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Abstract

This paper presents UNRET (unrolling and retiming), a
resource-constrained software pipelining approach aimed at
finding a loop schedule with maximum throughput and min-
imum register requirements. UNRET works in two phases.

First, a pipelined loop schedule with maximum through-
put is found for a given set of resources. To do this, different
unrolling degrees are explored in decreasing order of ex-
pected throughput. Farey’s series are used to perform such
an exploration. For a given unrolling degree and an ex-
pected initiation interval, the software pipelining algorithm
successively retimes the loop, obtaining different configu-
rations. Scheduling is done for each configuration, thus
performing a large exploration of the solution space.

Second, the number of registers required by the schedule
is reduced. This is done also in two steps, by reducing
the iteration time and by rescheduling some operations in
the schedule, attempting to reduce the maximum number of
variables whose lifetime overlap at any cycle.

The algorithm runs in polynomial time. The effectiveness
of the proposed approach is shown by presenting results on
well-known benchmarks. Results show that UNRET may
obtain faster and better schedules than other approaches,
also reducing the register requirements. Results also show
that UNRET obtains optimal results in most cases.

1 Introduction

Software pipelining is a family of techniques aimed at the
overlapped execution of several iterations of a loop. These
techniques are suitable for compilers for parallel architec-
tures and for high-level synthesis (HLS) of VLSI circuits.
In both areas, the concerns of minimizing the initiation in-
terval (IT), reducing the number of registers, and finding
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efficient schedules with resource constraints are common.
Techniques such as modulo scheduling [17] or Lam’s algo-
rithm [13], among others, have been proposed for parallel
architectures, while loop folding (7], loop winding (5] or
functional pipelining [10] have been devised for HLS.

This paper presents UNRET (unrolling and retiming), a
new approach for software pipelining with resource con-
straints. The ideas behind UNRET have been used in [22]
to propose a software pipelining approach with timing con-
straints. UNRET works as follows: first, a lower bound
of the minimum initiation interval (MII) for any schedule
is calculated. Following this, the appropriate (not always
optimal) unrolling degree (UD) of the loop is analytically
computed, in a much more exhaustive manner than previ-
ous methods [12, 19]. Pipelining is achieved by retiming
the unrolled loop. Once a schedule has been found, the
number of required registers is reduced while maintaining
the throughput. Similar ideas by using integer linear pro-
gramming approaches (ILP) [11] or loop transformations
[3] have been proposed by other authors, but UNRET works
significantly faster than [11] and more efficiently than [3].

1.1 Contributions

This paper presents the following new contributions with
regard to previous approaches:

e UNRET explores throughput in two dimensions: the
UD and the II. Current approaches that perform loop
unrolling used a fixed UD or the theoretical optimal
UD [12]. If a schedule is not found, the expected II is
increased. UNRET improves the technique proposed
in [12] by exploring other (suboptimal) UDs. This
may result in a higher throughput than by just merely
increasing the II.

o Software pipelining is reduced to the interleaved com-
bination of two decoupled techniques: retiming and
scheduling. Several configurations are explored by
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retiming the loop, and scheduling is done for each con-
figuration. Most approaches perform both tasks simul-
taneously [7, 10, 17], obtaining inferior results because
only one configuration of the loop is considered and
some scheduling decisions are taken much too soon.
UNRET obtains optimal schedules with shorter CPU
times in most cases, as shown in Section 6.

e Decoupling retiming and scheduling also results in
effective algorithms for register reduction: Retiming
may reduce the iteration time of the loop by reducing
the variable lifetimes which traverse several iterations.
Scheduling may reduce the maximum number of vari-
ables whose lifetime overlap at any cycle.

Others researchers have proposed techniques that per-
form software pipelining and register reduction at a
time [2, 15]. Our results show that separating both
tasks may produce equal or superior results.

Therest of the paper is organized as follows. An overview
of UNRET is presented in Section 2. The way to explore
the solution space in two dimensions is described in Section
3. The software pipelining approach is described in Section
4. Section 5 shows the algorithm proposed to reduce the
number of registers required by the schedule. Section 6
compares UNRET with other approaches by using several
examples. Finally, Section 7 concludes the paper.

2 UNRET overview

2.1 Representation of a loop

The scope of this work is limited to single nested loops
whose body is a basic block. For multiple-nested loops,
UNRET is applied to the innermost loop. Conditional sen-
tences can be treated by means of if-conversion [1]. The
architecture has a limited number of functional units (FUs),
possibly pipelined. An operation can take several cycles to
be completed and may use different FUs.

A loop is represented by a labelled directed dependence
graph, DG(V, E). Each vertex u € V corresponds to an
operation of the loop body. Each edge e € E corresponds
to a data dependence between two operations. Labels of
the DG are defined by two mappings, A (iteration) and §
(dependence distance), in the following way:

¢ A(u), defined on vertices, denotes the iteration to which
the execution of u corresponds in the schedule. A(u) =
¢ will be denoted by u; in the DG.

® 6(u,v), defined on edges, denotes the number of it-
erations traversed by the dependence. 6§(u,v) = 0
corresponds to an intra-loop dependence (ILD), and it
is represented as u; — v;. §(u,v) > 0 corresponds to
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aloop-carried dependence (LCD). An LCD of distance
d between u and v is represented as u; 5 v;.

2.2 Comparison among approaches

2.2.1 Software pipelining without previous unrolling

Figure 1(a) depicts a DG with 5 additions. 6(E,A) = 3
indicates that E; must be executed to completion before
Aiy starts. The remaining dependences are ILDs. For the
sake of simplicity, let us assume that the loop is executed by
using 4 adders which add in one cycle. A pipelined schedule
in two cycles (II=2) can be easily found, as shown in Figure
1(d). The throughput (average number of iterations executed
per cycle) of such a schedule is Th = %
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Figure 1. Example of DG and schedules for
4 adders (a) Example of DG with 5 additions
(b) Schedule achieved by UNRET (c) Schedule
achieved by using the optimal UD (d) Sched-
ule achieved without unrolling (e) DG corre-
sponding to schedule (d)

2.2.2  Software pipelining with optimal UD

In order to obtain a minimum initiation interval (MII) for
the schedule, a new loop representing multiple instances of
the loop body is in general required [3]. Unrolling the loop
may increase the schedule throughput, but it also produces
code and register explosion. Moreover, a prologue and an
epilogue are in general necessary to execute an unrolled
loop. We will ignore the effect of the prologue and the
epilogue on the overall execution time!.

Two lower bounds on IT must be taken into account [18]:

o the minimum initiation interval imposed by resource
constraints (ResMII)

If each iteration of the loop requires using an FU durin g
C'cycles, and the architecture has N FUs of such a type,
then IT > [%] Therefore, the FU with the maximum
such ratio determines a lower bound on II.

o the minimum initiation interval imposed by the cycles
formed by the dependences of the loop (RecMII)

Let us consider a cycle (recurrence) R. A feasible
schedule must fulfill IT > [£L], where ET is the sum

I'This neglect can only be done for large loop counts.




of the execution times of the operations in R and D is
the sum of the distances of its dependences [17]. The
recurrence with the maximum such ratio determines
another lower bound on II.

The MII of the loop is the maximum of the previous
lower bounds. In the example of Figure 1(a), MII= %, thus
indicating that 4 iterations may be initiated every 5 cycles.
In order to find such a schedule, the loop is unrolled 4
times and pipelined, looking for a schedule in 5 cycles [19].
Unfortunately, such a schedule does not exist [4].

When the expected schedule is not found, current ap-
proaches [9, 13, 17, 19] increase (by 1 or more than 1 unit [9])
the expected II and try to find a longer schedule by using
the same UD. The loop is pipelined again, looking now for
a schedule of 4 iterations in 6 cycles. Figure 1(c) shows the
found schedule, with a throughput T'h = % This schedule
is still far from the optimal schedule, but is better than the
schedule found without previous unrolling.

2.2.3 UNRET strategy

Similar to other approaches, UNRET computes the MII and
unrolls the loop 4 times. Let IIx be the initiation interval
of a schedule comprising K iterations of the loop body.
In order to find a schedule which maximizes the execution
throughput, UNRET explores pairs (IIx K) in decreasing
order of expected throughput. After the pair (I Ik, K)=(5,4)
representing maximum throughput (for which no schedule
exists), the first pair explored is (I Tk, K)=(4,3). Therefore,
the loop is unrolled 3 times and pipelined until a schedule in
4 cycles is found, as shown in Figure 1(b). The throughput
of such a schedule is T'h = 3. Although this schedule is not
time-optimal (for the lower bound computed), it is better
than that obtained by the other approaches. A significant
speedup (1.125) is obtained with regard to [9, 13, 17, 19]
due to the more exhaustive exploration of the UD.

2.3 UNRET algorithm

The strategy followed by UNRET is as follows:

1. Calculate MIT=max(RecMII, ResMII) (section 2.2.2).

2. Find UD (K) and expected II (IIx) which maximize
throughput (section 3).

3. Unroll the loop K times.

4. Find new labellings A and § and schedule the DG until
a schedule in ITx cycles is found (section 4).

5. If no schedule in IIg cycles is found, find new values
for K and IIx (throughput is explored in decreasing
order), and goto 3 (section 3).
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6. If aschedule in IIx cycles is found, reduce the number
of required registers (section 5).

The following sections present more details on the main
phases of UNRET : the calculation of the UD for throughput
maximization (Section 3), the software pipelining algorithm
(Section 4) and the way to reduce the number of required
registers (Section 5).

3 Optimal UD

The throughput of a schedule is the ratio between the
UD of the loop and the length (II) of the schedule. The
variations in both magnitudes determine the solution space
(all possible throughputs) for a given loop. When an optimal
schedule is not found, the solution space must be examined
and a criterion must be established to determine when an
“acceptable” solution has been found.

We will use the example from section 2 to illustrate how
pairs (IIg, K) are generated. Figure 2 depicts a diagram rep-
resenting the pairs to be explored. Each point in the diagram
represents a pair (IIx, K). MaxII, the maximum number of
cycles of a schedule, is defined by the designer to limit the
number of pairs to explore (IIx < MaxII). Otherwise, the
number of pairs is infinite and, therefore, they cannot be or-
dered and explored in decreasing order of throughput. Small
values of MaxII may lead to good solutions [20].

All pairs representing the same throughput fall in a line.
The points to explore are contained in the triangle delimited
by the line IIx= MaxI, the z axis (K = 0) and the line
Th = ”\T‘ﬁ Only points with integer values for K and Ik
represent valid schedules?. For two different pairs belonging
to the same line, UNRET first explores the pair representing
the smallest UD.

VEKE) Th= : 3
—A_lﬁ /‘ ThA=ThD=T
L e e 4D
L 2
e : Thy = =
O s 9B : " 3
) e Ahi L y
e pa R ROETR
i (1)
MaxII

Figure 2. Throughput diagram for the example
of Figure 1

Figure 2 represents the throughputachieved by the sched-
ules of the example shown in Figure 1. Point C represents
a theoretical optimal (but non-existing) schedule. UNRET
finds a schedule at point A (3 iterations in 4 cycles). Other

2Some of these schedules may not exist.




approaches [9, 13, 17, 19] attempt to find a schedule by
increasing II, obtaining a solution for point B (4 iterations
in 6 cycles) These approaches explore the solution space in
one dimension (parallel to the 2 axis for a fixed K'), whilst
UNRET explores two dimensions: Il and K. The math-
ematical formulation for the generation of pairs (IIg, K)
is based on Farey’s series [23). Farey's Series or order Z
(Fz) defines the sequence (in increasing order) of all the
reduced fractions with nonnegative denominator < Z. This
series contains all the points within the triangle limited by
MaxII = Z [20]. For example, Fj is the series of fractions:

OFS] 2 S isgea] | w 30ng ey
155" JusT2 g Vg gy
Let ’)\—L be the ith element of the series. F can be
generated by the following recurrence:
3 Xo _ 0 X
e The first two elements are ¥, = 7 and Y. =7
e The generic term ‘;‘h can be calculated as:
Vi 2 . . Ye4+2Z|
XK42 = l’:*J-/\K“—AK Y42 = { ;: J Yi41—-Yk
K41 K+1

4 Software pipelining

4.1 Equivalent DGs

Provided that A; 4 2 B; and A; — B; represent the
same dependence in a DG, two different labellings (), §)
and (X', §') are equivalent (they represent the same loop) if,
V(u,v) € E, the following condition holds:

A(v) = Mu) +8(u,v) = M (v) — N (u) + 8'(u,v) (1)

Therefore, a new DG equivalent to the initial DG can be
obtained by transforming A and §. The transformation has
the same effect as operation retiming [14]. The new DG can
be easier scheduled because dependences have, in general,
higher distances, and therefore they impose less constraints
to a pipelined schedule.

4.2 Dependence retiming

Dependence retiming transforms a dependence ¢ =
(u,v) of distance d into another dependence of distance
d + 1 according to equation (1), by executing the following
algorithm:

function dependence_retiming(DG, ¢); { e = (u, v)}
N(u):=Au)+ 1;
for each (u,w) € E do &' (u,w) := §(
for each (w,u) € F do §'(w,u) := §(
endfunction;

w) + 1;
u) —1;

u,
w,
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Dependence retiming must be used in edges so that no
negative distances are produced in the DG. Dependence
retiming produces an equivalent DG, since Equation (1) is
fulfilled for each edge. Figure 3(a) shows that an ILD not
belonging to any recurrence can always be transformed into
an LCD. Figure 3(b) shows that an ILD belonging to a
recurrence is shifted across the recurrence when dependence
retiming is used on an edge of the recurrence.

®LO~0 OHIoW
(a) (b)

Figure 3. Dependence retiming

4.3 Software pipelining algorithm

For an expected II, a dependence e = (u,v) is called
a scheduling dependence (it constrains the scheduling) if
T'(u) —II- é(e) > 0, T'(u) being the execution time of u.
Let G and G’ be two equivalent graphs. We define G is
better for scheduling than G” if the critical path (CP) of G is
shorter. For equal CP length, we define G is better than G’ if
G has less scheduling dependences than G’ . To continuously
produce better graphs, the edge to retime is selected among
those that are head or tail of a CP. These edges can be easily
transformed in a way such that no negative dependences are
created after dependence retiming.

As example, DG from Figure 1(e) is better for scheduling
than DG from Figure 1(a), and a schedule in two cycles
can be found by using four resources, as shown in Figure
1(d). The loop pipelining algorithm selects and retimes
dependences until a schedule is found or no further retiming
can be done such that a better DG is found. The algorithm
is sketched in Figure 4. It executes in O(V2E + VE?).
To compute the execution time, we have considered that the
scheduling algorithm executes in O(V2+ V E) time, and the
repeat loop in retiming_and_scheduling is executed n - | E|
times, where 7 is an integer which depends on the distance
of the dependences [20].

Retiming implicitally pipelines the loop. Therefore, a
pipelined schedule of the loop may be found by simply
scheduling the operations in the DG (any known approach,
as list scheduling [6] or force directed scheduling [16], can
be used). We use list scheduling for its efficiency and
low complexity, given that the scheduler may be potentially
called many times by retiming_and_scheduling.

UNRET deals with irregular resource execution patterns.
Since the expected initiation interval of the schedule is
known in advance, operations may overlap their execution




function retiming_and_scheduling(DG Il g ,K);
DGliest := unroll(DG, K);
DG’ := DGhests
Repeat
S :=scheduling(DG");
if found schedule in IT g cycles
then return S endif;
e:=select an edge for retiming from DG’;
if no edge can be selected
then return schedule not found endif;
DG’ := dependence_retiming (DG', e);
if DG’ is better than DGyesy
then DG\es; := DG’ endif;
Forever;
endfunction;

Figure 4. Retiming_and_scheduling algorithm

among consecutive schedules®. This feature allows UN-
RET to find non-rectangular schedules [21]. All the com-
plexity concerning resource constraints, multiple-cycle and
pipelined FUs is hidden within the scheduling algorithm.
Since other authors have presented several contributions on
these topics, no details will be given in the paper.

5 Register optimization
5.1 Variable lifetime

An absolute lower bound on the number of registers re-
quired for a schedule is the maximum number of variables
whose lifetimes overlap at any cycle (M ax Live). Experi-
ments have shown that M az Live is very close to the number
of registers required after performing register allocation [9].
Therefore, we will use M ax Live to approximate the num-
ber of registers required by a schedule.

Let us consider an ILD e = (u, v). The variable lifetime
of e may be different according to the target architecture. In
a superscalar architecture, the variable lifetime spreads from
the starting of u to the starting of v. Ina VLIW architecture,
the variable lifetime spreads from the starting of u to the
completion of v. Other models can also be defined [20].
For example, in HLS, the variable lifetime spreads from the
completion of u to the cycle in which the FUs executing v
do not require the input data anymore.

In order to reduce the registers required for a schedule,
we use a two-step approach:

1. Variable lifetimes are shortened by reducing the SPAN.

2. Maaz Live is next reduced by incremental scheduling.

3For example, an operation can start at cycle IT and continue the execu-
tion at the first cycle of the following iteration.
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Figure 5. Example of SPAN reduction (a) DG
example before SPAN reduction and schedul-
ing with MaxLive=3 (b) DG after SPAN reduc-
tion and scheduling with MaxLive=2

5.2 SPAN reduction

The SPAN of a DG is defined as Ay az — Amin + 1, where
Amaz and Apmin are the maximum and minimum values for
) respectively. In general, a reduction of the SPAN leads to
a reduction in the iteration time, the variable lifetimes, the
number of registers required to store partial results across
iterations and the size of the prologue and the epilogue.

The algorithm to reduce the SPAN calculates the maxi-
mum value for A (Ajnaz) by exploring all nodes in the DG.
Following this, Amaz is iteratively decreased until a DG
with minimum SPAN is found (minimum SPAN=UD) or
the critical path of the current DG is longer than the ex-
pected initiation interval.

A transformation called reduce_index is used to reduce
Amaz. Reduce_index(u) is based on dependence retiming,
and it is only used in nodes so that the transformed DG has
non-negative dependences. In order to reduce the SPAN, a
node is selected among those whose index is Amaz. The
node which produces the DG with the shortest critical path
is selected at each iteration of the loop.

function reduce_index(u);
M(u) = AMu) - 1;
for each e = (u,v) € E do §'(e) :=6(e) — 1;
for each e = (v,u) € E'do &§'(e) := 6(e) +
endfunction;

After each index reduction, retiming_and_scheduling is
executed, attempting to reduce the number of scheduling
dependences in the DG. This is done without increasing the
SPAN. Figure 5 shows an example of SPAN reduction.

5.3 Incremental scheduling

Incremental scheduling reduces variable lifetimes by
rescheduling some operations within the schedule without
changing their iteration index. Operations to be moved are
selected among those that produce (or consume) a variable




whose lifetime crosses a cycle consuming M az Live regis-
ters. Two moves are considered:

® Re-schedule an operation: moves an operation from
the current cycle to another cycle so that sufficient re-
sources are available.

e Swap two operations: can be performed when both
' operations have similar execution patterns.

MaxLive=2 MaxLive=1

‘ Figure 6. Incremental scheduling

Figure 6 shows an example of how incremental schedul-
ing may reduce M az Live. The execution time of the regis-
ter optimization algorithm is O(V*E + V E?) [20]. Despite
the timing complexity seems rather high, results show that
little CPU-time is required to find the final schedule.

6 Comparison with other approaches

We have borrowed from [8] a set of 24 benchmark loops
selected from assorted scientific programs such as Liver-
more Loops, SPEC, Linpack and Whetstone. As in [8], we
assume a result latency of 1 cycle for add, subtract, store,
and move instructions, 2 cycles for multiply and load, and
17 cycles for divide. We also assume that all the functional
units are fully pipelined. Although this assumption is not
realistic for dividers, we follow it here for the sake of future
comparisons with other approaches.

The results obtained by UNRET are compared with the
results obtained by Huff’s slack scheduling (SLACK) in
[9], Wang and Eisenbeis’ FRLC [24], Govindarajan et al.’s
SPILP [8] and LLosa et al.’s HRMS [15]. All the methods
use heuristics to find the schedule except SPILP, which uses
an ILP formulation.

Table 1 shows the efficacy of UNRET in finding an op-
timal schedule. In order to make the comparisons, we will
assume an architecture with 1 FP adder, | FP multiplier,
1 FP divisor and 1 load/store unit. The results obtained
by SLACK, FRLC and SPILP have been previously re-
ported in [8] by using a Sparc-10/40 workstation. We have
used the same type of machine to measure the time required
by UNRET. For each benchmark, Table 1 shows the MII,

Application Ml SLACK _[[  FRLC _|[ SPILP__[| UNRET ||
“ Program IIL"ITII“—[THIIITll“l"'l]

Ll 1 1 0.01 2 0.02 1 0.82 1 0.06
%) 3 T 003 3 003 5 74 6 0.08
%) G & 002 3 002 G 072 3 008_||
4 0 12 0.10 [¥] 0.03 1T 160 11 0.96
SPEC 3 7 7 002 7 | 002 ) 0.70 ) 0.08_||
SPICE 6 7 K 003 7 | 003 2 767 7 021
7 T T [ 003 7 | 001 T | 070 Y[ 000 ||
[ T 3 003 3 ; k) 3B |3 | 008 ||
[ LT k) T | 002 K U7 T TES 3 | 008 |
(K] 20 20 | 003 20 | 003 20 | 435 20 | 020
SPEC L I B 0.03 003 103 20 | 020
DODUC L7 7 ) X 18 | 003 2 0.70 p] 011
[[CSPEC-FP_ ] LT ]| 20 ][ 20 ] 003 J] 20 | 002 J] 20 ] 093 ][ 20 [ oa1 ]|
Ll 3 5 0.05 3 0.02 3 197 3 0.16
Livermore 3 k) T [ 003 k) 0.02 3 (D] 3 006 ||
[9X) 7 g 013 £l 012 g pii] Bl 046
[CCpack T U J[ 2 [ 2 Jo02 J] 3 J o0z ] 2 ] 262 [] 2 [ 006 ]
] 17 18 | 017 18_| 008 17 | 425 17 | 031
() 6 7 003 7 | 003 G 703 6 0.3
5 3 3 03 ] 002 3 0.73 5 010 |
Whetstone T 7 7 07 7 002 7 L] T 005
L&) 7 7 007 L 07 7 TET L) 08|
€] ) ) 0.0 ) 003 4 T35 ] 008 ||
CR ) ) 002 q 0.02 ) .77 I 008 |

Table 1. Results obtained by different ap-
proaches by using an architecture with 1 FU
of each type

the initiation interval (II) of the schedule found by each
approach and the time required to find the schedule (T).
The large initiation interval obtained by FRLC for exam-
ples SPEC-SPICE 6 and 7, and for SPEC-DODUC 7, is
because such an algorithm has been programmed without
considering overlapping among the schedules of successive
(pipelined) iterations. As SPILP, UNRET obtains the MII
for all cases except for SPEC-SPICE loop 4, but in less time.
Since SPILP is an ILP approach, it obtains optimal results.
Therefore, we conclude that no schedule exists in the cal-
culated MII. Note that no unrolling has been necessary to
obtain optimal schedules in all cases.

In order to show the improvement in throughput achieved
by unrolling the loop, Table 2 shows the results obtained by
using an architecture with of 3 FP-adders, 2 FP-multipliers,
1 FP-divisor and 2 load/store units. Results are compared to
HRMS [15], an efficient modulo scheduling algorithm fo-
cused to reduce the register pressure. Firstcolumns show the
IT and the number of registers (Reg) required for each bench-
mark on each approach. Last columns show the pair which
produces the schedule (IIx, K), the difference between the
number of registers required by UNRET and HRMS (diff
reg), and the throughputimprovement achieved by unrolling
the loop (speed up). Table 2 shows that UNRET obtains the
same throughput as HRMS for the same UD. However,
the utilization of the optimal UD improves the throughput
achieved by HRMS in 21% of all cases (see examples SPEC-
SPICE 7 and 8, Livermore 1, and Whetstone C4 and C8) .
This is because, in general, systems which do not perform
unrolling try to find a schedule in [MII] cycles when MII
is not an integer. Note that optimal schedules are found




“ Application [ HrMS [ UNRET ] IIg/K I diff ‘ speed JJ
Program [T [ Re [ T | Rex || reg up
] 1 3 T 5
2 ) ) 7 4
3 6 3 6 3
%] 1 [ 1 11
SPEC-SPICE 3 b 7 ¢ 7
L6 ) k) 7 k]
e 7 ki T3 57 KIY) 17 L)
X 7 6 TS 7 I +1 3
LT0 T T 3 K
LI-{ 2 1 2 1
SPEC-DODUC K y) 7 7 ] +
%) 2 7 i3
[ seecreere_| L1 ]| 2 [ 4 [ 2 [ 4 1l I T —1
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Table 2. Comparison of throughput and regis-
ter requirements for VLIW processors by us-
ing 3 FP adders, 2 FP multipliers, 1 FP divisor
and 2 load/store units

in all cases. Therefore, Farey’s series do not require to be
explored for these loops with the given architecture. Table 2
also shows that increasing the UD also increases (in general)
the number of registers required by the schedule.

HRMS is a good algorithm (from the point of view of
register pressure) that performs software pipelining and reg-
ister reduction at a time. Since HRMS and UNRET obtain
similar results, we conclude that separating both tasks (soft-
ware pipelining and register reduction) may produce very
promising results (note that the register reduction phase of
UNRET consumes little CPU-time). In order to demon-
strate this claim, we have executed the register reduction
algorithm over the schedules generated by a simple modulo
scheduling. The heuristics used by the modulo scheduling
to select which instruction must be scheduled are based on
the topology of the DG (top-down). Table 3 shows the re-
sults obtained. For each benchmark, the first two columns
show the initiation interval and the register requirements of
the schedule found by the modulo scheduling (MS). The
next columns show the registers used by the schedule after
each step of the register reduction algorithm: SPAN reduc-
tion (SR) and incremental scheduling (IS), as well as the
CPU-time used by each step. The final column (diff) shows
the register reduction achieved.

Finally, in order to evaluate how far are the results ob-
tained by UNRET from the optimal ones, we have used an
integer linear programming approach [4] to calculate the op-
timal initiation interval and the minimal number of registers.
Results in Table 4 show that UNRET obtains optimal results
in the initiation interval for all cases, and optimal results in
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Table 3. Register reduction in a modulo
scheduling algorithm by assuming a VLIW
processor with 3 FP adders, 2 FP multipliers,
1 FP divisor and 2 load/store units

the number of required registers in almost all cases. First
columns present the loop example. The optimal initiation
interval and the minimal number of registers computed by
[4] are next presented. The following columns show the II
and the number of registers (Reg) used by UNRET. Finally,
last column indicates those examples for which UNRET
requires more registers than [4].

7 Conclusions

This paper presents UNRET, a new algorithm for
resource-constrained software pipelining. UNRET works
with multiple-cycle (possibly pipelined) functional units.
An operation may use different types of functional units
while executes. UNRET is based on the exploration of the
throughput achievable by a schedule as a function of the
unrolling degree. For a target throughput, we analytically
compute both the number of times the loop must be un-
rolled and the expected initiation interval of the schedule,
exploring the solution space in two dimensions. In order to
perform software pipelining, dependence retiming, a loop
transformation at graph level, is proposed. The number of
required registers is reduced after a schedule is found.

We have shown the effectiveness of UNRET by using
well-known benchmarks. We have also shown, by means of
an example, how UNRET may improve the results obtained
by other techniques which explore the solution space in only
one dimension.
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Table 4. Comparison with optimal results for
superscalar processors (1 FU of each type)
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