Bridging modularity and optimality: delay-insensitive interfacing in
asynchronous circuits synthesis *
Alexander Yakovlev

Univ. of Newcastle
upon Tyne, UK

Hiroshi Saito
Univ. of Aizu
Japan

Alex Kondratyev
Univ. of Aizu
Japan

Jordi Cortadella Luciano Lavagno
Univ. Politecnica Univ. of Udine
Catalunya, Spain Italy

Abstract

Two trends are of major concern for digital circuit
designers: the relative increase of interconnect delays
with respect to gate delays and the demand for design
reuse. Both pose difficult problems to synchronous de-
sign styles, and can be tackled more naturally within
the asynchronous paradigm. Unfortunately even in
asynchronous design the normal hypotheses about the
delays of gates and wires are often overly optimistic.
One of the popular assumptions is to consider gate de-
lays to be arbitrary while neglecting the skew in wire
delays (so-called speed-independence (SI) assumption).
Taking wire delays into account is possible and in its
extreme leads to delay-insensitive (DI) implementa-
tions which work correctly under any wire delay distri-
bution. However, such implementations are costly.

This work suggests to separate all on-chip intercon-
nections into two classes: local (for which the delays
can be under control) and global (with arbitrary de-
lays). This leads to locally SI globally DI implemen-
tations which are more practical than fully DI circuits
and are in better correspondence with technology pa-
rameters than fully SI circuits. Our approach allows
logic synthesis to proceed independently for all the lo-
cally SI blocks and yields functionally correct circuits
without requiring any synthesis/layout iteration or in-
teraction. This simplifies dramatically the timing con-
vergence problem for ASICs.

We tackle the problem at the behavior level and
develop a simple transformation which ensures delay-
insensitive properties for particular wires. The method
is illustrated by a realistic design example. The pre-
liminary experimental results show that the area and
performance penalty are within 40% and 20% respec-
tively.

1 Introduction

Asynchronous systems, free from the clock, offer a
number of potential advantages in Deep-Sub-Micron
digital and mixed-signal design. They include robust-

*This work was partially supported by ESPRIT No. 21949
(ACIiD-WG), EPSRC GR/L24038, GR/L28098, and CICYT
TIC98-0410. .

0-7803-5731-0994$10.00 ©1999 IEEE

I —899

ness of designs to technology variations, greater mod-
ularity and capability for component reuse. These fac-
tors are essential in complex applications where com-
plete redesign for a localized functionality change be-
comes unrealistic, and where time-to-market is crucial.

Two subclasses of asynchronous circuits are known
to be able to sustain certain parameter varia-
tions: speed-independent (SI) circuits [7] and delay-
insensitive (DI) circuits [11]. The former are charac-
terized by the fact that their behaviour is insensitive
to gate delays (these can have arbitrary value) but
assume wire delays to satisfy the following condition
(isochronicity of forks): the max delay of a wirc after a
fork must be less than the min gate delay. DI circuits
allow wire delays to have arbitrary values. Although
DI circuits are clearly much more attractive for the
Deep Sub-Micron technology, where wire delays are as
significant as gate delays, the domain of functionally
useful DI circuits is very limited if one considers them
at the level of ordinary logic gates. Thus DI circuits
are typically constructed out of macro-modules that
consist of several gates [10].

It is therefore quite natural to look for a way of
exploiting the advantages of both design strategies,
namely the optimality of the SI logic synthesis and
the design robustness and DI compositionality of the
macro-module method. The target of the synthesis
process is therefore deemed to be a globally DI locally
ST circuit. This approach was suggested, without any
concrete implementation strategy, in [12].

Our work has some similarities (and in particular
a consistent view of technology trends) with the wire
planning strategy suggested in [8]. In both cases, logic
synthesis is preceded by a “delay-aware” step that par-
titions the system into blocks where wire delays are

smaller than gate delays. However, due to the syn-

chronous nature of the underlying implementation, [8]
requires a placement and global routing step before
synthesis. On the other hand, in our case only the com-
munication protocol between the blocks must be (auto-
matically) modified to satisfy a set of DI axioms. After
that, logic synthesis can proceed independently for all
the blocks, without requiring any synthesis/layout it-
eration or interaction. This simplifies dramatically the
timing convergence problem for asynchronous ASICs.

Sl interface
assumption

ADDR
add_req]

add_ack ~at— add_ack- _»L_‘ data_ack-

SLAVE o e
8 Pl bdd_reqep? \n‘l

DATA
data_req—_ym|

data_ack —ee— p;\ J‘/‘“;q\+ [ﬂ/

@ add_ack+ data_ack+
()

Figure 1: Simple asynchronous interface

The modeling formalism for the suggested design
flow is based on Signal Transition Graphs (STG).
It is ‘known that from an STG one can derive a
speed-independent implementation using different de-
sign procedures [1, 4]. In this paper we suggest a be-
havioral transformation called order relazation which
is aimed to allow delay-insensitivity with respect to
certain STG events. Based on this transformation an
initial specification could be iteratively refined until
the desired level of delay-insensitivity is reached.

The rest of the paper is organized as follows. Sec-

tion 2 contains a theoretical background. The the-

ory behind DI transformation is presented in Sec-
tion 3. Section 4 shows an application of the suggested
methodology to a realistic design example. Section 5
concludes the work.

2 Theoretical background

Figure 1.a shows a simple interface between two mod-
ules in an asynchronous system, a master (e.g., a pro-
cessor) and a slave (e.g., memory). The interface in-
volves two signal handshakes, one for controlling the
transmission of an address (add,e, and add,.:) and
another for data (datar., and datasck). The timing
diagram shown in Figure 1.a defines the synchroniza-
tion protocol between the handshakes for the case of
writing data into slave. This protocol allows an addi-
tional skew compensation between address and data,
making sure that the address is delivered to the slave
strictly before data, to give an additional delay in the
corresponding address decode logic. This condition is
captured by an arc directed from the rising edge of the
add,cq signal to that of data,eq.

Figure 1.b shows the Petri Net (PN) corresponding
to the timing diagram of the controller. All events
in this PN are interpreted as signal transitions: rising
transitions of signal a are labeled with “a+” and falling
transitions with “a—”. We also use the notation ax
if we are not specific about the sign of the transition.
Petri Nets with such an interpretation are called Signal
Transition Graphs (or STGs) [1]. STGs are typically
represented in a “shorthand” form, where places with
one input arc and one output arcs are implicit.

An STG transition is enabled if all its input places
contain a token. In the initial marking {p1,p2} of the
STG in Figure 1.c transition add,.,+ is enabled. Every
enabled transition can fire, removing one token from
every input place of the transition and adding one to-

a+ a+ a+

| 1 1

b+

VAV ANE

a+

a) by)

Figure 2: Consistency violations in STG

ken to every output place. After the firing of transition
add,q+ the net moves to a new marking, {p3}, where
and data,.q+ becomes enabled.

Transitions in STG could be involved in different
ordering relations. We would say that transitions a*
and bx are in direct conflict if there exists a reachable
marking in which both of them are enabled but firing
of one of them disables the other. If a* and b are en-
abled in some reachable marking but are not in a direct
conflict we will call them concurrent. Conflict rela-
tions can be generalized by considering the transitive
successors of directly conflicting transitions. Transi-
tions which are not concurrent and are not in conflict
are called ordered. An STG is consistent if in every
transition sequence from the initial marking, rising and
falling transitions alternate for each signal.

There are two sources of consistency violation in an
STG:

1) Auto-concurrency, i.e. concurrency of transi-
tions of the same signal (see Figure 2.a,b) and

2) Switch-over incorrectness, which takes place be-
tween two ordered rising (falling) transitions which
have no falling (rising) transition in between (see Fig-
ure 2.c).

The set of all signals STG is partitioned into a set
of inputs, which come from the environment, and a set
of outputs and state signals that must be implemented.

In addition to consistency, the persistency property
is required for an STG to be implementable as a hazard-
free asynchronous circuit.

An event a* is persistent in marking m if it is en-
abled in m and remains enabled in any other marking
reachable from m by firing another event b*. An STG s
output-persistent if all output signal events are persis-
tent in all reachable markings and input signals cannot
be disabled by outputs. Output persistency therefore
only allows input events to be in direct conflict.

The following important statement was proved in
[1): an STG can be implemented by a speed-independent
circutt if it is consistent and output-persistent.

3 Construction of Delay-Insensitive Interface

A conventional definition of delay-insensitivity is based
on satisfying the following axioms [11, 5] in a behav-
ioral description:

1. No auto-concurrency

2. Alternating input/output (input events can only im-
mediately precede output events and output events
can only immediately precede input events)

I —900

3. No cross-disabling (inputs and outputs cannot dis-
able each other)

In this work we will relax the above axioms taking
into account specific features of the targeted task:

e The investigation is focused not on total delay-
insensitivity but on the delay-insensitive interfac-
ing only (the basic assumption is that within a
module a designer or physical design tool can keep
wire delays under control and hence there is no
point to ensure delay-insensitivity at the level of
events internal to a module).

e Contrary to conventional approaches to DI synthe-
sis the tasks of designing a module and its envi-
ronment are considered separately. It results in
asymmetry of requirements which are imposed on
DI interface: only inputs are required to be ac-
cepted in a delay-insensitive fashion because delay-
insensitivity with respect to outputs matters only
when an implementation for the environment is
synthesized. Of course, symmetry is re-established
if all modules are synthesized in this fashion.

Informally the above conditions are illustrated by
Figure 3 where the suggested design approach is tar-
geted at an interface scheme that should be robust to
wire delay variations.

Moving to

S Dl interface
Outputs

Figure 3: Delay-insensitive interfacing

Based on that scheme we define delay-insensitive
interfacing. _
Definition 3.1 A specification of a module satisfies
delay-insensitive interfacing if it meets the following
conditions:

1. No auto-concurrency

2. Alternating inputs (input events can only immedi-
ately precede outputs events)

3. No cross-disabling

Our design framework uses STGs as a model basis.
The natural question is: what are the implications of
the requirements of delay-insensitive interfacing for the
properties of the original STG?

Proposition 3.1 A consistent and speed-independent
STG satisfies DI interfacing conditions if no input
transition directly precedes another input transition.

The proof is trivial: non-auto-concurrency is a nec-
essary condition of STG consistency, absence of cross-
disabling is guaranteed by speed-independence and al-
ternation of inputs directly comes from the conditions
of the proposition.

T —901

Proposition 3.1 gives an idea of where DI interfac-
ing may be violated in an STG: these are STG frag-
ments in which input transitions are directly causally
related. After adding arbitrary delays into every in-
put wire (see Figure 3) a given module may receive
originally sequenced inputs in any order. The latter
means that from the module point of view such inputs
are concurrent. Hence a possible transformation strat-
egy for an STG towards DI interfacing removes direct
causal dependencies between inputs and making them
concurrent. This transformation might be performed
by iterative application of a simple operation which we
will call order relazation and illustrate by Figure 4. In-
formally order relaxation removes a causal arc between
events a and b making them concurrent while keeping
other ordering relations as much as possible.

(a,b) order
__relakation

Figure 4: Order relaxation

To investigate the nature of order relaxation let us
return to the role of ordering relations between STG
events.

STG usually specifies a cyclic process in which the
same STG events might fire many times (could have
many instances). An STG behavior is formally spec-
ified by a set of feasible sequences (traces) in which
different instances of the same event are distinguished
by their index (a!,a?,... e.g.). When considering or-
dering relations one can divide the set of traces into
equivalent classes. Traces from the same equivalent
class has the same set of event instances and differ only
in some interleavings of concurrent transitions. Such
equivalent classes are called concurrent runs [6]. It is
convenient to introduce ordering relations at the level
of event instances and concurrent runs: we will say
that a* precedes b’ in concurrent run £ if in any trace
corresponding to run ¢, a* occur before b7.

The following two properties of order relaxation
help to understand better the transformation towards
DI interfacing.

Property 3.1 Order relazation between events a and
b preserves pairwise ordering relations in concurrent
runs between all instances except for instances of a and
b.

Proof: Let us consider the case when a — b (like in
Figure 4). Suppose that the statement of the property
is wrong. Then one could find a pair of instances c'
and d’ such that ¢* precedes d7 in a concurrent run
¢ of original STG D but not in run & of STG D/,
obtained through the order relaxation by (a,b) (¢ and

&' have the same set of event instances). The latter
means that in D’ there exists a trace ¢ in which &’
occurs before ¢t.! By reordering concurrent events in
o let us obtain a trace o' = v,6,d?,n,c* such that v
is a feasible signal sequence in the original D and it
has a maximal length among all possible permutations
within o.

The transformation coming from the order relax-
ation is localized in the vicinity of events a and b. Sig-
nal sequence « is feasible in both D and D’. From
Figure 4.a one can see that the only event that is en-
abled after v in D’ but is not enabled in D is the event
b. Therefore subsequence § should start from some
instance b* of b. Whenever an instance b* becomes en-
abled the corresponding instance a™ of a also becomes
enabled (m = k if the arc (A1, b) is not initially marked
and m = k — 1 if the arc (A1,b) is initially marked).

Case 1. Let a™ belong to 6 Un. Then it can be
moved in the trace to the position immediately before
b*, which results in a sequence ~, a™, b* that is feasible
in both D and D’'. This sequence is larger than v which
contradicts the choice of +.

Case 2. Let a™ ¢ 6 Un. Then the corresponding
instance of dummy event A2 is not enabled and as A2 is
the only successor of b then no events in STG D’ could
notice the results of early firing of b* with respect to
D. Therefore, none of them could change the ordering.
a

Property 3.2 Order relazation between two events
preserves output persistency in STG.

Proof: Let D’ be an STG obtained after order relax-
ation by events a and b e.g. If the statement of Prop-
erty was wrong one could find a marking M reachable
in D' in which two events ¢ and d are enabled and firing
of one of them disables the other leading to the out-
put persistency violation. Moreover this pair of events
should not be in conflict in the original STG D because
D is output persistent. Clearly the disabling between
¢ and d is possible only if they are sharing some input
place p’ in D'.

Case 1. {c,d}n{a,b} = 0. Then place p' is outside
the scope of this order relaxation transformation and
therefore is in one-to-one correspondence with some
place pin D. This place in D is shared by ¢ and d but
no disabling happens in their firing and hence ¢ and d
are never concurrent in their consumption of p (they
should consume a tokens from p in turn, i.e. orderly).
As ordering relations are preserved in order relaxation
then ¢ and d in D’ also should not be concurrently
enabled, which contradicts the assumption about their
conflict.

Case 2. If c or d coincides with a or b the new
(in comparison to D) conflicts never arise because the
order relaxation is conflict non-increasing by a and b
(see Figure 4). O

In the following we will consider only signal traces, i.e. the
traces in which all dummy events are deleted.

add req

When in the original STG two inputs are directly

causally related, then according to Definition 3.1 DI
interfacing can only be obtained by applying order re-
laxation to them. The latter by Property 3.2 does not
cause any new cross-disablings to occur. Unfortunately
not all the requirements of DI interfacing are safely pre-
served during order relaxation. Indeed if events a and b
correspond to transitions of the same signal their order
relaxation immediately produces auto-concurrency. In
case this does not happen the above transformation is
strictly delay-insensitivity increasing and by iterative
application of it eventually (if non-auto-concurrency is
preserved) all the requirements of DI interfacing should
be met in the specification.
Example 3.1 Let us illustrate the transformations to
ensure the DI interfacing using the example of asyn-
chronous controller from Section 2. The original spec-
ification is shown in Figure 5.a. For this specification
DI interfacing is violated by a direct causal dependen-
cies between input transitions addreq+ and datGr.q+
(this violations is denoted in Figure 5.a by shading).
The violations can be removed by performing order re-
lazation between input events.

The order relazation between add,eq+ and data,eq+
results in the removal of the arc (addreq+,datareq+),
adding direct predecessors of add,eq+ to datareq+ (i.e.
datagek— — datGreq+, addeck— — datareq+) and
adding direct successors of dat@,eq+ t0 addreq+ (i.e.
addreg+ — datager+ and addreq+ — addackt+) 2.
The obtained specification is non-auto-concurrent and
satisfies the requirements of DI interfacing. By STGs
Figure 5.a.b one can obtain corresponding SI and DI
implementations which are shown in Figure 5.c.d. The
complexity of logic for these two implementations is: SI
- 8 literals, DI - 11 literals. This means a 37% of area
penalty for DI interfacing.

add_ack- data_ack-

g [4SRN

{add_req+,data+)
add_) r\tq add_req+ data+ gaeq-

N/

add_ack+ data_ack+

@))

% add_ack a4q req | add_ack
data data—s

data_ack [: E\Ia,ack

© @

Figure 5: Illustration of SI to DI transformation

2Wherever it simplifies the result of transformation we would
drop the dummy transitions Al and A2 from Figure 4.

I —902

4 Case study.
Controller for analog-to-digital converter

In this section we present an experiment that has been
carried out to test the proposed method and evaluate
the cost of DI interfacing in a more practical design
example than those considered above.

The example originates from a practical case study
in which an asynchronous analog-to-digital converter
(ADC) has been developed with a speed-independent
controller [3].

This ADC implements a well-known successive ap-
proximation algorithm. According to this algorithm,
a comparator is iteratively activated to compare the
value of the given input voltage with the approxi-
mate voltage produced by a digital-to-analog converter
(DAC), whose digital input comes from a register, in
which the n-bit value is refined bitwise, starting from
the most significant bit. Each refining bit is produced
by a one-bit buffer connected to the output of the com-
parator. The use of asynchronous logic allows this
system to avoid synchronization errors due to meta-
stability (which is known to be a problem in clocked
converters), which may arise in the analog part of the
circuit, and to smooth out the temporal effect of poten-
tial meta-stability resolution [3] one the whole period
of conversion.

The central part of the asynchronous ADC, which
controls copying a bit value from the one-bit buffer
to the n-bit register with a single bit shift, is an n-
way scheduler; it is functionally similar to a classical
pulse distributor. The scheduler’s behaviour can be
specified by an STG whose structure is regular. The
specification of a scheduler with 3 cells is shown in
Figure 6.a.

OUTPUTS: K1112:50.% 1x2.b,clamp

(a) (b)

Figure 6: A specification of 3-cell scheduler (a) and the
input order relaxation for the cell 1 (b)

INPUTS: _clamp.10,2.50.x2
OUTPUTS: 11xi b

From the analysis of the causal relations between
events one could see that the behavior of the i-th cell of
the scheduler depends on the state of the (i-1)-th and

(i+1)-th cells together with the signal clamp (output
of some completion detection logic in a storage buffer;
see Figure 7.a). Hence the speed-independent imple-
mentation of the scheduler might be obtained directly
using the STG of Figure 6, which gives the following
logic circuit:

li = clamp (Ti—1Tip1 +) + LiTioq;

T =T 1% + b+ Ly

b=1 1l2 RN ln

The drawback of the SI implementation is that the
designer is responsible for satisfying the SI assumptions
about wiring delays between scheduler cells.

In case of conversion with a data path (with many
cells in the scheduler) or in order to increase the flexi-
bility of layout, it could be more convenient to partition
the whole circuit of the scheduler into smaller parts
which could be placed in different positions on the chip
(not necessarily adjacent). Then within each part the
designer could still rely on the SI hypothesis about the
wiring between cells but in the interface between these
parts the wire delays could be large and we need a
more conservative approach. In the extreme, interface
delays are assumed to be arbitrary which leads to DI
interfacing and gives the scheduler structure shown in
Figure 7.b.

I

lamp

v e [L AU N

e |Cell(i-2) Ccll(i-l)(Cell(i) ‘Cell(i+l)

i+l

clamp
a)
p
clam;

TN

—<—
\Arbitrary,
b) ! delays |

Figure 7:" A scheduler circuit structure

In order to evaluate an upper bound for the cost
of partitioning the scheduler we consider the smallest
possible parts (containing one cell each). Each cell
communicates with its neighbors in a DI fashion and
therefore synthesis of such a scheduler reduces to the
task of DI interfacing between cells. Synthesis could be
done via an order relaxation on the STG in Figure 6,
where for the i-th cell all the transitions of the (i-1)-th
and (i+1)-th cells are relaxed. The result is shown in
Figure 6.b. From this STG the following logic equa-
tions can be derived:

L, =camp (Ti-1Tip12:0 + 1) + 1Ty

T = Tim1(%i + T lin) + 1

b=1lly...1,(b+ clamp) + b clamp

A comparison between the SI and DI implemen-
tations shows that the latter is about 38% larger(see

Im—903

SI implementation DI implementation
area (lits) | performance (ns) area (lits) | performance (ns)

34 10709 47 | 11422

Table 1: Comparison of SI and DI implementations of
the scheduler

Tablel).

We have also analyzed performance for the SI and
DI implementations, using logic simulation. We have
synthesized both the scheduler circuit and its environ-
ment and simulated the resulting autonomous system.
From Tablel one could see that the degradation of per-
formance because of the increased complexity of DI
implementation is about 7%.

It is worth noting that these number are signifi-
cantly lower than those usually reported when refer-
ring to synthesis results for DI implementations. The
reason for that lies in our more flexible design strategy,
that is speed-independent circuits with DI interfacing
instead of totally DI solutions.

5 Conclusions

Design styles which neglect wire delays seem to be
overly optimistic even with current technology and will
most likely become less and less applicable when mov-
ing to deep sub-micron implementations. The extreme
case when wire delays are assumed to have arbitrary
values leads to the well known delay-insensitive ap-
proach for circuit design. However delay-insensitive
circuits are often unusable because of their excessive
area and performance overheads. In this paper we
suggested an approach which results in partial delay-
insensitivity of an implementation. Under this ap-
proach the designer or floor-planning tool identifies
a set of long wires, which should be implemented in
delay-insensitive fashion while for the rest of a circuit
other (more conventional) design styles might be ap-
plied. In particular, we used speed-independent imple-
mentation for the parts of a system in which wire delays
could be controlled by the designer or a routing tool,
and then applied the delay-insensitive hypothesis only
to the wires running between such speed-independent
“islands” [8]. These wires then can be routed to any
distance, without affecting the functionality of the cir-
cust (only, of course, its performance), thus dramati-
cally speeding up timing convergence for asynchronous
ASICs.

We have developed an automatic method which en-
sures the DI requirements by using behavior transfor-
mations. To the best of our knowledge, this is the first
method which produces a Delay Insensitive implemen-
tation from a formal specification by using a highly
optimizing synthesis-based procedure. We believe that
this could give a significant reduction in area and per-
formance penalties in comparison to the conventional
DI methods which are based on direct translation of the
initial description into the circuit by using pre-defined

library modules, followed at most by a conservative
peephole optimization.

It is possible to extend this approach to a more ag-
gressive optimization (for both area and speed) strat-
egy than the SI one, to partially compensate the costs
of the DI interfacing. It is based on the use of relative
timing at the module level, which can be gradually in-
troduced into the SI logic [2, 9].

REFERENCES

[1] T.-A.Chu. Synthesis of Self-timed VLSI Circuits from
Graph-theoretic Specifications. PhD thesis, MIT, June
1987.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, A. Taubin, and A. Yakovlev. Lazy
transition systems: application to timing optimiza-
tion of asynchronous circuits. In Proc. International
Conf. Computer-Aided Design (ICCAD), pages 324—
331, November 1998.

[3] D. J. Kinniment, B. Gao, A. V. Yakovlev, and F. Xija.
Toward asynchronous A-D conversion. In Proc. Inter-
national Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 206-215, 1998.

[4] Michael Kishinevsky, Alex Kondratyev, Alexander
Taubin, and Victor Varshavsky. Concurrent Hard-
ware: The Theory and Practice of Self-Timed De-
sign. Series in Parallel Computing. John Wiley & Sons,
1994.

[5] S. C. Leung and Hon F. Li. A syntax-directed trans-
lation for the synthesis of delay-insensitive circuits.
IEEE Transactions on VLSI Systems, 2(2):196-210,
June 1994.

[6] A. Mazurkiewicz. Concurrency, modularity and syn-
chronization. In Lecture Notes in Computer Science,
Vol. 379. Springer-Verlag, 1989.

[7] David E. Muller and W. S. Bartky. A theory of asyn-
chronous circuits. In Proceedings of an International
Symposium on the Theory of Switching, pages 204-
243. Harvard University Press, April 1959.

[8] R.H.J.M. Otten and R.K. Brayton. Planning for per-
formance. In Proceedings of the Design Automation
Conference, June 1998.

[9] K. S. Stevens, S. Rotem, S. M. Burns, J. Cortadella,
R. Ginosar, M. Kishinevsky, and M. Roncken. Cad
directions for high performance asynchronous circuits.
In Proc. ACM/IEEE Design Automation Conference,
June 1999. (Invited paper).

[10] 1. E. Sutherland. Micropipelines. Communications of
the ACM, June 1989. Turing Award Lecture.

[11] Jan Tijmen Udding. A formal model for defining and
classifying delay-insensitive circuits. Distributed Com-
puting, 1(4):197-204, 1986.

[12] A. V. Yakovlev, L. Lavagno, and A. Sangiovanni-
Vincentelli. A unified signal transition graph model for
asynchronous control circuit synthesis. In Proceedings
of the International Conference on Computer-Aided
Design, November 1992.

11 —904

