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SUMMARY Petrify is a tool for (1) manipulating concur-
rent specifications and (2) synthesis and optimization of asyn-
chronous control circuits. Given a Petri Net (PN), a Signal Tran-
sition Graph (STG), or a Transition System (TS)* it (1) generates
another PN or STG which is simpler than the original descrip-
tion and (2) produces an optimized net-list of an asynchronous
controller in the target gate library while preserving the speci-
fied input-output behavior. An ability of back-annotating to the
specification level helps the designer to control the design pro-
cess. For transforming a specification petrify performs a token
flow analysis of the initial PN and produces a transition sys-
tem (TS). In the initial TS, all transitions with the same label
are considered as one event. The TS is then transformed and
transitions relabeled to fulfill the conditions required to obtain
a safe irredundant PN. For synthesis of an asynchronous circuit
petrify performs state assignment by solving the Complete State
Coding problem. State assignment is coupled with logic mini-
mization and speed-independent technology mapping to a target
library. The final net-list is guaranteed to be speed-independent,
i.e., hazard-free under any distribution of gate delays and multi-
ple input changes satisfying the initial specification. The tool has
been used for synthesis of PNs and PNs composition, synthesis
and re-synthesis of asynchronous controllers and can be also ap-
plied in areas related with the analysis of concurrent programs.
This paper provides an overview of petrify and the theory be-
hind its main functions.

key words: asynchronous circuit, speed-independence, technol-
ogy mapping, Petri Net, event insertion

1. Introduction

Petri nets[28],{31] are a widespread formalism to
model concurrent systems. By labeling transitions with
symbols from a given alphabet, transitions can be inter-
preted as the occurrence of events or the execution of
tasks in a system. Labeled Petri Nets have been used
in numerous applications: design and specifications of
asynchronous circuits [7],[20],[23],[34], resource allo-
cation problem in operating systems and distributed
computation [35], analysis of concurrent programs[32],
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performance analysis and timing verification[19], [33],
high-level design[16]. Petri Nets are popular due to
their inherent ability to express both concurrent and
non-deterministic behavior.

State-based models are common languages for for-
mal specification and verification of complex systems
(FSMs[15],[22], Burst mode automata[30]). Even the
formal operational semantics for most of the event-based
models (CSP[18], CCS{24],[25]) is given by means of
states. The drawback of state-based models is that they
represent causality, concurrency and conflict relations
between events in terms of state sequences or state con-
figurations (e.g., state diamonds). This is an undesirable
characteristic for the designer, who always wants suc-
cinct representations of a system that explicitly represent
its properties. Therefore, it is very important to iden-
tify, starting from a flat state-based representation, the
set of causality relations, concurrent events and conflict
conditions implicit in the representation itself, because
they carry useful information for the designer or/and
design algorithms.

Tool petrify implements a method which, given a
finite state model, called Transition System (TS) in the
sequel, synthesizes a safe Petri Net with a reachability
graph that is bisimilar to the original TS. In particular,
the reachability graph can be either isomorphic to the
original TS or isomorphic to a minimized version of
the original TS. The synthesized PN is always place-
irredundant, i.e., it is not possible to remove any place
from the net without changing its behavior. The syn-
thesis technique is based on constructing regions. A
region in a TS is a set of states corresponding to a
place in a PN. Transitions in and out of this set of
states “mimic” the PN firing behavior (which un-marks
predecessor places and marks successor places of a tran-
sition).

The notion of regions was introduced in[17] (and
developed in[1],{3],[14],[26],[29]) as a basic interme-
diate object between state-based and event-based speci-
fications. These papers have been limited with the so-
called class of elementary TSs which allow for PN repre-

*Transition system is a directed graph with vertices la-
beled as states and arcs labeled with events. Transition sys-
tem can be viewed as an abstract state graph.
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sentation with uniquely labeled transitions (each event
has only one occurrence in the PN). We have shown[11]
how theory of regions can be efficiently used for syn-
thesizing place-irredundant and place-minimal PNs for
elementary and non-elementary TSs.

The method for synthesis of PNs provides a tech-
nique for transforming specifications. Given a model
which can be mapped into a TS, we can derive a PN
which is bisimilar to the initial model of the process.
In such a way we can create a tool which automati-
cally translates CSP, CCS, FSM, Burst-mode machines
and other models into labeled Petri Nets. Also, we can
use this tool for the transformation of Petri Nets aimed
at optimality under some criterion (place count, transi-
tion count, number of places, PN graph complexity, etc.)
or for deriving a net belonging to a given class (pure,
free choice, unique choice, etc.). Such an interactive
tool allows a designer to play with a PN-like specifi-
cation, performing equivalent transformations of PNs,
and/or transformations of other specifications into PNs
under different design constraints and optimization cri-
teria. Figure 1 shows our framework for synthesizing
PNs and transforming specifications.

In[8]-[10] we show that regions are tightly con-
nected with the set of properties that must be preserved
across the state encoding and technology mapping pro-
cess for asynchronous circuits. Hence, regions and their
intersections can be efficiently used for state signal in-

-

Transition System,

Synthesis of asynchronous circuits
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Petrify’s framework for manipulating specifications and for designing of asyn-

sertion. Therefore, sets of states which correspond to
places (and transitions) of PNs are useful for efficient
synthesis techniques of digital circuits. For synthesis
of asynchronous circuits petrify performs state as-
signment by solving the Complete State Coding prob-
lem[7],[23]. State assignment is coupled with logic
minimization and speed-independent technology map-
ping to a target library (Fig.1). The final net-list is
guaranteed to be speed-independent, i.e., hazard-free un-
der any distribution of gate delays and multiple input
changes satisfying the initial specification.

This paper is further organized as follows. Sec-
tion 2 describes what petrify can do in more details.
Section 3 describes how petrify manipulates concur-
rent specifications. Section 4 shows to synthesize asyn-
chronous control circuits with petrify. Section 5 con-
cludes the paper and shows directions for the future
development of the tool.

2. What is Petrify
2.1 Manipulating PNs and TSs

Petrify has two basic functions that allow manipulat-
ing concurrent specifications:

e Synthesis of safe Petri Nets or Signal Transition
Graphs from a given Transition System.
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Fig. 3 (a) Transition system, (b) Minimal saturated and (c) place-irredundant nets.

STGs are PNs with transitions interpreted as
changes of the circuit signals. They are widely used
in design of asynchronous circuits. TSs are abstract
state graphs with labeled arcs. State Graphs are
binary encoded TSs. An example of the transfor-
mation performed by Petrify is shown in Fig.2.

e Re-synthesis of Petri Nets and Signal Transition
Graphs.

Behavior-preserving transformation of PNs can be
aimed at optimality under some criterion (place
count, transition count, number of places, PN
graph complexity, etc.) or at deriving a net be-
longing to a given class (safe, Free-Choice, Unique-
Choice, etc.).

Given a bounded PN (possibly with weighted arcs
and inhibitor arcs) petrify will generate an equiv-
alent safe place-irredundant PN. For example, given
a PN in Fig.3(b), which corresponds to a TS
from Fig. 3 (a) petrify will produce as an output
a place-irredundant (and place-minimal) safe PN
shown in Fig. 3(c).

2.2 Synthesis of Asynchronous Circuits

A user view of the circuit synthesis is illustrated by the
example shown in Fig. 4. Given an initial STG specifi-
cation (the left part of the figure), the tool realizes that
the immediate construction of a net-list is not possible.
Indeed, the property of Complete State Coding is not
satisfied: different states of the system are encoded with
the same binary code although they imply contradic-
tory next values for at least one of the output signals.
To resolve this state conflict petrify automatically in-
serts a new state signal (csc0). Transitions of this state
signal (cscO— and csc0+) are inserted in such way that
the resulting logic is optimized according to a selected
cost-function.

After inserting this state signal no state conflicts
exists in the system and a speed-independent circuit can
be constructed with C-elements’ and complex gates (in
the middle). However, these complex gates may not

TC-element is an asynchronous latch with a next func-
tion ¢ = ab + ca + cb, where a, b are inputs to the latch and
¢ is its output.
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be available in the gate library. Assume, for example,
that the library contains only simple gates with 2 in-
puts and C-elements. In such case, petrify will au-
tomatically perform combinational and sequential de-
composition of the logic, preserving speed-independent
properties and striving to minimize the logic. The final
logic net-list for this library and the corresponding Sig-
nal Transition Graph will be automatically derived by
the tool (Fig. 4, the right part).

3. Theory Behind Petrify

The theory behind petrify is presented in[11],[12].
Petrify strives to minimize the number of places, in

technology mapping.

order to make the final Petri Net more understandable
by the designer. It either generates a complete set of
minimal regions (which are analogous to prime impli-
cants in Boolean minimization) or further removes re-
dundant regions (which is similar to generating a prime
irredundant cover in Boolean mintmization).

In the initial TS, all transitions with the same la-
bel are considered as one event. Petrify solves the
problem of merging and splitting “equivalent” labels,
1.e., those labels which model the same event, but must
be split in order to yield a valid Petri Net. Therefore,
the synthesis method is not limited to elementary TSs,
which are quite restricted; we can handle the full class
of TSs by means of label splitting. In the following sec-
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tions we will briefly and informally review the theory
behind petrify.

3.1 Basic Models: Petri Nets and Transition Systems

Informally, a TS ([29]) can be represented as an arc-
labeled directed graph. A simple example of a TS is
shown in Fig.2 (the left part). A TS is called deter-
ministic if for each state s and each label a there can be
at most one state s’ such that s 5 s’. A TS is called
commutative if whenever two actions can be executed
from some state in any order, then their execution al-
ways leads to the same state, regardless of the order. For
the purpose of synthesis of asynchronous circuits we are
mainly interested only in deterministic and commutative
TSs.

A Petri Net is a quadruple N = (P, T, F,myp),
where P is a finite set of places, T is a finite set of tran-
sitions, F'C (PxT) U (TxP) is the flow relation, and
my is the initial marking. A transitiont € T is enabled
at marking m, if all its input places are marked. An
enabled transition ¢ may fire, producing a new mark-
ing mq with one less token in each input place and one

more token in each output place (denoted m; 4 ms).
The right half of Fig.2 presents a PN expressing the
same behavior as the TS shown in the left half of the
same figure. Tokens represent the initial marking which
corresponds to the top left state of the TS.

The set of all markings reachable in N from the
initial marking mg is called its Reachability Set. The
graph with vertices corresponding to the markings of a
PN and with arcs connecting markings reachable in one
transition is called the Reachability Graph (RG) of the
PN.

A Signal Transition Graph (STG, [6],[34]) is a
Petri net with transitions labeled with up and down
transitions of signals (denoted by z+ and =~ for signal
).

A PN is called

e safe if no more than one token can appear in a
place in any reachable marking,

e free-choice if for each place p with more than one
output transition each of this transitions has ex-
actly one input place — place p, i.e., the enabling
condition of conflicting transitions depends only
on the marking of a single place.

o place-irredundant if removing any place from the
PN will change the set of possible sequences of fir-
ing transitions (i.e., behavior of the net will be dis-
turbed).

A PN in Fig.2 is safe, free-choice and place-
irredundant.
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3.2 Regions and Excitation Regions

Let S1 be a subset of the states of a TS, S;CS. If

s & S; and s’ € Sy, then we say that transition s = s’
enters S;. If s € Sy and s’ ¢ Sy, then transition s % s’
exits S;. Otherwise, transition s — s’ does not cross
S1. A region is a subset of states with which a/l tran-
sitions labeled with the same event e have exactly the
same “entry/exit” relation. This relation will become
the predecessor/successor relation in the Petri net.

Let us consider the TS shown in Fig.3(a). The set
of states r, = {s2, s3, 85} is a region, since all transitions
labeled with @ and with b enter ry, and all transitions
labeled with d exit r,. Transitions labeled with ¢ do
not cross rz. On the other hand, {s2, s3} is not a region

. .. d . .
since transition s3 — s4 enters this set, while another

transition also labeled with d, s5 LA sg, does not.

A region r is a pre-region of event e if there is a
transition labeled with e which exits . A region r is
a post-region of event e if there is a transition labeled
with e which enters . The set of all pre-regions and
post-regions of e is denoted with °e and e° respectively.

While regions in a TS are related to places in the
corresponding PN, an excitation region for event ¢ is a
maximal set of states in which transition a is enabled.
Therefore, excitation regions are related to transitions
of the PN. More formally, a set of states is called a
generalized excitation region (denoted by GER(a)) for
event a if it is a maximal set of states (a set of states
with a given property is maximal if it is not a subset
of any other set with this property) such that for every
state s € GER(a) there is a transition s = . Sometimes
it is more convenient to consider connected subsets of
GERs. A set of states is called an excitation region (de-
noted by ER;(a)) if it is a maximal connected set of
states such that for every state s € EFR;(a) there is a
transition s . Since any event a can have several sep-
arated ERs, an index j is used to distinguish between
different connected occurrences of a in the TS. In the
TS from Fig. 3 (a) there are two excitation regions for
event d: ER;(d) = {s3} and ER(d) = {ss}, while
GER(d) = {83, 85}.

3.3 Deriving PNs Based on the Excitation Closure

Given a set of all minimal regions (a region is called
minimal if it is not a superset of any other region) let
us build a PN following four rules:

o For each event e of the TS a transition labeled with
e is generated in the PN;

e For each minimal region r a place r is generated;

e Place r contains a token in the initial marking iff
the corresponding region r contains the initial state
of the TS;
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e The flow relation of the PN is as follows: transition
labeled with e is an output transition for place r
iff 7 is a pre-region of event e in the TS and e is an
input transition of r iff region r is a post-region of
e.

As shown in [11], if the following two conditions
hold then a PN derived by the four rules above is bisim-
ilar to the original TS. Bisimilar [25] means that behav-
ior of the TS and the PN cannot be distinguished by the
external observer who can only see the events of these
two models.

e Excitation closure: For each event e the intersection
of pre-regions is equal to its generalized excitation
region.

o Event effectiveness: For each event e there is at least
one pre-region.

Moreover, one may remove regions still preserving
behavior of the PN until excitation closure is violated.
By removing regions from the set of all minimal re-
gions while still keeping the excitation closure condi-
tion petrify generates a place-irredundant PN. By fur-
ther merging of the minimal regions a place-minimal
net can be generated.
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3.4 Generating Minimal Regions and Label Splitting

The set of minimal pre-regions of an event e is calcu-
lated by gradually expanding its generalized excitation
region to obtain sets of states that do not violate the
“entry-exit” relationship. When the excitation closure
is not fulfilled, i.e.

ﬂ r + GER(e)

r€a

some events must be split to satisfy this condition.

The strategy to split events is explained by the ex-
ample shown in Fig. 5 for the pre-regions of event c. Ini-
tially, GER(c) = {s2, s5} is taken for expansion. Event
b violates the region conditions, since two transitions
labeled with b exit {s2,s5} and two other transitions
labeled with b are outside {s2,s5}. Next, two possible
legalizations for event b are considered:

e Two input states for transitions of b, which are not
yet included into the constructed set of states, s3
and sg, are added into the set. Now event b ex-
its set {s, 83, 85, 86}. Since no other violations of
region conditions are found this set is a region.

e Two output states for transitions of b, {s1,s7},

GER(c)={s2,s5}

b: exit, out

b no cross
\add sl,s?

b exit
add s3,s6/

{s2,53,55,56}
is region

d no cross
add s4

b no cross
add s3,s6

{s1,52,85,57}
b: enter, in, out
d: enter, in, out

{s1,52,54,55,57}
b: enter, in

{s1,52,53,54,55,56,57}
is region

Fig. 5 (a) TS, (b) expansion tree for pre-regions of event ¢, {c) excitation closed TS, (d)

PN, (e) reachability graph of the PN.
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which are not yet included into the set are added
to the set in the attempt to make b non-crossing.
This attempt fails since more violations of the re-
gion conditions are found and further expansions
are applied until all branches of the search tree find
a region.

The example illustrates how all branches will eventually
be pruned, in the worst case, when covering the whole
set of states.

Let us call 7’ the intersection of the regions found
in the expansion. We have

v = {s1, 52, 83, 84, S5, 56, 57} N {2, 83, 55, 56 }

= {32,83,85,36}

The strategy for label splitting will take all those ex-
plored sets » such that

{sa,ss}CrCr’

All three states explored before finding regions are good
candidates. However, the set {s2, s5} is the best one by
the fact that only one event violates the crossing condi-
tions and it makes the intersection of pre-regions smaller
(closer to GER). Thus, event b is split into two new
events (b; and by) for {s2, 85} to become a region. The
new TS is equivalent to the original (up to renaming
of the split events). The corresponding PN is shown in
Fig.5(d) and its RG in Fig.5(e). Note that it contains
one state less than the original TS, due to the implicit
minimization for equivalent states s, and s7 (states sy
and sy are equivalent since there is only one output
transition for each of them, labeled with b, and each of
these transitions enter state s1).

3.5 Internal Representation of the Objects

The proposed method requires a broad exploration of
sets of states of a TS. Moreover, operations such as in-
tersection, inclusion and equality among the explored
sets must be executed often. An efficient representation
of the TS and its states is thus crucial to cope with the
complexity of such operations.

Given an appropriate encoding of the states of the
TS, we have chosen to use Ordered Binary Decision
Diagrams[4] to represent sets of states (by means of
characteristic functions) and the TS (by means of the

p3 p4
o marking: p152PspePs
o1 05 o region, set of states: p), pyps
p2 o flow relation (for ¢):

(P2psPsPa) - (§2359304) - (P1 & @)

Fig. 6 Symbolic representation of Petri net objects in petrify.
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disjunction of transition relations, one for each label).
The algorithms to manipulate the sets of states of the
TS are based on symbolic techniques for verification of
sequential machines[13].

For deriving a TS from the initial PN petrify per-
forms a token flow analysis of the initial STG and pro-
duces a transition system in symbolic form, using Binary
Decision Diagrams. The latter represent boolean char-
acteristic functions of markings, states, sets of states and
the flow relation as shown in Fig. 6.

4. Theory behind Asynchronous Circuit Synthesis
4.1 Asynchronous Circuits and Speed-Independence

An asynchronous circuit is an arbitrary interconnection
of logic gates such that no two gate outputs are con-
nected together ([27],[36]). Each logic gate is charac-
terized by a Boolean equation describing the gate output
as a function of the gate inputs and (if the gate is se-
quential, rather than combinational) of the gate output.

The behavior of a circuit can be completely char-
acterized by using a TS with one state for each Boolean
vector representing the values of the gate outputs and of
the primary inputs of the circuit (collectively called sig-
nals). An example of an asynchronous circuit is given
in Fig. 4.

Roughly speaking, a circuit is defined to be speed-
independent if its behavior remains correct under any
changes of gate delays. No hazards are possible in
speed-independent circuits under any input changes
(possibly multiple input changes in non-fundamental
mode) [20],[23].

4.2 Property-Preserving Event Insertion

Event insertion is informally seen as an operation on
a TS which selects a subset of states, splits each state
in it into two states and creates, on the basis of these
new states, an excitation and switching region for a new
event. Figure 7 shows the chosen insertion scheme, anal-
ogous to that used by most authors in the area, in the
three main cases of insertion with respect to the posi-
tion of the states in the insertion set, denoted FR(z)
(entrance to, exit from or inside ER(z)).

State signal insertion must also preserve the speed-
independence of the original specification, that is re-

4 o}

b edce
ERG) _
S-ER(x)

o=

S-ER(x)

Fig. 7 Event insertion scheme.
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quired for the existence of a hazard-free asynchronous
circuit implementation.

Let a TS has a set of events E and a set of transi-
tions T. An event a of the TS is said to be persistent
in a subset S’ of states of S iff Vs; € S, b€ E : [s; >

A(s1 b, s2) € T] = s2 2. An event is said to be
persistent if it is persistent in S. For a binary encoded
TS, determinism, commutativity and output event per-
sistency guarantee speed-independence of its circuit im-
plementation. Insertion sets should be chosen in such a
way that persistency and commutativity of the original
events are not violated.

The following property of insertion sets, based on
theory developed in [8], provides a rationale for our
approach.

Property 4.1: Regions, excitation regions and intersec-
tions of pre-regions can be used as insertion sets in a
commutative and deterministic TS.

This property suggests that the good candidates for
insertion sets should be sought on the basis of regions
and their intersections. Since any disjoint union of re-
gions is also a region, this gives an important corollary
that nice sets of states can be built very efficiently, from
“bricks” (regions) rather than “sand” (states).

4.3 Selecting Excitation Regions for New Signals

Assume that the set of states S in a TS is partitioned
into two subsets which are to be encoded by means of
an additional signal. This new signal can be added ei-
ther in order to satisfy the CSC condition, or to break
up a complex gate into a set of smaller gates. In the lat-
ter case, a new signal is added to represent the output
of the intermediate gates added to the circuit and the
speed-independent implementability of the decomposed
specification is checked again ([5]).

Let r and ¥ = S — r denote the blocks of such a
partition. In order to implement such an encoding, we
need to insert appropriate transitions of the new signals
in the border states between the two subsets.

Petrify considers the so-called exit border (EB) of
a partition block r, denoted by EB(r), which is infor-
mally a subset of states of r with transitions exiting r.
We call EB(r) well-formed if there are no transitions
leading from states in EB(r) to states in r — EB(r).
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Symmetrically, input borders can be handled. Figure 8§
illustrates the notions of exit and input borders.

Note that we need each new signal = to orderly cy-
cle through states in which it has value 0, 0*, 1 and 1*.
We can formalize this requirement with the notion of
I-partition ([37] used a similar definition).

An I-partition divides a set of all states of a TS
into four blocks: 8%, S, §* and S~. S9(S!) defines
the states in which = will have the value 0 (1). $*(57)
defines GER(z+) (GER(z—)). For a consistent encoding
of z, the only allowed events crossing boundaries of the
blocks are the following: S° — St — §1 — §— — SO,
St — 8§~ and S~ — ST (the latter two would cause a
persistency violation, though). The problem of finding
an I-partition is reduced to finding a bipartition S and
is done in four steps:

1. Find a bipartition of states {b, b}

2. Calculate EB(b) and EB(b) (similarly for input
borders)

3. Extend EBs to well-formed EBs by backward clo-
sure

4. Check that persistency condition is not violated

Three first steps are shown in Fig.9.
4.4 Gate-Level Speed-Independence Conditions

Necessary and sufficient conditions for speed-inde-
pendent implementation using unbounded fanin and
gates (with unlimited input inversions), bounded fanin
or gates and C elements were given in [21] (extending

Input bordel:

.t

Exit border

Fig. 9 From bipartition to I-partition.
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(T : R(T'+)
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ATy ] R(TE)
R(T-) : A A(T,)

®
Fig. 10 The standard-C architecture extended for complex
gates.

a previous result of [2]). Petrify uses a basic imple-
mentation architecture, called the standard-C architec-
ture (Fig. 10). Contrary to the previous tools instead of
unbounded fanin gates for the first level, petrify can
search for implementable gates, that is gates which exist
in the chosen library.

The basic idea of the standard-C implementation
architecture is that every first-level gate implements an
up or down transition of the user-specified signal behav-
ior. In order to ensure speed-independent operation, a
number of constraints that are collectively called the
monotonous poly-term cover conditions ([21]) must be
satisfied.

In the following we will consider partitions of the
set of excitation regions of a given signal a into joint ex-
citation regions ER;(a*). The word “joint” here indi-
cates that a few excitation regions can be joined together
and implemented with one logic gate in the circuit.

The joint quiescent region QR;(a*) of a given sig-
nal transition with joint excitation region ER;(a*) is a
maximal set of states s such that:

e ¢ is stable in s, and

e s is reachable from ER;(a*) only through states in
which a is stable, and

e s is not reachable from any other ERy(a*) such
that k # j without going through ER;(a*).

Similarly, the backward region BR;(a*) is a maximal
set of states s such that:

e ¢ is stable in s, and

e ERj;(a*) is reachable from s only through states in
which q is stable, and

e no other ER;(a*) such that k # j is reachable from
s without going through ER;(a*).

Let C;(a*) denote one of the first-level gates
in the standard-C architecture. Cj(a*) is a correct
monotonous poly-term cover for the joint excitation re-
gion ER;(a*) if:
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1. C;(a*) covers (i.e., its Boolean equation evaluates
to 1) all states of ER;(a*).

2. Cj(a*) covers only states of ER;(a*) U QR;(a*)U
BR]' (a*).

3. If Cj(a*) covers some state s of BR;(a*), then s
is also covered by some other Ci(a*) such that a}
and a}, are complementary (up and down or down
and up, respectively) and s € BR;(a*) N QRy(a*).

4. Cj(a*) has exactly one up and one down transi-
tion in any sequence of states within ER;(a*) U
QR;(a*) U BRj(a¥).

Under these conditions, it is possible to show that the
outputs of the first-level gates are one-hot encoded, and
that means that any valid Boolean decomposition of the
second-level or gates will be speed-independent.

The chosen architecture is general enough to cover
the case in which a signal in the specification admits
a combinational implementation, because in that case
the set and reset network are the complement of each
other, and the C element with identical inputs can be
simplified to a wire.

4.5 Strategy for Technology Mapping

The strategy for technology mapping which is im-
plemented in the procedure for selecting the best I-
partitions and in the cost function is based on two iter-
ative steps:

e Combinational decomposition and extraction of
set and reset functions

e If no valid combinational decomposition can be
found, then additional state signals are inserted
preserving speed-independence to increase the don’t
care set and to simplify the logic.

Special conditions for correct speed-independent
decomposition must be preserved, since each signal tran-
sition at the decomposed gate must be acknowledged by
some other gate in the speed-independent circuit. Con-
trary to conditions from [5] petrify allows gate shar-
ing and fit well in our region-based partitioning of the
states. The simple gate circuit shown in Fig.4 is ob-
tained from the complex gate circuit by combinational
decomposition. Note that some of the C-elements were
eliminated.

5. Conclusions

Petri nets have shown to be an appropriate formalism
to describe the behavior of systems with concurrency,
causality and conflicts between events. For this type
of systems, the method presented in this paper allows
to transform different models (CSP, CCS, FSMs, PNs)
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into a unique formalism for which synthesis, analysis,
composition and verification tools can be built.

Synthesizing Petri nets from state-based models is
a task of reverse engineering that abstracts the temporal
dimension from a flat description of the sequences of
events produced by the system. The synthesis method
discovers the actual temporal relations between the
events. The symbiosis among the notions of TS, region
and excitation region in the same method has been cru-
cial to derive efficient algorithms both for manipulating
concurrent specifications and algorithms for synthesis
and optimization of asynchronous circuits.

For the future directions we consider extending
petrify for handling:

¢ unsafe, general PNs;
¢ synthesis of synchronous parallel controllers;

e applications to a hardware/software codesign of re-
active controllers.

How to get and use Petrify

You can get the tool from the following www address:
http://www.ac.upc.es/ " vlsi/petrify /petrify.html.

There is a man page there describing the syntax
for representing input PNs, STGs and TSs and possible
options for petrify.
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