Exploiting the locality of memory references
to reduce the address bus energy*

Enric Musoll

"Dept. of Computer Arch.
Univ. Politecnica de Catalunya
Barcelona, Spain
(now with National Semiconductor Corp.,
Santa Clara, CA 95052)

Abstract

The energy consumption at the I/O pins is a significant part
of the overall chip consumption. This paper presents a method
for encoding an external address bus which lowers its activ-
ity and, thus, decreases the energy. This method relies on the
locality of memory references. Since applications favor a few
working zones of their address space at each instant, for an
address to one of these zones only the offset of this reference
with respect to the previous reference to that zone needs to be
sent over the bus, along with an identifier of the current work-
ing zone. This is combined with a modified one-hot encoding
for the offset. An estimate of the area and energy overhead
of the encoder/decoder are given; their effect is small. The
approach has been applied to two memory-intensive examples,
obtaining a bus-activity reduction of about 2/3 in both of them.
Comparisons are given with previous methods for bus encoding,
showing significant improvement.

I. INTRODUCTION

The research on low-energy design has focused on the on~chip
components despite the fact that the I/ energy can be as high
as 80% of the total energy consumption of the chip [8]. In terms
of the on-chip component and the I/O component, the dynamic
energy per operation in CMOS is proportional to Cint - Aint +
Cr/0 - Arj0, where the C’s are the corresponding capacitances
and the A’s are the number of transitions (or activities). The
internal activity Aine is generally much larger than A/, while
the internal capacitance Cint is generally much smaller than
C1/0 (three orders of magnitude: a typical value of Cy,0 is 50
pf {1}, whereas Cin; is about 50 x 1072 pf) than C;,0. The
total energy consumption will decrease by reducing the number
of transitions on the high-capacitance, off-chip side, although
this may come at the expense of slightly increasing the number
of transitions on the low-capacitance, on-chip side. Because the
number of internal transitions is already large, increasing it by
a comparatively small amount is likely to be insignificant.

In this paper, a method for encoding the address bus which
lowers the bus activity and, thus, decreases the I/O energy is
presented. This method relies on the locality of memory ref-

* This work was partially funded by CICYT grant TIC 95-0419

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a fee.

©1997 ACM 0-89791-903-3/97/08..$3.50

Tomss Lang?

iDept. of Elec. and Comp. Eng.
Univ. of California at Irvine
Irvine, CA 92697

Jordi Cortadellal

$Dept. of Computer Arch.
Univ. Politécnica de Catalunya
Barcelona, Spain

SENDER RECEIVER

LATCH
.
LYY
sse

ADDRESS BUS

Figure 1: Encoding an n-bit address value into m wires.

erences. Since applications favor a few working zones of their
address space at each instant, for an address to one of these
zones only the offset of this reference with respect to the previ-
ous reference to that zone needs to be sent over the bus, along
with an identifier of the current working zone. This is combined
with a modified one-hot encoding for the offset.

The coding technique can be applied to any system in which
there is a processing chip and an external memory. These sys-
tems can range from application-specific systems to general-
purpose processors. We assume that there is no internal cache
so that all data memory requests go through the bus. More-
over, the activity of the data bus is not considered in this paper.
The scenario with respect to the address bus is the following
(see Figure 1): the address value carried by n bits has to be
transmitted over the address bus; a reduction in the switching
activity of this bus is obtained at the cost of extra hardware in
the form of an encoder on the sender device, a decoder on the
receiver device, and a larger number of wires m.

Two memory-intensive examples are used to show that the
encoding technique in this paper significantly reduces the activ-
ity in the address bus and that it outperforms other previously
proposals (Gray and bus-invert).

A. Previous work

Three encoding techniques for reduced bus switching activity
have been reported: one-hot [3], Gray [12] and bus-invert en-
coding [11].

In the one-hot encoding technique, the bus is composed of
m = 2" wires. An n-bit value is encoded for transmission by
placing a ‘1’ on the i-th wire where 0 < i < 2™ —1 is the binary
value corresponding to the bit pattern, and ‘0’ on the remaining
m— 1 wires. One-hot encoding requires an exponential number
(2™) of wires (which often makes it an impractical choice), but
guarantees that precisely one 0-to-1 and one 1-t0-0 bit transi-

202

M~
A A
vector A — T]
1PREF 0 Address
space

vector B —{PREF 1 2
vector C —]|PREF 2] h working zone

e N

‘__/

Figure 2: Address space with three vectors.

tions occur when a value (different from the previous one) is
sent over the bus.

Gray encoding is useful for sequences of consecutive values
(for example, references to instructions) since adjacent values
only differ in one bit, whereas for the binary representation ad-
jacent values differ, on average, in two bits. Moreover, the Gray
encoding technique requires no extra wires (m = n). However,
unless the memory references present a high degree of sequen-
tiality, almost no switching activity reduction is obtained when
Gray encoding is applied to encode the address bus [12].

The bus-invert method works as follows: if the ¢-th_value
to be transmitted over the bus is S;, then either S; or S; (i.e.
the bit-wise inverse of S;) is transmitted depending on which
would result in a smaller number of bit transitions. Further, to

tell the receiver what is being transmitted (S; or S;), an extra
wire is used to carry this polarity information. For uniform and
independent distributions, this encoding technique works better
for smaller values of n; therefore, the n-bit value may be divided
into smaller groups and each group encoded independently by
associating a polarity bit with each group. The major benefits
of the bus-invert method are obtained when encoding buses
with high activity.

The reduction of activity in the address bus was also ad-
dressed in [9] by mapping the data structures so that the num-
ber of transitions is reduced. This technique is complementary
to the encoding proposed here, although the mapping might
need to be modified to maintain the working zones.

II. ADDRESS BUS ENCODING TECHNIQUE

In this section an overview of the proposed encoding technique
for the address bus is given.

A. Working-Zone Encoding technique (WZE): Overview

The encoding method for the address bus presented in this pa-
per overcomes the major drawback of the one-hot encoding,
namely, the exponential number of wires needed to transmit
the address, while maintaining the desirable property of a low
switching activity. This is accomplished by taking into account
the locality of the memory references [4]: the applications favor
a few working zones of their address space at each instant of
time. Specifically, given a reference to one of these zones, only
the information of the offset of this reference with respect to the
previous reference to that zone is sent over the bus, along with
an identifier of the current working zone. This information of
the offset is sent in modified one-hot encoded mode {explained
later) using the entire bus bit-width so that very few bits (in
some cases, none) vary with respect to the previous value sent,
as explained in the next section.

For example, consider an application that works with three
vectors (A, B and C) as shown in Figure 2. Memory references
will be often interleaved among the three vectors and, because
of the spatial locality, usually close to the previous reference

v One-hot Bit Modifled Bit
value encoding | toggles one-hot encoding | toggles
1 000010 - 000010 -

3 001000 2 001010 1
2 000100 2 001110 1
2 000100 0 001010 1
0 000001 2 001011 1

Value sent Modified one-hot Receiver
over the bus retrieval process action
1. XORing [2. One-hot
retrieval
(-) 010011 - - z
(1) 011011 001000 3 offset 3 (Pref #1)
(0) 011011 000000 t same offset (Pref #0)
(0) 011010 000001 0 offset 0 (Pref #0)

Table 1: Example of the modified one-hot encoding and de-
coding process for k = 6.

to the vector. Thus, if both the sender and the receiver had
three registers (henceforth named Prefs) holding the previous
reference to each working zone, the sender would only need to
send:

o the offset of the current memory reference with respect
to the Pref associated to the current working zone
¢ an identifier of the current Pref.

Whenever there is a reference to a working zone not pointed
by any Pref, it is not possible to send any offset; in such a case,
the entire current memory reference has to be sent over the
bus. Thus, an extra wire is needed to indicate that the value
being sent over the bus is the current memory reference and
not an offset. Moreover, when this occurs, a Pref has to be
replaced with the current memory reference using an algorithm
discussed later.

Henceforth, this technique is named WZE for Working-Zone
Encoding.

B. Modified one-hot encoding for the offset

To send the offset a variation of one-hot encoding is used. This
encodes a value v (—k/2 < v € k/2 — 1) into k bits. If the
standard one-hot encoding is used the following activity is ob-
tained:

- If the previous value was also a one-hot encoded offset
the activity is two transitions if the offsets are different
and zero if the offsets are equal.

- If the previous value was not an offset the activity is of
k/2 transitions on average.

To reduce further the activity we propose the modified one-hot
encoding. This encoding consists of the following two steps:

1. one-hot encoding of v into k bits]
2. XORing the one-hot encoding of v with the previous
value sent over the k-bit bus.

Table 1 (first part) illustrates with an example this process for
k = 6. With this encoding the activity is exactly 1 for both
situations considered before.

Moreover, to achieve also zero transitions when the offsets
are the same we could resend the previous value sent. However,
to increase the frequency of these cases, we take into account
the expected regularity in the references to each working zone.
Consequently, we resend the previous value sent whenever the
current offset is the same as the previous offset for the current
working zone.

In summary, the following cases may occur for the encoding
of the offset :

Compare the current offset with the previous offset used

when referencin% the current working zone X
e both are the same: send again the previous value sent

over the bus

203

e they are different: send the modified one-hot encoded
value of the offset

The decoding in the receiver is done also in two steps: XOR-
ing the value that it receives with the previous one, and retriev-
ing the one-hot of the result (this process is henceforth named
modified one-hot retrieval process). When the XORing pro-
duces a 0, the two values were the same which is interpreted as
a repetition of the previous offset to that same working zone.
Table 1 (second part) illustrates the decoding process.

III. ALGORITHM AND IMPLEMENTATION ISSUES

This section presents the detailed algorithm of the encoding
technique and depicts the hardware implementation. We con-
sider the case in which the whole n-bit word is used for the
modified one-hot encoding (k = n); the modifications for k < n
are straightforward.

A. Encoding/decoding algorithm

Let B be the number of working zones. Then the bus con-
sists of three fields: the n bits of the original address bus
(henceforth named word), log,(B) bits to specify the work-
ing zone (henceforth named indent) and one bit to indicate
whether the value sent is an offset (called Pref_miss). There-
fore m = n + [log,(B) + 1] extra wires are required (see Fig-
ure 1). For clarity, in this work B is considered to be a power
of two for clarity; in this case, then, m = n + log,(B) + 1.
Moreover, the registers used in the encoding afgorithm are:

e prev_ident contains the value of ident of the previous
offset

. Erev.sent is the previous value sent over word

o Pref; contains the last address to working zone j

s prev_off; is the offset used by the previous reference to

working zone j
The current memory address (current) is encoded as follows:

1. for 1 <4 < B compute A; = current — Pref;
2. if among the A; obtained in 1. there exists a A, such
that —n/2 < A, <n/2 —1 then offset = A, and

a) send Prefmiss =0
send ident =7
if offset = prev_off, then
send word = prev_sent

c

{(d) else
send word = modified-one-hot(offset)

(e) load Pref, = current
load prev_off, = offset
load prev.ident =r

else

f) send Pref miss =1
send ident = prev_ident
send word = current

(1) load Pref; = current (value of j depending on
replacement algorithm)
leave prev_off; as before

3. load prev_sent = word
Note that:

e step 1 can be implemented based on any of the search
algorithms used in caches (direct mapped, w-way set
associative, fully associative). In this paper, a fully-
associative search is considered (as it is shown later with
the examples, a very small number of Prefs are needed).
In this paper, the offset is defined to be symmetrical with
respect to current to allow positive as well as negative off-
sets. However, positive/negative-only offsets may also be
defined

o the content of ident in the else part of step 2 is meaning-
less; thus, the previous value (prev_ident) is sent again
so that no useless activity is generated

o step 2(i) can be implemented following any of the replace-
ment algorithms used in caches (pseudo-random, LRU).
In this paper, LRU replacement is considered. Also note
that prev_off; is not modified since no previous offset is

known

¢ in step 2(h) the bus-inverted value of current may be sent
over word to further reduce the bus activity. However, in
the examples we have analyzed, the additional activity
reduction is small and it does not pay off the additional
increase in wire overhead (one more wire at leastl)

¢ this encoding algorithm is transparent to the application
being executed, that is, the application does not have
to specify the current Pref nor which Pref is replaced.
However, the algorithm is easily modified for the case in
which special instructions exist to handle the Prefs.

Similarly, the decoding algorithm for the receiver is derived.
The registers involved are

¢ prev_received is the previous value received from word
o prev_off; and Pref; (as in the encoding algorithm)

and the steps to obtain the current memory address are

1. if Pref miss = 0 then
a) zor = prev.received XOR word
b) if zor = 0 then

current = Prefiy... + prev_off;
leave prev.o& ident 1 Pefora ident

else
Uyt o Toae R T on bt settienelagy)
(c) load Prefige.. = current
else
d) current = word
%e; load Pref; = current (using the same replacement

algorithm as sender)
leave prev.off; as before

2. load prev_received = word

ident

Activity in address bus

The steps of the algorithm that generate activity in the address
bus are (sender side):

e 2(a), if the previous value of Pref miss is ‘1’ (activity: 1
transition)

o 2(b), if the previous Pref used is not r (average activity:

log,(B)/2 transitions)

e 2(c), (activity: 0 transitions)

e 2(d), (activity: 1 transition)

e 2(f), if the previous value of Pref miss is ‘0’ (activity: 1
transition)

e 2(h), (average activity: n/2 transitions).

Thus, the activity at the address bus is
A = Nyg) + (logy(B)/2) Nay) + 2N2(a) + Nagsy + (n/2)Naqn)
where Nyiep is the number of times step generates some activity.

B. Implementation issues

Figure 3 shows an illustration of the hardware schematic of
the encoder for n = 16 and two Prefs. We estimate that the
implementation requires about 700 gates and 50 flip-flops. The
decoding algorithm takes less hardware and is not shown. The
effect of this hardware on the overall chip area is very small.
For example, a video-coder chip contains approximately 400K
gates. Thus, the area overhead is only 0.25%.

An increase in the number of Prefs increases the complex-
ity of the implementation of the coder and decoder. Although
more Prefs would reduce the word activity in the bus, since
more working zones can be defined, we expect that for most
applications at most four Prefs would be effective. Moreover,
the increase in Prefs would increase the number of wires in the
bus and it also might increase the activity of the ident field.

204

b=

current

]
1
I
[hit_Prefo
|
|

offset1 samea_offset0.

hit_Pref1

L2

hit_Prefo

Current frame (CF) Reference frame (RF)

M+X-1

I
1

X

e |

current block

N+Y-1

jmotion
vector

(a) Notation

forg=0to [£] -1
for h=0to [&]~1
optimal = o0

| fori:—]_%_l to LM-z——-—l-
word for j = ~| &) to Li—-rlj

partial =0
for k=0to X -1
for{=0toY -1
NV=CF(X -g+k Y- -h+1)
RV =RF(X -g+i+kY -h+j+1)
partial = partial + [NV — RV|
if partial < optimal then

Pref_mgs

optimal = partial
MV (g, h) =[5, 417

(b) Basic Algorithm

=gy

hit_Pref1

Figure 3: Hardware implementation of the encoder (fully as-
sociative, LRU replacement, two Prefs). The logic for Pref #1
is the same as for Pref #0 and it is therefore not shown.

C. Energy overhead evaluation

Let us now evaluate the impact that the encoder hardware has
on the energy savings. A pessimistic estimation of the energy
consumption of the encoder can be done assuming that each
gate of the encoder switches with a probability of 0.5 (due to
data correlation, the transition probability of the gate outputs
of a circuit is less than 0.5 [5]). Since the encoder implemen-
tation takes about 700 gates, it presents less than 350 internal
transitions/reference. Assuming that Cr/o & Cin:- 10% (see the
introduction), the energy overhead of the encoder algorithm is
less than 0.35 I/O transitions/reference.

IV. EXAMPLES

In this section, two memory-intensive examples (Motion esti-
mation and Quicksort) are used to show that the encoding
technique explained in the previous section significantly re-
duces the activity in the address bus. The results reported
assume that the address bus is only used by data references.
However, the encoding technique can be applied when the ad-
dress bus is shared between data and instruction references.
To guarantee the exclusive use of the address bus for data
references, the examples use the architecture shown in Fig-
ure 4, where the code is stored in a ROM. The data is com-
pletely stored in an external memory addressed through a 16-
bit address bus. Examples of processors with a 64K address

Registers
ROM IZEI Memory
A N 16

Data bus 2
sea <:> Daspun. LK

R
[16 birsV
Figure 4: Hardware architecture.

ident

Figure 5: Motion estimation.

space are DSP16xx, DSP32C and DSP32xx (AT&T Microelec-
tronics), DSP561xx (Motorola), TMS320C2x, TMS320C209,
TMS320C5x and TMS320C54x (Texas Instruments), or Z894xx
(Zilog). Similar results are expected for an address bus with a
larger bit-width.

A. Motion estimation

The Motion-estimation algorithm [6] is used in video transmis-
sion to lower the bandwidth of the network where the video is
being transmitted. As shown in Figure 5(a), the video trans-
mission is composed of frames of P x L pixels. For the Motion-
estimation algorithm, the frames are divided into blocks of
X x Y pixels. Blocks of the current frame (CF) are compared
with blocks in the previous (reference) frame (RF) and the best
match is selected; in order to limit the number of comparisons,
this search is restricted to an appropriate reference window of
(M+X—-1)x(N+Y —1) pixels, i.e. each block of the current
frame is matched to M x N blocks in the reference frame. Only
the motion vector is transmitted instead of all the pixels of the
block. This is illustrated in Figure 5(a). In this paper, the
following values are used for the parameters of the algorithm:
P=L=128 and M = N = X =Y = 8. Moreover, each pixel
is 1 byte.

A.1. Basic Algorithm

A straightforward algorithm for the Motion-estimation example
(henceforth named Basic Algorithm) is shown in Figure 5(b).
With the parameters of the algorithm shown before, the Ba-
sic Algorithm presents 2.0 x 10° references to memory and 4.8
transitions/reference (without encoding), resulting in 9.8 x 10°
transitions in the address bus'.

Table 2 shows the transitions/reference, the total number of
transitions, and the ratio (encoded/non encoded) for:

¢ the WZE encoding technique explained in Section II with
two Prefs
e Gray encoding

1These numbers hardly vary whatever the relative non-interleaved
memory mapping of the data structures. In this work, CF is mapped
at address 0, followed by RF and MV.

205

Motion estirmnation: Basic Algorithm
Transitions/ | Transitions | Ratio
reference {x10°%)
non encoded 4.8 9.8 1
WZE (two Prefs) 2.5 5.2 0.53
Gray 5.5 11.2 1.14
bus-invert (two groups) 4.5 9.2 0.94

Table 2: Activity reduction for the Motion-estimation example
(Basic Algorithm).

e bus-invert encoding with two groups of eight bits each?.

Note that the number of memory references does not vary.
The following conclusions are derived:

o the largest activity reduction (47%) is obtained with the
WZE technique with two Prefs. The results with one
and more than two Prefs are not shown since, in the first
case, there is no significant activity reduction and, in the
second case, no significant improvements are obtained
with respect to using two Prefs

e no activity reduction is obtained with Gray encoding.
Instead, the activity is increased. The reason is that
the memory references mainly switch between the cur-
rent and reference frames, and the distance between two
consecutive 8-bit memory references is in several cases a
power of two. For example, consider the following two
consecutive memory references: 0000100 and 0100100.
The latter one is the former plus 32. Without any en-
coding, one bit toggles. With the Gray encoding tech-
nique, the references are 0000110 and 0110110 respec-
tively. Now, two bits toggle

o the bus-invert encoding with two groups of 8 bits each
reduces the activity only 6%.

A.2. QR Algorithm

The energy of the address bus is proportional to the number of
transitions; thus, the energy can be decreased by reducing the
number of memory references and/or reducing the number of
transitions/reference.

In the previous section, the number of transitions/reference
was reduced by using the WZE technique. In this section, the
Basic Algorithm is modified (as done in blocked algorithms [2])
using a set of extra registers to store some frame pixels that
are reused in the near future. Those pixels do not have to
be fetched again from memory, thus the number of memory
references is reduced. However, the energy consumption of the
extra registers has to be taken into account.

Care must be taken in not increasing the number of tran-
sitions/reference since the total number of transitions could
be larger than in the original case. The number of transi-
tions/reference is actually reduced with the following two com-
plementary approaches:

¢ by referencing more sequentially the memory with a
proper use of the extra registers. Note that the average
number of transitions in the address bus for a sequence
of consecutive references is two (remember that the Basic
Algorithm presents 4.82 transitions/reference due to the
switching of the memory references between the current
and reference frames)

* by applying the WZE technique as it was done in the
previous section for the Basic Algorithm.

2To fairly compare the WZE and the bus-invert techniques, the
latter is evaluated for two groups (implying two extra wires) since
the former uses two Prefs (implying two extra wires as well), so that
the wire overhead in both techniques coincide.

Motion estimation: QR Algorithm
{3

[16 32 48 64

0.56 | 0.49 | 0.41 0.34 0.26

1 4.75 | 4.42 | 3.95 3.25 2.18
18 32 48 64 80

0.50 | 0.42 | 0.35 | 0.28 0.20

2 3.13 | 3.02 | 2.85 2.59 2.14
32 64 96 128 160

047 1039 10321 024 0.17 references
Q| 4 | 220 2.18 | 2.17 | 2.14 | 2.07 trans/ref
64 128 192 256 320 registers

0.45 | 0.38 | 0.30 | 0.23 0.15
8 1.72 1 1.75 | 1.80 1.87 2.00
128 256 384 512 640
0.44 7037 | 0.29 [0.22 0.15
16 | 1.51 | 1.56 | 1.63 1.75 2.00
256 512 760 1024 | 1280

Table 3: Motion estimation (QR Algorithm): total references
(x10°%), transitions/reference, and number of registers.

In the QR Algorithm proposed in this paper, ¢ blocks of the
current frame are processed at a time. Since one block of the
current frame has to be matched to M N blocks in the reference
frame, up to M N registers are needed for each of the @Q blocks
to store the temporal values of the matching process. We call
R the actual number of registers to hold these temporal val-
ues for each of the Q blocks (0 < R < MN). When all the
R registers hold a valid temporal value, the rest (MN — R)
of the temporal values have to be stored in memory (in a new
data structure that did not appear in the Basic Algorithm).
Thus, the total number of extra registers in the QR Algorithm
is Q(2Y + R). For a more detailed explanation of the QR Al-
gorithm refer to [7].

The inclusion of the extra registers multiplies by about three
the number of instructions of the QR Algorithm with respect
to the Basic Algorithm.

Non-encoded

Table 3 shows the number of references and the number of reg-
isters for different combinations of R and Q. Note that, for
these values, the number of registers is Q(16 + R), and that
1< @ <16 and 0 € R <€ 64. The number of references has
been significantly reduced with respect to the Basic algorithm
{for example, for (Q = 2,R = 16), it goes down from 2 x 10° to
0.42 x 10%). Moreover,

e for each value of Q (R), larger reductions in the number
of references is obtained for larger values of R (Q)

e for the same number of registers, the minimum number
of references is obtained for the case with the largest R

¢ 3 larger number of registers does not imply fewer refer-
ences. For example, with (Q, R)=(4,16), 128 registers
are used, but the algorithm presents more memory ref-
erences than with (Q, R)=(1,64), where only 80 registers
are needed. The conclusion is that, to reduce the number
of references, it is better to increase R rather than Q.

Working-Zone Encoding

This section considers the activity reductions obtained with the
WZE technique with two Prefs (more Prefs do not significantly
improve the results) when applied to the QR Algorithm, and a
comparigon is made to the Gray and bus-invert encoding tech-
niques.

Table 4 presents the activity ratios for each encoding tech-
nique given a number of registers (restricted to 512 for prac-
tical reasons). These activity ratios are given with respect to
the non-encoded case with the same number of registers and
fewer number of tranpsitions. Moreover, the WZE column is

206

Motion estimation: QKR Algorithm
Regs (@, R) Ratio
WZE Gray bus-invert
(two Prefs) (two groups)
(A (B)
16 (1,0) | 0.32 039 | 0.87 0.76
48 (1,32) | 0.30 0.38 | 0.81 0.79
64 (1,48) | 0.25 0.36 | 0.76 0.82
80. | (1,64) | 0.18 0.34 | 0.59 0.90
128 | (2,48) | 0.24 0.38 | 0.73 0.84
256 (4,48) 0.24 0.40 0.70 0.89
512 (8,48) 0.23 0.43 0.67 0.93

Table 4: Summary for the Motion-estimation QR Algorithm
with encoding: best configuration given a number of registers
(< 512). Ratio is given with respect to the non-encoded case
with the same number of registers and smallest number of tran-
sitions. The ratio for the WZE encoding is given without (A)
and with (B) the energy overhead of the encoder.

Quicksort (vector,l,r){

if r > [then
pivot = vector[r]
i=l—r
j=r
do temporal.i = vector(i]; i =i+ 1
while temporal_i < pivot
do temporal_j = vector[j]; j=j—1
while temporal_j > pivot
if 4 > j then break
vector[i] = temporal_j
vector(j] = temporal_i

vector(i] = pivot

vector[r] = temporal_i

Quicksort (vector,l,i—1)

Quicksort (vector,i+1,7)

Figure 6: Quicksort.

split into two subcolumns to show the effect of the energy over-
head derived in Section III.C. Note that there is an optimal
number of registers (Q = 1 and R=64). The conclusion is that
the WZE clearly outperforms the Gray and bus-invert encoding
techniques for this example.

B. Quicksort

The Quicksort [10] is a divide-and-conquer algorithm that sorts
a vector of elements. In this paper, the vector has 64K elements
of 1 byte each, thus occupying the entire address space. Figure 6
shows the algorithm implemented in this paper (the first call is
Quicksort (vector,0,64K-1)).

The total number of memory references in this example is
data dependent (it is then less predictive than in the Motion-
estimation example}); the number of references is different when
sorting a vector which is already sorted than when sorting
a vector initialized with pseudo-random values. Henceforth,
this last case is considered in this paper. The algorithm in
Figure 6(a) for a pseudo-randomly initialized vector presents

1.9 x 10° memory references and 4.1 transitions/reference, re-
sulting in 7.6 x 10° total transitions in the address bus.

Table 5 shows the transition/reference, the total aumber of

transitions and the ratio (encoded/non encoded) for the same
encoding techniques in Table 2. The following conclusions are
derived:

¢ the largest activity reduction (59%, including the energy
overhead of the encoder derived in Section III.C) is ob-
tained with the WZE technique using two Prefs. The
results with one and more than two Prefs are not shown

Quicksort
Transitions/ | Transitions Ratio
reference (x10%)
non encoded 4.1 7.6 1
WZE (two Prefs) 1.4 2.5 0.33 (0.41)
Gray 3.4 6.4 0.85
bus-invert (two groups) 3.5 6.5 0.85

Table 5: Activity reduction for the Quicksort example. The
ratio in parenthesis for the WZE technique takes into account
the energy overhead of the encoder.

for the same reason stated for the Motion-estimation ex-

am;ﬁle .
¢ both the Gray and bus-invert encodings reduce the ac-
tivity 15%.

V. CONCLUSIONS

This paper presents an encoding technique for low-energy ad-
dress buses that significantly outperforms other encoding tech-
niques (namely, Gray and bus-invert) as shown in two memory-
intensive examples, and that presents a small area and energy
overhead. Energy reductions of about 2/3 have been obtained
for the examples. This technique may be applied to other DSP
applications such as the FFT, digital filters, and, in general, to
any memory-intensive application.

Moreover, it has been shown that reductions of two orders
of magnitude can be obtained by properly using registers to
hold data values that are referenced in the near future. This
reduction is in addition to the one obtained with the encoding
technique presented in this paper.

REFERENCES

[1] A. Bellaouar and M.I. Elmasry. Low-power digital VLSI design:
circuits and systems. Kluwer Academic Publishers, 1995.

[2] S. Carr and K. Kennedy. Compiler blockability of numerical al-
gorithms. In Proc. of the Supercomputing’92 Conference, pages
114-124, 1992.

[3] A.P.Chandrakasan and R.W. Brodersen. Low Power Digital CMOS
Design. Kluwer Academic Publishers, 1995.

[4] J.L.Hennessy and D.A. Patterson. Computer Architecture: a quan-
titative approach. Morgan Kaufmann Publishers, 2nd edition edi-
tion, 1995.

[5] P.E. Landman and J.M. Rabaey. Activity-sensitive architectural
power analysis. IEEE Trans. on CAD, 15(6):571-587, June 1996.

[6] C. Lin and S. Kwatra. An adaptive algorithm for motion compen-
sated colour image coding. IEEE Globecom, 1984.

{7] E. Musoll, T. Lang, and J. Cortadella. Exploiting the locality of
memory references to reduce the address bus energy. Technical
Report UPC-DAC-1996-60, ftp://ftp.ac.upc.es/pub/reports/DAC/
1996 /UPC-DAC-1996-60.ps.Z, Dept. of Computer Architecture,
Polytechnic Univ. of Catalonia, December 1996.

{8] C.A. Neugebauer and R.O. Carlson. Comparison of wafer scale in-
tegration with VLSI packaging approaches. IEEE Trans. on Com-
ponents, Hybrids, and Manufacturing Technology, pages 184-189,
June 1987.

{9] P.R. Panda and N.D. Dutt. Reducing address bus transitions for
low power memory mapping. In Proc. EDAC, March 1996.

[10] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, second edition, 1992.

[11] M.R. Stan and W.P. Burleson. Bus-invert coding for low power I/0.
IEEE Trans. on VLSI Syst., pages 49-58, 1995.

[12] C-L. Su, C-Y. Tsui, and A.M. Despain. Saving power in the control
path of embedded processors. JEEE Design & Test of Comp., pages
24-30, winter 1994.

207

