > 0, UB: upper bound
throughput (LP), SIM: simulation throughput, LB: lower bound throughput,

∆UB: UB error w.r.t. SIM, ∆LB: LB error w.r.t. SIM

Graph Throughput Error

Graph N E EV VD T D UB SIM LB ∆UB ∆LB

Only Early Evaluation

s420 9 10 1 0 2 4 0.500 0.500 0.500 0% 0%
s838 9 10 1 0 2 4 0.412 0.412 0.412 0% 0%
s208 9 10 1 0 5 8 0.765 0.732 0.656 5% 10%
s27 18 28 4 0 10 28 0.619 0.472 0.429 31% 9%
s382 48 66 6 0 15 39 0.254 0.253 0.253 0% 0%
s526 56 77 6 0 21 46 0.250 0.239 0.235 5% 2%
s400 54 74 8 0 38 60 0.713 0.702 0.696 2% 1%
s444 70 94 12 0 33 45 0.867 0.805 0.801 8% 0%
s386 59 142 11 0 53 129 0.250 0.217 0.199 15% 8%

s1488 180 619 47 0 139 340 0.333 0.321 0.305 4% 5%

Only Variable Delay

s420 9 10 0 1 2 4 0.287 0.287 0.264 0% 8%
s838 9 10 0 2 2 4 0.107 0.107 0.101 0% 6%
s208 9 10 0 1 5 8 0.322 0.322 0.308 0% 4%
s27 18 28 0 2 10 28 0.333 0.199 0.172 67% 14%
s382 48 66 0 5 15 39 0.161 0.133 0.126 21% 5%
s400 54 74 0 7 38 60 0.476 0.265 0.251 80% 5%
s526 56 77 0 3 21 46 0.182 0.175 0.172 4% 2%
s444 70 94 0 5 33 45 0.526 0.272 0.229 93% 16%
s386 59 142 0 3 53 129 0.143 0.143 0.143 0% 0%

s1488 180 619 0 7 139 340 0.152 0.148 0.127 3% 14%

Both Early Evaluation and Variable Delay

s420 9 10 1 1 2 4 0.372 0.329 0.288 13% 12%
s838 9 10 1 2 2 4 0.207 0.107 0.101 93% 6%
s208 9 10 1 1 5 8 0.618 0.538 0.470 15% 13%
s27 18 28 4 2 10 28 0.474 0.226 0.180 110% 20%
s382 48 66 6 5 15 39 0.169 0.135 0.126 25% 7%
s526 56 77 6 3 21 46 0.222 0.181 0.176 23% 3%
s400 54 74 8 7 38 60 0.692 0.268 0.257 158% 4%
s444 70 94 12 5 33 45 0.656 0.269 0.236 144% 12%
s386 59 142 11 3 53 129 0.250 0.199 0.190 26% 5%

s1488 180 619 47 7 139 340 0.233 0.181 0.164 29% 9%

variable-delay units, the average delay is used as the delay of the

transition. The average errors are 26% and 7% respectively. If both

early evaluation and variable-delay nodes are taken into account, the

average errors are 63% and 9%.

The LP solver used to compute the upper bound method is CPLEX.

The presented method has been implemented in C++. The experiments

have been run on a Xeon processor at 2.66 GHz with 3 MB of cache.

Each simulation was performed for 10000 cycles. The lower bound

method is around half to one order of magnitude slower than the LP

method. Simulations were around 2 orders of magnitude slower than the

lower bound method. The lower bound run for the biggest graph took

around 5 seconds. Most of the other runs took less than one second.

B. Evaluating Relative Performance

If a designer wants to compare several possible designs or perform

some architectural exploration, it is important that the relative order

between designs on simulation and on analysis is the same.

We have modified each graph by adding and removing unit delays,

which corresponds to adding and removing empty buffers, a correct

transform in elastic systems[12]. After generating a set of 6 graphs from

the same original graph, the ordering obtained by using the simulation

throughput has been compared to the ordering obtained by using the two

analysis methods. For designs with a difference of throughput higher

than 4%, both the upper bound method and our method can correctly

order the designs. For smaller differences in the throughput, none of

the methods seems to be able to correctly discern the order.

VII. Conclusions

A method to analyze the performance of elastic systems with

early evaluation and variable-latency units has been proposed. The

method computes a lower bound of the throughput by unfolding a

marked graph, deriving symbolic expressions for the firing times of

the transitions and evaluating them. The accuracy of the lower bound

can be incremented by increasing the number of correlations taken into

account when the expressions are evaluated. The worst case running

time when all correlations are taken into account is exponential.

Results show that an accurate lower bound of the throughput can

be obtained with a time difference of around two orders of magnitude

with regard to the simulation time.

A fast method to estimate the performance of an elastic system is

important because it allows architectural exploration without running

any simulations, which are too time consuming for an exploration

framework.

Acknowledgments. This work has been supported by grants from Intel

Corp., CICYT TIN2004-07925 and FI from Generalitat de Catalunya.

References

[1] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula. Computation and
refinement of statistical bounds on circuit delay. In Proceedings of the
40th conference on Design automation, pages 348–353. ACM New York,
NY, USA, 2003.

[2] M. Akian, R. Bapat, and S. Gaubert. Max-plus algebra. Handbook of
Linear algebra: Discrete Mathematics and its Application, Chapman &
Hall/CRC, Baton Rouge, LA, 2007.

[3] A. Armando, C. Castellini, and E. Giunchiglia. Sat-based procedures for
temporal reasoning. In ECP ’99: Proc. of the 5th European Conference
on Planning, pages 97–108, London, UK, 2000. Springer-Verlag.

[4] L. Benini, E. Macii, M. Poncino, and G. De Micheli. Telescopic units:
a new paradigm for performance optimization ofVLSI designs. IEEE
Transactions on Computer-Aided Design, 17(3):220–232, 1998.

[5] C. Brej. Early Output Logic and Anti-Tokens. PhD thesis, University of
Manchester, 2005.

[6] R. Bryant. Binary decision diagrams and beyond: Enabling technologies
for formal verification. In Proc. ACM/IEEE Design Automation Conf.,
pages 236–243, 1995.

[7] J. Campos, G. Chiola, and M. Silva. Ergodicity and throughput bounds of
Petri nets with unique consistent firing count vector. IEEE Transactions
on Software Engineering, 17(2):117–125, 1991.

[8] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Trans. on Computer-Aided Design,
20(9):1059–1076, Sept. 2001.

[9] M. Casu and L. Macchiarulo. Adaptive Latency Insensitive Protocols and
Elastic Circuits with Early Evaluation: A Comparative Analysis. Electronic
Notes in Theoretical Computer Science, 245:35–50, 2009.

[10] J. Cortadella, M. Galceran-Oms, and M. Kishinevsky. Elastic Systems.
In Proc. 8th ACM/IEEE Int. Conf. on Formal Methods and Models for
Codesign (MEMOCODE 2010), pages 149–158, July 2010.

[11] J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with early
evaluation and token counterflow. In Proc. ACM/IEEE Design Automation
Conf., pages 416–419, June 2007.

[12] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of syn-
chronous elastic architectures. In Proc. ACM/IEEE Design Automation
Conf., pages 657–662, July 2006.

[13] J. Esparza and K. Heljanko. Unfoldings: a partial-order approach to model
checking. Springer-Verlag New York Inc, 2008.

[14] J. Gunawardena. Timing analysis of digital circuits and the theory of min-
max functions. In TAU’93, ACM International Workshop on Timing Issues
in the Specification and Synthesis of Digital Systems, 1993.

[15] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G.
Mercer, and C. J. Myers. Synchronous interlocked pipelines. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 3–12, Apr. 2002.

[16] J. Júlvez, J. Cortadella, and M. Kishinevsky. Performance analysis of
concurrent systems with early evaluation. In Proc. International Conf.
Computer-Aided Design, Nov. 2006.

[17] R. Karp. A characterization of the minimum mean-cycle in a digraph.
Discrete Maths, 23:309–311, 1978.

[18] J. Liou, K. Cheng, S. Kundu, and A. Krstic. Fast statistical timing analysis
by probabilistic event propagation. In Proc. ACM/IEEE Design Automation
Conf., pages 661–666. ACM, 2001.

[19] K. McMillan. Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits. In Computer Aided Verification,
pages 164–177, 1992.

[20] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings
of the IEEE, pages 541–580, Apr. 1989.

[21] C. Nielsen and M. Kishinevsky. Performance analysis based on timing
simulation. In Proc. ACM/IEEE Design Automation Conf., pages 70–76.
ACM, 1994.

