
PROMISE: Property Mining for Sequential Synthesis

Jiahui Xu∗, Jordi Cortadella†, and Lana Josipović∗
∗ETH Zurich, Department of Information Technology and Electrical Engineering, Zurich, Switzerland

†UPC Barcelona, Department of Computer Science, Barcelona, Spain

Abstract—Modularity—composing a large system using indi-
vidually designed units—is an essential practice in hardware
design. Yet, modularity might compromise quality: when indi-
vidually designed units are put together, some of their states
may become unreachable and, consequently, the logic that im-
plements them is redundant. Sequential synthesis aims to remove
redundant circuit logic by leveraging state unreachability. It
critically depends on invariants—relations between signals and
registers that hold in all reachable states—to prove the validity
of redundancies. Yet, existing invariant generation techniques are
mostly problem-specific (for a particular circuit or a property)
or reliant on localized reasoning. We propose PROMISE, a fast
circuit redundancy removal strategy. PROMISE exploits the rich
information from simulation traces and uses efficient polynomial-
time algorithms to infer global circuit invariants, optimizing
the circuit and aiding other sequential synthesis procedures.
Experiments show that PROMISE effectively optimizes circuits
produced by high-level synthesis tools.

I. INTRODUCTION

FPGAs offer flexibility, energy efficiency, and high perfor-
mance; our goal is to make their programming as smooth as
traditional software development. The key to devising large
designs is modularity: a design is composed of small, man-
ageable pieces that can be easily integrated. Yet, composability
comes with a cost. It incurs substantial overhead [1] due to
the interface logic required to assemble the modules correctly:
when individually designed units are put together, some of
their states may become unreachable and, consequently, the
logic that implements them is redundant.

Sequential synthesis is a family of logic synthesis tech-
niques that remove redundant circuit logic leveraging state
unreachability. Its success critically depends on the available
invariants—relations between flip-flops (FFs) that hold in all
reachable states—to prove the validity of redundancies. How-
ever, useful invariants are hard to find: the space of possible
properties is enormous, so strategies often rely on localized
reasoning (e.g., a subgraph of adjacent circuit gates/FFs) or
produce property- or circuit-specific invariants.

We present PROMISE, an invariant generation framework for
sequential synthesis. PROMISE leverages the information avail-
able in circuit simulation traces and uses efficient polynomial-
time algorithms to generate a system of invariants commonly
found in circuits produced by high-level synthesis (HLS). The
invariants characterize the unreachable circuit states, which
we use to optimize the circuit’s encoding and enhance the
effectiveness of existing sequential synthesis approaches. Our
result shows that PROMISE-generated invariants bring tangible
and justifiable improvements to the circuit quality.

II. BACKGROUND

This section reviews the foundations in formal verification
and logic synthesis techniques that PROMISE relies on to
optimize redundant circuit logic.

A. Model Checking

In a finite-state machine (FSM), such as a sequential circuit,
an invariant is a property that holds in every reachable
state [2]. Model checking [3]–[5] is a formal verification tech-
nique that formally proves whether a certain property holds for
an FSM. If the property fails, it provides a counterexample. k-
induction [6], [7] is an important model checking algorithm for
invariant properties. k-induction verifies if the following two
conditions hold: (1) the property holds in any k steps starting
from the initial state; (2) for any k consecutive states where
the property holds, the property holds after any transition. In
practice, a very large bound k is needed for concluding non-
trivial properties: when k is not big enough, the induction
engine will return a counter-example, in which none of the
states is reachable. An invariant can act as a constraint during
model checking to rule out certain unreachable states (i.e., the
model checker ignores the states that violate the invariants),
thus it can speed up the verification of the k-induction proof
of another safety property [8]–[10].

Model checking algorithms like k-induction not only apply
to verifying the circuit’s correctness against a certain specifi-
cation, as we will see in the next section, but they also have
important applications in circuit optimization.

B. Sequential Synthesis

Sequential synthesis refers to circuit transformations that
change the circuit’s combinational function but do not alter
the value of the primary outputs (POs) in all reachable
states [11], [12]. It leverages state unreachability (i.e., some
values never appear in the input of the combinational circuit)
to uncover optimizations that are unattainable in combinational
synthesis [7], [13]: state reachability is formally verified before
being applied to reduce the circuit area. This principle can be
generalized into a suggest-guarantee-optimize procedure inde-
pendent of the circuit transformation and the property being
verified. This procedure is divided into these steps:
• Suggest: Candidate invariants—which indicate state

unreachability—are identified using a custom heuristic.
• Guarantee: The suggested invariants must be guaranteed by

formal verification. The surviving invariants are passed to
the optimize phase.

• Optimize: The circuit is optimized using the unreachable
state space generated by the proven invariants.

f1 f2 f3 f4 f5

f6+ −=0?

pi1 po1

(a) The unoptimized circuit has redundant encoding (the 5 FFs with
shaded background is reduced to 3 as in Figure 1c).

Cycle f1 f2 f3 f4 f5 f6
C0 0 0 0 0 0 0
C1 1 0 0 0 0 1
C2 0 1 0 0 0 1
C3 0 0 1 0 0 1
C4 0 0 0 1 0 1
C5 0 0 0 0 1 1
C6 0 0 0 0 0 0

(b) A simulation trace of Figure 1a, which is also the same as the
entire reachable set of states.

x1

x2

x3

Enc Dec
... ...

4-bit

(c) A circuit diagram (some details omitted) after encoding optimiza-
tion. Section VII-A discusses how the optimization is carried out.

Fig. 1: Circuit with a redundancy encoding. We identify opti-
mization opportunities and invariants from simulation traces.

However, current invariant generation methods (the “suggest”
phase) do not synergize well with the “optimize” phase: they
overlook encoding optimization opportunities and are unable
to find useful invariants for effective sequential synthesis, as
we will demonstrate next.

III. ARE WE GETTING THE MOST OUT OF OUR
INVARIANTS?

This section motivates new approaches for circuit encoding
optimizations and invariant generation.

A. Missed Encoding Optimization Opportunities

Figure 1a depicts a sequential circuit with six FFs (f1–f6);
all initialized to 0. The input to the start of the FF chain (f1–
f5) can be 1 only if the value of f6 is 0 in the current state;
f6 becomes one after the start of the chain receives an 1, and
becomes 0 after the start of the chain outputs an 1. Figure 1b
describes a simulation trace of 7 clock cycles (i.e., 7 circuit
states) with the values of the FFs. The circuit has simple
control logic, and this trace contains all of its reachable states.
Notice that, in any state, at most one FF in f1–f5 has an output
value equal to 1. In theory, it is possible to replace the chain
of 5 FFs with only 3 FFs as in Figure 1c.

This redundancy appears in many circuits and is often
unintentional. However, state-of-the-art sequential synthesis

f2
f1

f3 w1

<
+−

f4 f5 f6 f7
pi1

po1

5

(a) The shaded parts can be removed without compromising the
circuit’s functionality.

Cycle pi1 f1 f2 f3 f4 f5 f6 f7
C0 1 0 0 0 0 0 0 0
C1 1 1 0 0 1 0 0 0
C2 1 0 1 0 1 1 0 0
C3 1 1 1 0 1 1 1 0
C4 0 0 0 1 1 1 1 1
C5 0 1 1 0 0 1 1 1
C6 0 0 1 0 0 0 1 1

(b) Simulation trace with 7 states and 7 state variables.

Fig. 2: The invariant extracted from a simulation trace can
improve the effectiveness of sequential synthesis (see Sec-
tion III-B).

approaches [7], [13], [14] typically would not optimize away
this redundancy, since existing state-encoding approaches re-
quire complete reachability information (e.g., state-transition
graph, or a BDD of the set of reachable states) that is very
expensive to obtain. PROMISE detects these redundancies in
the form of a linear inequality1:

f1 + f2 + f3 + f4 + f5 ≤ 1. (1)

When this relation is true for all reachable states, we know
that there are only 6 reachable combinations of these 5 FFs,
and PROMISE can reencode the 5 FFs into 3 FFs.

B. Localized and Inexpressive Invariants

Consider the circuit in Figure 2a. All FFs are initialized
to 0. A chain of FFs f4–f7 receives a 1 only when the 3-
bit word w1 (consisting of f3,f2, and f1; f3 is the MSB)
has a value less than 5. Counter w1 counts up when a 1
is loaded into the FF chain f4–f7, and counts down as f7
outputs a 1. Since the counter’s value directly corresponds to
the number of 1’s in f4–f7, the “<” gate always evaluates
to 1. Theoretically, we can remove or simplify all the shaded
wires without altering the functionality. Without the support
of invariants, sequential synthesis approaches (e.g., scorr in
ABC) require a large induction depth to simplify the circuit (as
large as the maximum value of the counter). However, existing
invariant generation techniques are unable generate useful
invariants for optimizing this circuit, as they are limited to
Boolean clauses over a subgraph of adjacent nodes (e.g., a

1We use “&”, “|”, and “∼” to denote logical and, or, and not. We use “+”
for arithmetic sum

2

clause f1|f2|f3) [15], simple implication or equality between
signals [16], [17], are specialized to particular circuits [8], [9],
or specific to the invariants relavant for proving one particular
property [18].

On the other hand, PROMISE can detect and prove the
following invariant, which cannot be obtained using the afore-
mentioned circuit invariant generation techniques:

f1 + 21 · f2 + 22 · f3︸ ︷︷ ︸
=w1

= f4 + f5 + f6 + f7, (2)

which specifies the relation between the 3-bit word w1 and the
FF chain f4–f7. Once assisted with this invariant, sequential
synthesis can easily remove all the shaded logic.

The examples above show that current sequential synthesis
techniques cannot suggest expressive invariants. Without in-
variants like Equation 1, encoding optimization like the one
we describe in Section III-A cannot be carried out.

IV. PROMISE: GENERATING CIRCUIT INVARIANTS FROM
SIMULATION

We propose PROMISE, an invariant generation framework to
enable more effective sequential synthesis. PROMISE leverages
polynomial-time algorithms to efficiently suggest candidate
linear invariants from the circuit’s simulation traces. PROMISE
guarantees the validity of the invariants using a model checker,
and uses the invariants to optimize the circuit’s encoding or
assist other sequential synthesis approaches [7], [19].

Suppose c1, . . . , cN+1 are coefficients and f1, . . . , fN are
the circuit’s FFs; PROMISE generates:
• Inequalities with {0, -1, +1} coefficient for c1, . . . , cN and

arbitrary integer value for cN+1:

c1 · f1 + c2 · f2 + · · ·+ cN · fN + cN+1 ≤ 0; (3)

• Equalities with arbitrary integer coefficients.

c1 · f1 + c2 · f2 + · · ·+ cN · fN + cN+1 = 0. (4)

Such linear relations frequently appear in the control logic
of HLS-produced circuits [9], since the control status of a
circuit is often realized using linearly evolving elements like
counters. PROMISE makes better suggestions and therefore,
enables better optimizations.

The rest of the paper is organized as follows: Section V
describes PROMISE’s suggest phase: two mathematical meth-
ods for inferring the candidate invariants. Section VI describes
the guarantee phase; a standard model checking algorithm
to verify the invariants. Section VII describes the optimize
phase: how to exploit the properties to optimize the circuit.
Section VIII evaluates the effectiveness of PROMISE.

V. THE SUGGEST PHASE: MATHEMATICAL METHODS FOR
PROPERTY MINING

This section describes the mathematical methods for identi-
fying properties in the form of linear equalities and inequalities
that we classified above.

Cycle f5 f6 ∼f5 ∼f6
C0 0 0 1 1

C1...5 0 1 1 0
C6 1 1 0 0

(a) f5, f6, and their comple-
mented values in Figure 1b.

~f5~f6

f5f6

(b) Conflict graph for Figure 3a
colored using 3 colors.

Fig. 3: Coloring a conflict graph using the algorithm in
Section V-A.

A. Extracting Mutually Exclusive Sets of Signals by Coloring
a Conflict Graph

This subsection devises a systematic strategy for identifying
mutually exclusive signals from simulation traces. This enables
optimizations such as the one in Figure 1.

A set of FFs f1, . . . , fN are mutually exclusive if they
are never simultaneously 1 [20], i.e., f1 + · · · + fN ≤ 1.
Mutual exclusiveness translates to these relations: (1) One-hot:
mutually exclusive FFs are one-hot. (2) Implication: if f1 and
f2 are two mutually exclusive, they must have ∼(f1&f2) = 1.
Now, suppose that f1 and ∼f2 are mutually exclusive, then
∼(f1&(∼f2)) = (f1 → f2) = 1.

PROMISE infers mutually exclusive sets of FFs by coloring
a conflict graph [12], [21]. PROMISE constructs the conflict
graph from simulation data as follows:
• For each FF output fi and its complement ∼fi, add a node

in the graph.
• For each simulation cycle, if the corresponding signals of

any two nodes are both 1, add an edge between those nodes.
• For each FF fi, add an edge between fi and its complement
∼fi (to avoid a trivial relation like: ∼fi + fi ≤ 1).

Graph coloring assigns different colors to nodes connected by
an edge. For scalability, we apply a greedy coloring which
runs in linear time [21]; this heuristic leads to excellent
results, as we will see in Section VIII. After coloring, each
color denotes a set of mutually exclusive FFs. For each color
C := {f1, · · · , fN}, we devise the following invariant:∑

fi∈C

fi ≤ 1, (5)

which is used by PROMISE to assist other sequential synthesis
approaches and to optimize the encoding—Section VII-A
describes how PROMISE carries out the optimization.

For example, Figure 3 describes a conflict graph built from
f5, f6, and their complemented values. After coloring, we get
3 sets: {f5,∼f6}, {f6}, and {∼f5}. The first set corresponds
to a non-trivial relation: f5 +∼f6 ≤ 1.

B. Extracting Equalities Using Gaussian Elimination

This subsection presents a systematic strategy for deriving
a system of linear equalities of the signals in the circuit from
simulation traces. This improves the effectiveness of sequential
synthesis of the circuit, such as the one in Figure 2.

PROMISE infers linear equalities like Equation 2 from sim-
ulation traces. Since any valid invariant holds in all reachable

3

states, it must be at least valid for the observed simulation data.
This requirement is equivalent to a system of linear constraints
for possible values of coefficients ci ∈ C (fs1

1 denotes the
value of f1 in state s1):

fs1
1 fs1

2 · · · fs1
N 1

fs2
1 fs2

2 · · · fs2
N 1

...
fsM
1 fsM

2 · · · fsM
N 1


︸ ︷︷ ︸

A:M×(N+1)

·


c1
c2
...
cN

cN+1


︸ ︷︷ ︸
c:(N+1)×1

=


0
0
...
0
0

 , (6)

which is equivalent to the equations like Equation 4. A solution
to the system—a vector c =

[
c1 · · · cN+1

]T
—determines

the coefficients of an equality invariant in Equation 4. This sys-
tem potentially has infinite solutions, that is, infinite equations
to be added to the set of invariants. Yet, many equations are
redundant (e.g., 2 ·f1+2 ·f2 = 2 ·f3 is just a scaled version of
f1+f2 = f3). PROMISE adopts a standard approach [22]–[24]
based on Gaussian elimination (has O(n3) complexity) [25]
to determine a minimal set of vectors that each cannot be
represented using a linear combination of the others. In this
way, PROMISE efficiently infers equations like Equation 2 and
uses these equations to aid the sequential synthesis of circuits
in Figure 2.

Consider the linear system constructed according to the
simulation cycles 0. . .5 (no cycle 6) in Figure 2b:

0 0 0 0 0 0 0
1 0 0 1 0 0 0
0 1 0 1 1 0 0
1 1 0 1 1 1 0
0 0 1 1 1 1 1
1 1 0 0 1 1 1

 ·


c1
c2
...
c7

 =


0
0
...
0

 . (7)

One possible set of solutions to this system is:[
1 0 2 −1 1 −1 1

]T
, (8)[

0 1 1 0 −1 0 0
]T

. (9)

We plug them separately in Equation 4 (replacing the values
of c1 . . . c7) to obtain two relations:

f1 + 2 · f3 + f5 + f7 = f4 + f6, (10)
f2 + f3 = f5. (11)

These relations hold in cycles 0. . . 5, but the second relation
failed in cycle 6. In general, the inferred relation might be
spurious since a simulation trace is not guaranteed to cover
all states. Therefore, the validity of the invariants must be
guaranteed by formal verification, as described next.

VI. THE GUARANTEE PHASE: PROVING THE SUGGESTED
INVARIANTS

The result of the previous section is a set of candidate
invariants inferred from simulation. The simulation traces only
contain a subset of the reachable states. PROMISE attempts
to verify that the conjunction of the invariants is valid in all

reachable states using a model checker. If the proof failed,
PROMISE adds the states in the counterexample trace to the
set of simulation states to correct the set of invariants. If
the invariant holds, we use it to optimize the circuit. For
example, the model checker will return a counterexample trace
that contains cycle 6 (in Figure 2b) to disprove Equation 11.
Having the new state, PROMISE can reexecute the procedure
in Section V-B to correctly infer Equation 2.

The verified invariants enable PROMISE to apply the circuit
optimization techniques described in the next section.

VII. THE OPTIMIZE PHASE: CAPITALIZING ON THE
INVARIANTS

This section describes how PROMISE uses the invariants
from Section V to optimize the circuits.

A. Applying Encoding Optimizations to the Circuit

This subsection describes how PROMISE performs encoding
optimization using inequalities like Equation 3.

In general, for a set of signals F := {s1, · · · , sN}, a
system of inequalities like Equation 3 (that we aim to prove
in Section V-A) describes that the sum of the signals is within
a set of values K := {k1, . . . , kM}, that is:

(s1 + · · ·+ sN) ∈ {k1, . . . , kM}. (12)

For example, Figure 4a describes a subcircuit with 3 FFs,
f1, f2, and f3. Assume that the inequality

0 ≤ f1 + f2 + f3 ≤ 1 (13)

holds in all reachable states. Here, F := {f1, f2, f3} and K :=
{0, 1}. Since there are only 4 possible combinations of the
values of f1, f2, and f3, we can substitute the 3 FFs with
another subcircuit with 2 FFs as in Figure 4c. The following
describes how we construct the substituted circuit.

The substitution must preserve the circuit’s functionality.
Following a standard pattern as a previous work on encoding
optimization [26], PROMISE uses an encoding circuit Enc(·)
that takes the inputs to the original FFs (e.g., i1, i2, i3 in
Figure 4c) and send the encoded inputs (e1, e2) to the encoded
FFs (x1, x2). We use a decoding circuit Dec(·) to convert the
encoded FF’s outputs back to the original outputs (o1, o2, o3).
For any reachable FF value assignment to a set of FFs
f1, . . . , fN , the encoding and decoding function cancel each
other’s effect, that is, f1, . . . , fN = Dec(Enc(f1, . . . , fN)),
and the decoding circuit preserves the initial state.

PROMISE uses a state mapping table to decide on the
encoding scheme and the encoding and decoding circuits.
It maps a set of reachable FF values—all combinations
that satisfy Equation 12—in the unoptimized circuit into the
corresponding FF values in the optimized circuit. Figure 4b
describes a state mapping table that maps a state in Figure 4a
to a state in Figure 4c. For instance, according to the last entry
in Figure 4b, when both the original and optimized circuits
start from the initial state, if the original circuit (Figure 4a)
reached a state (f1, f2, f3) = (1, 0, 0) after applying certain
input sequence, the optimized circuit (Figure 4c) must have

4

Other unspecified terms, such as
(f1, f2, f3) = (1, 1, 0), are don't cares

f1 f2 f3

i1 i2 i3

o1 o2 o3

f1 f2 f3 x1 x2

0 0 0 0 0
100 0 1

10 0 01
0 01 1 1

x1 x2

i1 i2 i3

O1 O2 O3

e1 e2

e1 := i1 | i2
e2 := i1 | i3

o1 := x1 & x2
o2 := x1 & ~x2
o3 := ~d1 & d2

Encoding
circuit

Decoding
circuit

(a) Unoptimized (3 FFs)

(b) State mapping table (c) Optimized circuit (2 FFs)

Fig. 4: Circuit substitution: 3 FFs to 2 FFs.

(x1, x2) = (1, 1). Different mappings potentially have dif-
ferent effects on the cost of the encoding circuit. Although
exploring different mappings is beyond the scope of this
paper, we will see in Section VIII that the mappings used
by PROMISE successfully simplify the circuit.

The encoding and decoding circuits can be built from the
state mapping table using a standard logic synthesis tech-
nique (e.g., a Karnaugh map). We apply a pre-processing step
for FFs with complemented outputs (∼fi), since they might
not exist originally: we insert a pair of inverters at the input
and output of each complemented FF (∼fi), and complement
the initial value of that FF [7].

PROMISE performs encoding optimization only for F and
K that reduce the number of FFs. The number of FFs in
the substituted subcircuit |RF | after applying the encoding
optimization is given by

|RF | := ⌈log2(
∑
k∈K

(
|F |
k

)
)⌉, (14)

where
(
a
b

)
denotes the number of b-combinations of a el-

ements. The expression in log2(·) describes the number of
combinations of FF values that sum up to each value in the
set K ∈ {k1, . . . , kM}. Each combination corresponds to a
row in the state mapping table; therefore, the number of FFs
needed to represent these states is the log2(·) of the number of
entries. Encoding optimization is profitable if |RF | is less than
the number of FFs in the original subcircuit |F |. In Equation 1,
|F | = 5 and K ∈ {0, 1}, therefore, |RF | = ⌈log2(

(
5
0

)
+(

5
1

)
)⌉ = 3. Since |RF | < |F |, applying the transformation

reduces the number of FFs. Consider another case when
K = {0, 1, 2, 3}. Here, |RF | = ⌈log2(1 + 5 + 10 + 10)⌉ = 5,
and therefore the transformation is not desirable.

B. Enhancing Sequential Synthesis Using Invariants

In addition to the encoding optimization above, PROMISE
embeds other sequential synthesis procedures in its optimize

States

Suggest

Guarantee

Properties

(Verified)
Properties

Optimize

Simulate

Circuit

Simulate: Sample the circuit's state space

Suggest: From the sampled states, guess
certain properties that might hold in all
reachable states

Guarantee: Try to prove properties inferred
in the "suggest" phase:
- Pass: forward them to the optimize phase
- Fail: add the counterexample into the set of
states and go back to the suggest phase

Optimize: Use the verified property to
improve circuit's quality

Fig. 5: PROMISE’s suggest-guarantee-optimize circuit opti-
mization procedure.

phase and assists them using the invariants in Section V. With-
out loss of generality, here, we discuss the synergy between
PROMISE and one particular sequential synthesis flow [7];
we believe that this also applies to other sequential synthesis
approaches (e.g., Marakkalage et al. [14]).

Signal correspondance [7] is a sequential synthesis tech-
nique that detects, proves, and merges sequentially equivalent
nodes and FFs. This approach relies on k-induction internally
to carry out the proof. Without a suitable invariant, the depth
k required to prove the property might be prohibitively large.
However, in the presence of invariants provided by PROMISE,
they can efficiently prove the signal equivalence and perform
more effective optimizations.

This concludes the optimization methods used by PROMISE.
We now evaluate their effectiveness.

VIII. EVALUATION

This section evaluates the effectiveness of PROMISE.

A. Methodology

We implemented PROMISE—a suggest-guarantee-optimize
procedure that uses the techniques we have seen so far. Fig-
ure 5 describes our invariant generation and circuit optimiza-
tion flow. Unless stated otherwise, the parameters discussed
apply to all experiments.

Benchmarks. We have a set of benchmarks generated using
different circuit compilation tools: Dynamatic [27] (an MLIR-
based HLS tool that converts an input C code to a dynamically
scheduled dataflow circuit) and XLS [28] (converts a design
specified in its input language into a statically scheduled
circuit). They are decent targets for evaluating PROMISE:
Dynamatic generates circuits by connecting individually de-
signed dataflow units to ensure performance and flexibility,

5

TABLE I: Effectiveness of Suggest and Optimize: The fea-
tures of PROMISE (EN and IN) consistently improve the cost.
Compared with SC only, SC + EN + IN achieved average
reductions of 31% 6-LUT and 20% FF.

AIG results 6-LUT results
Benchmark Enabled features FF AIG Depth FF 6-LUT Depth

37 974 54 37 219 7
SC 37 1155 42 37 161 7
SC EN 38 1148 41 38 164 8
SC IN 37 736 50 37 165 7

factorial
(xls)

SC EN IN 38 744 50 38 167 7
54 528 19 54 132 5

SC 53 515 17 53 116 4
SC EN 54 532 17 54 118 4
SC IN 54 427 15 54 121 4

iterative
division

(xls)
SC EN IN 55 430 15 55 123 4

43 514 48 43 129 8
SC 43 600 35 43 122 8
SC EN 43 595 38 43 122 8
SC IN 43 450 46 43 125 8

iterative
sqrt
(xls)

SC EN IN 45 455 46 45 128 8
34 243 13 34 74 4

SC 32 195 13 32 57 3
SC EN 32 209 13 32 58 3
SC IN 32 173 13 32 58 3

simple
loop
(xls)

SC EN IN 34 177 13 34 61 3
497 3908 34 497 982 7

SC 482 4495 33 482 917 7
SC EN 443 4596 38 443 955 10
SC IN 367 1603 25 367 525 5

factorial
(Dynamatic)

SC EN IN 360 1606 25 360 528 5
392 2809 27 392 752 7

SC 311 2405 26 311 544 6
SC EN 134 876 17 134 197 4
SC IN 235 832 15 235 297 4

iterative
division

(Dynamatic)
SC EN IN 204 865 15 204 269 4

605 4732 46 605 1225 11
SC 581 4944 42 581 1087 10
SC EN 191 1092 22 191 269 5
SC IN 288 829 23 288 334 4

iterative
sqrt

(Dynamatic)
SC EN IN 254 840 23 254 302 4

57 385 18 57 98 4
SC 45 359 17 45 87 4
SC EN 23 181 12 23 42 3
SC IN 28 178 15 28 47 3

simple
loop

(Dynamatic)
SC EN IN 29 178 15 29 48 3

262 1997 34 262 587 8
SC 240 2128 29 240 543 7
SC EN 185 1750 30 185 439 7
SC IN 194 927 25 194 354 5

matvec
(Dynamatic)

SC EN IN 190 929 25 190 350 5
393 3001 34 393 853 8

SC 366 3481 31 366 773 7
SC EN 295 2875 37 295 671 8
SC IN 276 1244 25 276 524 5

bicg
(Dynamatic)

SC EN IN 269 1243 25 269 520 5
460 3694 35 460 1027 8

SC 405 3733 38 405 883 7
SC EN 312 2974 33 312 656 6
SC IN 310 1183 26 310 459 5

gaussian
(Dynamatic)

SC EN IN 297 1231 26 297 449 5
1405 10881 36 1405 2955 8

SC 1285 11793 37 1285 2685 7
SC EN 911 8669 34 911 1851 7
SC IN 995 4342 26 995 1607 5

gemver
(Dynamatic)

SC EN IN 945 4353 26 945 1561 5
407 3067 32 407 887 8

SC 363 3021 31 363 782 6
SC EN 279 2458 32 279 613 8
SC IN 278 1189 26 278 466 5

stencil
2d

(Dynamatic)
SC EN IN 269 1207 26 269 458 5

1117 8912 36 1117 2397 9
SC 1030 9350 34 1030 2187 7
SC EN 746 7139 37 746 1520 8
SC IN 785 3352 26 785 1194 5

2mm
(Dynamatic)

SC EN IN 742 3469 26 742 1178 5

but suffers from the area overhead due to this modularity.
Similarly, XLS’s domain-specific language eases circuit de-
sign by abstracting low-level details, but it can introduce
redundancy. Each benchmark without memory accesses (XLS
cannot handle memory accesses) has two functionally identical
implementations in two tools. We also include several standard
HLS benchmarks (matvec, bicg, gemver, kernel 2mm, stencil
2d) [29]. For each synthesized top-level module, we added
a wrapper to simplify the communication between the circuit
and its environment. Each module includes a ”go” input pin to

start the execution and a ”done” output pin that signals when
the computation is complete. All designs have been function-
ally verified using a set of representative input vectors.

Simulate. We synthesize the circuit using Yosys [30]. We
use ModelSim [31] to simulate each circuit with random inputs
for 4 rounds, each for 25000 cycles.

Suggest. We use the algorithms described in Section V
to infer invariants from the set of simulated states. We only
extract relations between the FFs that dictate the control status
in the design. We use a greedy graph coloring heuristic in the
NetworkX library [32] to generate mutual exclusion relations
described in Section V-A.

Guarantee. We use the rIC3 model checker [33] to carry
out the formal verification of the conjunction of the invariants
inferred in the suggest phase. rIC3 uses the PDR model
checking algorithm [18], [34]. If rIC3 reports that the property
is invalid, the states in the counterexample will be added to
the set of simulated states. We iterate between the suggest and
guarantee phases until rIC3 confirms that the conjunction of
the invariants holds in the circuit.

Optimize. Our baselines are the unoptimized circuit and the
circuit optimized only with the scorr command (the signal
correspondence optimization) available in ABC. We then com-
plement the scorr command with our encoding optimization
(Section VII-A) and invariants (Section V).

We need to specify our invariants when running the scorr
command: scorr allows declaring a certain PO as a con-
straint; during the proving step, the algorithm ignores the
states where the constraint fails. We construct a logic cone as
a constraint from the conjunction of the invariants. We strip
away the logic cone after the optimization.

Our optimization metrics. To report the area results, we
use ABC to convert the circuit to an AIG network using the st
command and map the circuit to an FPGA LUT network using
if -K 6. As with any sequential synthesis optimization,
we do not alter the circuit’s latency (i.e., the clock cycle
count); therefore, we do not report it, as it remains consistent
across all designs. Whenever the circuit complexity permits,
we apply sequential equivalence checking to formally verify
that our modifications preserve the behaviors of the original
circuits.

B. Effectiveness of PROMISE: Suggest and Optimize

Table I reports the ABC synthesis results of PROMISE.
The columns grouped with “Enabled features” indicate
which optimization techniques are applied: Column EN in-
dicates whether encoding optimization is applied, SC indi-
cates whether signal correspondence [7] (scorr in ABC) is
applied, and IN indicates whether the invariants are used in
scorr. The columns AIG results and 6-LUT results report
the achieved area and delay. The best synthesis result of each
single benchmark is highlighted in green.

Design with a network of modular units. The benchmarks
labeled with “(Dynamatic)” are generated by Dynamatic [27].
Dynamatic implements handshake modules at the operation
level (e.g., a multiplier has its handshake interface) to ensure

6

100 101 102

Induction depth

400

500

600
6-

LU
T

matvec (Dynamatic)

Comb. synth.
SC
SC + IN (ours)

100 101 102

Induction depth

600

800

6-
LU

T

bicg (Dynamatic)

100 101 102

Induction depth

500

750

1000

6-
LU

T

gaussian (Dynamatic)

Fig. 6: Effect of using different induction depths and inclusion
or exclusion of invariants when using scorr in ABC.

the best composability and latency [35], but has a very large
resource overhead [1]. In these benchmarks, signal correspon-
dence alone (i.e., the rows with only SC) sees improvement
over pure combinational synthesis (i.e., the rows with no tech-
niques). On the other hand, we see a substantial logic reduction
when signal correspondence is used with our additions—
either encoding optimization (EN) or invariants (IN); in each
benchmark, the best metric is achieved by applying at least
one of our optimizations (i.e., EN or IN).

Design with a single module. The benchmarks labeled
“(xls)” are generated by XLS [28]. As a single-module design,
the circuit has less redundancy to explore, but invariants are
still helpful in the signal correspondence procedure.

Encoding optimization vs. invariant-enhanced signal
correspondence. Generally, it is expected to see that encoding
optimization reduces the FF count at the cost of a more com-
plex logic. However, circuits with SC + EN consistently have
fewer AIG or 6-LUT nodes than those with SC alone. This
is because reducing the FFs also reduces the combinational
logic’s primary inputs and outputs, which potentially simplifies
the logic function. While encoding optimization might increase
the maximum logic depth, this effect is offset by the logic
saving enabled by the invariants—the rows with SC + EN +
IN always have the best logic depth.

Increasing induction depth vs. using invariants. Figure 6
describes the effect of inclusion and exclusion of invariants
and varying the induction depth (1 to 250) when using

TABLE II: For benchmark “simple loop (Dynamatic)”, com-
paring the effectiveness of PROMISE’s invariants vs. using the
reachable set of states as an invariant.

AIG results LUT results
Invariants FF AIG Depth FF LUT Depth
No invariants 45 359 17 45 87 4
Reachable states 57 256 21 57 101 5
Promise’s invariants 29 178 15 29 48 3

TABLE III: Scalability of Suggest and Guarantee
XLS-Produced Circuits

Benchmark Sim Proof Linear
equality

Mutual
exclusion Iter.

factorial 17.3 0.1 0.0 0.0 0
iterative division 25.4 0.1 0.0 0.0 0

iterative sqrt 20.6 0.2 0.0 0.0 1
simple loop 17.3 0.1 0.0 0.0 0

Dynamatic-Produced Circuits
Benchmark Sim Proof Linear

equality
Mutual

exclusion Iter.
factorial 237.8 1.0 0.4 0.0 1

iterative division 306.9 0.2 0.2 0.0 0
iterative sqrt 350.8 0.4 0.3 0.0 0
simple loop 40.6 0.1 0.0 0.0 0

matvec 257.1 1.6 0.2 0.0 0
bicg 348.8 4.1 0.3 0.0 0

gaussian 365.7 5.7 1.1 0.0 0
gemver 827.1 60.0 4.0 0.0 0

stencil 2d 340.6 12.5 0.7 0.0 0
2mm 700.4 201.3 7.2 0.0 0

The runtimes for simulation (Sim), model checking (Proof), and invariant
generation (Linear equality and Mutual exclusion) are measured in seconds.

scorr for benchmarks matvec and bicg. In both benchmarks,
increasing the induction depth alone does not improve the area.
Surprisingly, the number of 6-LUTs after applying scorr
increases when the induction depth is large. This shows that
PROMISE-generated invariants greatly improve the effective-
ness of scorr.

Effectiveness of PROMISE’s invariants vs. reachability.
BDD-based reachability analysis produces a set of reachable
states—this can be formulated as an invariant (i.e., given the
set of all reachable states {s1, s2, . . . , sN}, we can format
them as a invariant: (state = s1)|(state = s2)| · · · (state =
sN)). Table II reports the synthesis result of the benchmark
“simple loop (Dynamatic)”. The table reports the optimization
result after using scorr, assisted by no invariants (No invari-
ants), the set of reachable states as an invariant (Reachable
states), and PROMISE’s invariants (PROMISE’s invariants).
From the result, using the set of all reachable states as an
invariant is less effective than our invariants.

We omit the further comparison with encoding optimization
that requires a complete set of reachable states (e.g., Sentovich
et al. [26]) due to the poor scalability of the reachabil-
ity analysis [9]. For one of our medium-sized benchmarks,
matvec (Dynamatic), the reachability analysis in ABC could
not converge after 48 hours.

C. Scalability of PROMISE: Suggest and Guarantee

Table III reports the runtime statistics of the property mining
procedures (Section V) and time needed to prove the proper-
ties (Section VI). Column Iter. reports the number of failed
proof attempts (that trigger re-execution of the suggest phase).

7

Columns Mutual exclusion and Linear equality report the
total runtime of the techniques introduced in Section V-A
and Section V-B. Column Proof reports the total runtime of
running the rIC3 model checker. Column Sim reports the
total time spent on circuit simulation. All model checking
runs converge in a reasonable time without any abstraction
technique applied (often necessary for model checking to
converge [1], but not needed in our experiments). The gate-
level simulation (event-driven) takes significantly longer to
run compared to model checking. This runtime can be greatly
reduced by switching to a cycle-accurate simulator.

Scalability of property mining. In benchmarks with data-
dependent control flow (e.g., the “factorial” benchmarks gen-
erated using Dynamatic), few corrections were done (see
Section VI) before our property mining procedure could infer
a verifiable invariant. Yet, our property mining procedures are
scalable: most property generation takes less than 1 second.
All the mutual exclusion properties are generated within 0.1
seconds. The largest benchmark “kernel 2mm (Dynamatic)”
only requires 7.2 seconds to generate properties.

IX. RELATED WORK

Dataflow design produced from high-level languages.
There has been an increasing interest in HLS tools to produce
dataflow processing networks [27], [28], [35]–[41]. Dataflow
processing systems are composable and deliver high per-
formance due to their dynamic nature [42]. This paradigm
comes with a resource overhead (up to 50% of the dataflow
circuit logic are redundant bypassing multiplexers and buffer
slots that are never occupied with valid data [1]) and many
research works aim at removing it [1], [35], [43]–[46] in them.
Unlike these efforts, PROMISE offers a more general solution,
independent of specific circuit generation methods.

Encoding optimization. Sentovich et al. [26] focus on
optimizing encoding in circuits generated from ESTEREL.
They greedily remove one register at a time and require
computation and analysis of the entire reachable state space.
Computing the reachable state space is typically impracti-
cal without problem-specific abstractions. Empirical evidence
suggests that induction in the presence of invariants is more
scalable than reachability analysis [9]. We efficiently infer en-
coding optimization opportunities using simulation. Sentovich
et al. [20] also describe an FF optimization approach that
leverages the knowledge of their circuits; yet, their technique
is specific to ESTEREL-produced circuits.

Redundancy removal in sequential circuits. Sequential
synthesis techniques like those of Mishchenko et al. [7] and
Marakkalage et al. [14] remove redundancy using induction;
yet, they do not take advantage of any invariants. Many
research efforts explore redundancy removal approaches in a
limited setting, such as combinational circuits [47], feedback-
free circuits, and a particular redundancy structure [1], [48].
These approaches do not aim to improve the circuits’ encod-
ing, and our invariants can be used to improve the effectiveness
of their optimization.

Generating invariants for circuits. There exist techniques
for automatically deriving inductive invariants for dataflow
circuits [8], [9] to improve verification runtime, but they are
limited to a set of predefined units. There is a family of
model checking algorithms that aim to synthesize an inductive
invariant to prove the safety property [18], [34], [49], [50].
These methods are specific to generating an inductive invariant
for a single safety property, operate in unreachable states,
and the operatorsl used to construct the invariants have either
too limited expressivity (i.e., pure Boolean formulas [18]) or
are too general and overfit the observed states [49] (i.e., any
first-order logic operator). Our method operates on simulation
traces, and we aim to infer expressions (e.g., Equation 3 and
Equation 4) that commonly appear in the control logic of the
circuits generated from hardware compilers.

Property generation from simulation. Using simulation—
referred to as dynamic analysis in software engineering—to
derive loop invariants has been studied in the software verifica-
tion domain [22]–[24], [51]. Empirical results show that these
invariants can support proving the equivalence between the
program before and after certain optimization [51]. Execution
traces, from both software and hardware, have also been
leveraged to infer temporal specifications [52], [53]; they gen-
erate more expressive properties than ours (e.g., LTL formulas
instead of invariants). However, these properties are not readily
applicable to circuit optimization. Inspired by these works,
we adopted a similar insight—using simulation to support
verification—but specifically for circuit optimization.

X. CONCLUSION

We presented PROMISE, a framework that utilizes simu-
lation data to detect redundancy in the sequential circuit’s
state encoding and extract invariants to speed up the cir-
cuit verification. PROMISE efficiently detects state encod-
ing optimization opportunities in cases where conventional
techniques are prohibitively expensive, and derives linear
invariants to make existing sequential synthesis procedures
fundamentally more effective. PROMISE synergizes compre-
hensive simulation-based testing, formal verification, and logic
synthesis to uncover new opportunities for more effective and
scalable optimization.

ACKNOWLEDGEMENT

This work has been supported by the Swiss National
Science Foundation (grant number 215747) and the ETH
Future Computing Laboratory (donation from Huawei Tech-
nologies).

8

REFERENCES
[1] J. Xu, E. Murphy, J. Cortadella, and L. Josipović, “Eliminating excessive

dynamism of dataflow circuits using model checking,” in Proceedings of the
31st ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, Feb. 2023, pp. 27–37. [Online]. Available: https://doi.org/10.1145/
3543622.3573196.

[2] S. Chaki and A. Gurfinkel, “BDD-based symbolic model checking,” in Hand-
book of Model Checking. Springer International Publishing, 2018, pp. 219–245.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8 8.

[3] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen, “Symbolic
model checking,” in Proceedings of the 8th International Conference on Com-
puter Aided Verification, New Brunswick, NJ, Jun. 1996, pp. 419–22. [Online].
Available: https://doi.org/10.1007/3-540-61474-5 93.

[4] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,” in
Handbook of Model Checking. Springer International Publishing, 2018, pp. 1–26.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8 1.

[5] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: A
survey,” ACM Transactions on Design Automation of Electronic Systems, vol. 4,
no. 2, pp. 123–93, Apr. 1999. [Online]. Available: https : / / doi . org / 10 . 1145 /
307988.307989.

[6] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using
induction and a SAT-solver,” in Proceedings of the 3rd International Conference
on Formal Methods in Computer-Aided Design, Austin, TX, 2000, pp. 127–144.
[Online]. Available: https://doi.org/10.1007/3-540-40922-X 8.

[7] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-
verifiable sequential synthesis,” in Proceedings of the 27th International Con-
ference on Computer-Aided Design, San Jose, CA, Nov. 2008, pp. 234–241.
[Online]. Available: https://doi.org/10.1109/ICCAD.2008.4681580.

[8] S. Chatterjee and M. Kishinevsky, “Automatic generation of inductive invariants
from high-level microarchitectural models of communication fabrics,” Formal
Methods in System Design, vol. 40, pp. 147–69, 2012. [Online]. Available: https:
//doi.org/10.1007/s10703-011-0134-0.

[9] J. Xu and L. Josipović, “Automatic inductive invariant generation for scalable
dataflow circuit verification,” in Proceedings of the 42nd International Conference
on Computer-Aided Design, San Francisco, CA, Oct. 2023, pp. 1–9. [Online].
Available: https://doi.org/10.1109/ICCAD57390.2023.10323796.

[10] C. A. Furia, B. Meyer, and S. Velder, “Loop invariants: Analysis, classification,
and examples,” ACM Computing Surveys, vol. 46, no. 3, Jan. 2014. [Online].
Available: https://doi.org/10.1145/2506375.

[11] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and optimiza-
tion,” in Proceedings 1992 IEEE International Conference on Computer Design,
Cambridge, MA, Oct. 1992, pp. 328–33. [Online]. Available: https://doi.org/10.
1109/ICCD.1992.276282.

[12] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York:
McGraw-Hill, 1994.

[13] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verifi-
cation tool,” in Proceedings of the 22nd International Conference on Computer
Aided Verification, Edinburgh, Jul. 2010, pp. 24–40. [Online]. Available: https:
//doi.org/10.1007/978-3-642-14295-6 5.

[14] D. S. Marakkalage, E. Testa, W. L. Neto, A. Mishchenko, G. De Micheli, and
L. Amarù, “Scalable sequential optimization under observability don’t cares,”
in Proceedings of 2024 Design, Automation & Test in Europe Conference &
Exhibition, Valencia, Spain, Mar. 2024. [Online]. Available: https://doi.org/10.
23919/DATE58400.2024.10546595.

[15] M. Case, A. Mishchenko, and R. Brayton, “Cut-based inductive invariant com-
putation,” in Proceedings of the 17th International Workshop on Logic Synthesis,
Lake Tahoe, CA, Jun. 2008, pp. 253–58. [Online]. Available: https://people.eecs.
berkeley.edu/∼alanmi/publications/2008/iwls08 ind.pdf.

[16] G. Cabodi, S. Nocco, and S. Quer, “Strengthening model checking techniques
with inductive invariants,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 1, pp. 154–58, Jan. 2009. [Online].
Available: https://doi.org/10.1109/TCAD.2008.2009147.

[17] C. van Eijk, “Sequential equivalence checking based on structural similarities,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 7, pp. 814–819, Jul. 2000. [Online]. Available: https://doi.org/10.
1109/43.851997.

[18] A. R. Bradley, “SAT-based model checking without unrolling,” in Proceedings of
the 12th International Workshop on Verification, Model Checking, and Abstract
Interpretation, Austin, TX, 2011, pp. 70–87. [Online]. Available: https://doi.org/
10.1007/978-3-642-18275-4 7.

[19] ABC: System for sequential logic synthesis and formal verification, Commit:
ca78f5e, berkeley-abc. [Online]. Available: https://github.com/berkeley-abc/abc/
tree/ca78f5e6e5308df420ffc5c709e6d37caf97e40b.

[20] E. M. Sentovich, H. Toma, and G. Berry, “Efficient latch optimization using ex-
clusive sets,” in Proceedings of the 34th Annual Design Automation Converence,
Anaheim, CA, Jun. 1997. [Online]. Available: https://doi.org/10.1145/266021.
266026.

[21] Graph coloring. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Graph coloring&oldid=1279292851.

[22] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discover-
ing likely program invariants to support program evolution,” in Proceedings of the

21st International Conference on Software Engineering, Los Angeles, CA, May
1999, pp. 213–224. [Online]. Available: https://doi.org/10.1145/302405.302467.

[23] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using dynamic analysis to
discover polynomial and array invariants,” in Proceedings of 34th International
Conference on Software Engineering, Zurich, Switzerland, Jun. 2012, pp. 683–93.
[Online]. Available: https://doi.org/10.1109/ICSE.2012.6227149.

[24] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori, “A data
driven approach for algebraic loop invariants,” in Proceedings of 22nd European
Symposium on Programming, Rome, Italy, Mar. 2013, pp. 574–92. [Online].
Available: https://doi.org/10.1007/978-3-642-37036-6 31.

[25] Kernel (linear algebra). [Online]. Available: https : / / en . wikipedia . org / w /
index . php ? title = Kernel (linear algebra) &oldid = 1261076439 # Computation
by Gaussian elimination.

[26] E. M. Sentovich, H. Toma, and G. Berry, “Latch optimization in circuits generated
from high-level descriptions,” in Proceedings of the 15th International Conference
on Computer-Aided Design, San Jose, CA, Nov. 1996, pp. 428–35. [Online].
Available: https://doi.org/10.1109/ICCAD.1996.569833.

[27] Dynamatic, Commit: 999dc3c, EPFL-LAP. [Online]. Available: https: / /github.
com/EPFL-LAP/dynamatic/tree/999dc3ce2fb95eac1dd39cad441fbdf6b8389aee.

[28] Xls: Accelerated hw synthesis, Google, Inc. [Online]. Available: https://github.
com/google/xls.

[29] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012. [Online].
Available: https://sourceforge.net/p/polybench/wiki/Home/.

[30] Yosys Open SYnthesis Suite, Commit: 29cf4a9. [Online]. Available: https://github.
com/YosysHQ/yosys/tree/29cf4a919062fe7b6a6f21b946dbec15a3d2114a.

[31] Mentor Graphics, ModelSim, 2016. [Online]. Available: https://www.mentor.com/
products/fv/modelsim/.

[32] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of the 7th Python in
Science Conference, Pasadena, CA, Aug. 2008, pp. 11–15. [Online]. Available:
https://www.osti.gov/biblio/960616.

[33] Y. Su, Q. Yang, Y. Ci, T. Bu, and Z. Huang, “The rIC3 hardware model checker,”
arXiv preprint arXiv:2502.13605, Feb. 2025.

[34] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property
directed reachability,” in Proceedings of 14th International Conference on Formal
Methods in Computer-Aided Design, Austin, TX, Oct. 2011, pp. 125–34. [Online].
Available: https://dl.acm.org/doi/10.5555/2157654.2157675.

[35] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-level synthe-
sis,” in Proceedings of the 26th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, CA, Feb. 2018, pp. 127–36. [Online].
Available: https://doi.org/10.1145/3174243.3174264.

[36] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to dynamically
scheduled circuits,” in Proceedings of the 28th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, Seaside, CA, Feb. 2020, pp. 1–10.
[Online]. Available: https://doi.org/10.1145/3373087.3375391.

[37] Vivado design suite user guide: High-level synthesis, Xilinx Inc., 2018. [Online].
Available: https : / / www . xilinx . com / support / documentation / sw manuals /
xilinx2017 4/ug902-vivado-high-level-synthesis.pdf.

[38] Y. Chi, L. Guo, J. Lau, Y.-k. Choi, J. Wang, and J. Cong, “Extending high-level
synthesis for task-parallel programs,” in Proceedings of the 29th IEEE Symposium
on Field-Programmable Custom Computing Machines, Orlando, FL, May 2021,
pp. 204–213. [Online]. Available: https:/ /doi.org/10.1109/FCCM51124.2021.
00032.

[39] L. Guo, Y. Chi, J. Wang, et al., “AutoBridge: Coupling coarse-grained floor-
planning and pipelining for high-frequency HLS design on multi-die FPGAs,”
in Proceedings of the 29th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Virtual Event, Mar. 2021, pp. 81–92. [Online].
Available: https://doi.org/10.1145/3431920.3439289.

[40] L. Guo, P. Maidee, Y. Zhou, et al., “RapidStream: Parallel physical imple-
mentation of FPGA HLS designs,” in Proceedings of the 30th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Virtual Event,
Feb. 2022, pp. 1–12. [Online]. Available: https : / / doi . org / 10 . 1145 / 3490422 .
3502361.

[41] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Unleashing parallelism in
elastic circuits with faster token delivery,” in Proceedings of the 32nd Interna-
tional Conference on Field-Programmable Logic and Applications, Belfast, UK,
Aug. 2022, pp. 253–61. [Online]. Available: https://doi.org/10.1109/FPL57034.
2022.00046.

[42] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Survival of the fastest:
Enabling more out-of-order execution in dataflow circuits,” in Proceedings of the
32nd International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, Mar. 2024, pp. 44–54. [Online]. Available: https://doi.org/10.1145/3626202.
3637556.

[43] J. Xu and L. Josipović, “Suppressing spurious dynamism of dataflow circuits
via latency and occupancy balancing,” in Proceedings of the 32nd ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA,
Mar. 2024, pp. 188–98. [Online]. Available: https://doi.org/10.1145/3626202.
3637570.

[44] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure for
accelerator generators,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Virtual, Apr. 2021, pp. 804–17. [Online]. Available: https : / /doi .org /10 .1145/
3445814.3446712.

9

https://doi.org/10.1145/3543622.3573196
https://doi.org/10.1145/3543622.3573196
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/3-540-61474-5_93
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/307988.307989
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1109/ICCAD.2008.4681580
https://doi.org/10.1007/s10703-011-0134-0
https://doi.org/10.1007/s10703-011-0134-0
https://doi.org/10.1109/ICCAD57390.2023.10323796
https://doi.org/10.1145/2506375
https://doi.org/10.1109/ICCD.1992.276282
https://doi.org/10.1109/ICCD.1992.276282
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.23919/DATE58400.2024.10546595
https://doi.org/10.23919/DATE58400.2024.10546595
https://people.eecs.berkeley.edu/~alanmi/publications/2008/iwls08_ind.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2008/iwls08_ind.pdf
https://doi.org/10.1109/TCAD.2008.2009147
https://doi.org/10.1109/43.851997
https://doi.org/10.1109/43.851997
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://github.com/berkeley-abc/abc/tree/ca78f5e6e5308df420ffc5c709e6d37caf97e40b
https://github.com/berkeley-abc/abc/tree/ca78f5e6e5308df420ffc5c709e6d37caf97e40b
https://doi.org/10.1145/266021.266026
https://doi.org/10.1145/266021.266026
https://en.wikipedia.org/w/index.php?title=Graph_coloring&oldid=1279292851
https://en.wikipedia.org/w/index.php?title=Graph_coloring&oldid=1279292851
https://doi.org/10.1145/302405.302467
https://doi.org/10.1109/ICSE.2012.6227149
https://doi.org/10.1007/978-3-642-37036-6_31
https://en.wikipedia.org/w/index.php?title=Kernel_(linear_algebra)&oldid=1261076439#Computation_by_Gaussian_elimination
https://en.wikipedia.org/w/index.php?title=Kernel_(linear_algebra)&oldid=1261076439#Computation_by_Gaussian_elimination
https://en.wikipedia.org/w/index.php?title=Kernel_(linear_algebra)&oldid=1261076439#Computation_by_Gaussian_elimination
https://doi.org/10.1109/ICCAD.1996.569833
https://github.com/EPFL-LAP/dynamatic/tree/999dc3ce2fb95eac1dd39cad441fbdf6b8389aee
https://github.com/EPFL-LAP/dynamatic/tree/999dc3ce2fb95eac1dd39cad441fbdf6b8389aee
https://github.com/google/xls
https://github.com/google/xls
https://sourceforge.net/p/polybench/wiki/Home/
https://github.com/YosysHQ/yosys/tree/29cf4a919062fe7b6a6f21b946dbec15a3d2114a
https://github.com/YosysHQ/yosys/tree/29cf4a919062fe7b6a6f21b946dbec15a3d2114a
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://www.osti.gov/biblio/960616
https://dl.acm.org/doi/10.5555/2157654.2157675
https://doi.org/10.1145/3174243.3174264
https://doi.org/10.1145/3373087.3375391
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1109/FCCM51124.2021.00032
https://doi.org/10.1109/FCCM51124.2021.00032
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1145/3490422.3502361
https://doi.org/10.1145/3490422.3502361
https://doi.org/10.1109/FPL57034.2022.00046
https://doi.org/10.1109/FPL57034.2022.00046
https://doi.org/10.1145/3626202.3637556
https://doi.org/10.1145/3626202.3637556
https://doi.org/10.1145/3626202.3637570
https://doi.org/10.1145/3626202.3637570
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712

[45] A. Elakhras, J. Xu, M. Erhart, P. Ienne, and L. Josipović, “ElasticMiter: Formally
verified dataflow circuit rewrites,” in Proceedings of the 30th International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, Rotterdam, The Netherlands, Apr. 2025, pp. 293–308. [Online].
Available: https://doi.org/10.1145/3676641.3715993.

[46] L. Josipović, A. Marmet, A. Guerrieri, and P. Ienne, “Resource sharing in dataflow
circuits,” in Proceedings of the 30th IEEE Symposium on Field-Programmable
Custom Computing Machines, New York, May 2022, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/FCCM53951.2022.9786084.

[47] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli, “A
simulation-guided paradigm for logic synthesis and verification,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 8, pp. 2573–86, May 2022. [Online]. Available: https : / /doi .org /10 .1109/
TCAD.2021.3108704.

[48] Q. Tan, A. Gupta, and S. Malik, “Usage-based RTL subsetting for hardware
accelerators,” in Proceedings of the 41st International Conference on Computer-
Aided Design, San Diego, CA, Dec. 2022, pp. 1–9. [Online]. Available: https:
//doi.org/10.1145/3508352.3549391.

[49] A. Goel and K. Sakallah, “AVR: Abstractly verifying reachability,” in Proceedings
of 26th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, Dublin, Ireland, Apr. 2020, pp. 413–22. [Online].
Available: https://doi.org/10.1007/978-3-030-45190-5 23.

[50] M. L. Case, A. Mishchenko, and R. K. Brayton, “Automated extraction of
inductive invariants to aid model checking,” in Proceedings of the 7th Inter-
national Conference on Formal Methods in Computer Aided Design, Nov. 2007,
pp. 165–172. [Online]. Available: https://doi.org/10.1109/FAMCAD.2007.12.

[51] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program alignment
for equivalence checking,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Phoenix, AZ, Jun. 2019,
pp. 1027–1040. [Online]. Available: https://doi.org/10.1145/3314221.3314596.

[52] M. Gabel and Z. Su, “Symbolic mining of temporal specifications,” in Proceed-
ings of the 30th International Conference on Software Engineering, Leipzig,
Germany, May 2008, pp. 51–60. [Online]. Available: https://doi.org/10.1145/
1368088.1368096.

[53] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for verification
and diagnosis,” in Proceedings of the 47th Design Automation Conference,
Anaheim, CA, Jun. 2010, pp. 755–60. [Online]. Available: https://doi.org/10.
1145/1837274.1837466.

10

https://doi.org/10.1145/3676641.3715993
https://doi.org/10.1109/FCCM53951.2022.9786084
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1145/3508352.3549391
https://doi.org/10.1145/3508352.3549391
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1109/FAMCAD.2007.12
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/1368088.1368096
https://doi.org/10.1145/1368088.1368096
https://doi.org/10.1145/1837274.1837466
https://doi.org/10.1145/1837274.1837466

	Introduction
	Background
	Model Checking
	Sequential Synthesis

	Are We Getting the Most Out of Our Invariants?
	Missed Encoding Optimization Opportunities
	Localized and Inexpressive Invariants

	Promise: Generating Circuit Invariants from Simulation
	The Suggest Phase: Mathematical Methods for Property Mining
	Extracting Mutually Exclusive Sets of Signals by Coloring a Conflict Graph
	Extracting Equalities Using Gaussian Elimination

	The Guarantee Phase: Proving the Suggested Invariants
	The Optimize Phase: Capitalizing on the Invariants
	Applying Encoding Optimizations to the Circuit
	Enhancing Sequential Synthesis Using Invariants

	Evaluation
	Methodology
	Effectiveness of Promise: Suggest and Optimize
	Scalability of Promise: Suggest and Guarantee

	Related Work
	Conclusion

