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ABSTRACT

One of the most important components of an ALU is the
adder. Its response time is mainly determined by the carry
propagation delay. Evaluation of conditions between two
numbers are usually performed with the ALU by means of a
substraction. In this paper we deal with a type of conditions
that can be evalauted without requiring a complete ALU
operation. The circuit that is presented detects the condition
A+B=K (n-bit numbers) in constant time, avoiding the carry
propagation delay. Some applications for this circuit are also

presented.

INTRODUCTION

The carry computation is one major problem in the
response time of parallel adders. Several approaches have
been proposed in order to reduce it [1]{2][3]. VLSI
techniques have been also used to minimize design costs and
chip area. The fastest adders, such as lookahead adders,
perform additions of n-bit numbers in time O(log n) and area
O(n log n).

This paper deals with a problem associated with parallel
adders. A circuit for detecting when the addition of two n-bit
numbers is equal to another n-bit number (A+B=K) is
presented. We will prove that the result of this evaluation can
be computed in constant time and area O(n), avoiding the
problem of the carry propagation delay.

The paper is organized as follows. First, the theoretical
basis of the problem is presented. Next, the design of the
circuit is described. Finally, some applications for this circuit
are discussed.
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THEORETICAL BASIS

Given three n-bit vectors A=aga, ;...a;, B=b b, ;..b;
and K=k k;_;...k; that represent two's complement integers,
we want to design a circuit that can evaluate the conditon
A+B=K (arithmetic addition) in constant time. This means
that the evaluation does not depend on the lenght (number of
bits) of the vectors.

The basic idea of the circuit is the local evaluation of the
condition at each bit position i, assuming that the condition is
fulfilled in the rest of bits. The last stage computes the global
logical OR of all the local evaluations.

The behavior of a full adder can be described with the
following expressions:

pi=2®b; (Carry propagation)
gi=3Ab; (Carry generation)
¢i=(jAci) Ve (Carry. We define cy=0)
=p;i®ciy (Addition result)

The condition "A+B=K" could be detected by comparing
1; and k; at each bit position i and performing a global OR of
all the comparisons. In this case the response time would be
determined by the carry propagation time, since c; is defined
as a function of c;_;. In order to avoid the carry propagation
problem, we define the following expressions:

9= (p;A k) vg  (Predicted carry. We define qy=0)
5;=1;9q;, (Predicted addition result)
z;=5 @k (=0 & s;=k)
14
Zk = V z
i=1 1
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The predicted carry (q;) substitutes the carry for the
computation of the predicted result. We can easily prove that
q; =¢; in case thatr; = k;:

6= A k) Ve =A Vg =AC) Vg =C

The design of the circuit is based on the following
theorem:

Theorem.
Z,=0 & 1=k foreachie {1,...,n}
Proof. By induction on n.
First, we will prove that the theorem holds for n=1.
Zy=21=5,®k; =p; ®k) =1; Dk, (since ¢y =qp = 0)

thus
ZI=0 [ Tl=k1

Next, we will prove that the theorem holds for n > 1, Let’s
assume the theorem holds for n-1 bits.

IfZ, ;=1thenZ,=Z, ; vz =1,and the theorem holds for
n bits, since there is i € {1,....,n-1} ¢ {l,...,n} such that

rj#k; (by induction hypothesis).

KZ,;=0thenZ, =z,
By the definition of z; we have that

zn=sn®kn=pn®qn-lan

since Z, ; =0 thenr -1 =kpyandqy = ¢p.1 (by induction
hypothesis). Therefore,

=P @y Ok =1, Ok,
and
2,=0 & 1 =k,
Since r; = k; for each i € {1,...,n-1}, we have that

Zn=zn=0~:>rn=kn0=ri=ki for each i e {1,...,n}
o]

Figure 1. Circuit design

)

CIRCUIT DESIGN

From the previous section we can observe that function
q; (predicted carry) does not depend on any information in the
other stages. So functions z; can be computed in parallel.
Figure 1 depicts a diagram of the circuit that computes Z, We
assume that each gate and the 2,, line discharge (n-input
NOR) take constant time. So we can state that the computation
of Z, also takes constant time. Since the circuit is made of n
identical cells, the chip area is O(n).

The circuit design can be simplified if any of the
operands is congtant. Figure 2 shows a diagram of the circuit
when vector K is constant.

Figure 2. Circuit design with K constant



SOME APPLICATIONS

The condition evaluation is one of the most important
operations performed in the execution of conditional
branches. In most architectures, the condition is evaluated as a
function of the condition codes. Their value depends on the
result of ALU operations. Figure 3 depicts a widely used
ALU structure [4]. It consists of an Operand Modifier Unit
(OMU) and an adder. The OMU computes the carry
propagation and generation functions (p; and g;) depending on
the data input (2; and b;) and the operation.
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Figure 3 ALU structure

The dependencies produced by the execution of branches
have been extensively studied by many authors [5][6]. In
pipelined processors, the condition evaluation has to be
delayed until all the instructions that modify the condition
codes and precede the branch have finished its execution. The
condition evaluation is the most important dependency that
restricts the execution of branches with zero delay {7].

Katevenis observed that 80% of conditional branches
involve tests for equality, inequality and any relation with zero
(fast comparisons) [8]. Equality and inequality tests are
determined by the zero condition code (Z), usually after a
substraction operation (comparison). Relations with zero are
determined by Z and the sign bit of the operand that is tested.
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Figure 4 Evaluation of condition code Z

By designing a circuit that detects the condition A+B=0, the
computation of Z can be advanced and the delay produced by
the condition evaluation reduced (see figure 4). This
improvement can increase the processor performance
substantially since about one in every six instructions are
branches that have to evaluate this kind of conditions.

Another application can be found for DO-like loops. This
kind of loops are very used in numerical programs (figure
5.a). The compiler generates a code similar to the one shown
in figure 5.b. As Katevenis also observed, some comparisons
can be converted to fast comparisons [6]. This is the case of
"I £ N", which can be converted to "I # N+1" without
modifying the loop behavior. By considering an ALU
structure such as the one shown in figure 6, and introducing a
new instrucion in the machine language (NEXT), the compiler
can generate a code similar to the one in fig. S.c. The

Ri«1 Rie1
doi=1,n | do: Rlimit «n+1
. do:
end do Ri—Ri+1
if Ri = n gotodo NEXTRI, do
(a) (b) (c)

Figure 5. Do-like loops



instruction NEXT increments Ri and compares the new value
with Rlimit. In case that Ri#Rlimit, control is transferred to
the branch target address. Again, the improvement is based on
the fact that the condition can be evaluated before computing
the new value of Ri, avoiding pipeline delays in the execution
of conditional branches.
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Figure 6. ALU structure for DO-like loops.

CONCLUSIONS

In this paper we have presented a circuit that detects the
condition "A+B=K" in constant time. Its area is proportional
to the number of bits of the vectors. The theoretical basis and
several design approaches have been described.

This circuit can be used to detect a wide spectrum of
conditions in branch instructions. It can improve the
processor performance by advancing the evaluation of
conditions and eliminating the pipeline delays produced by
these operations.
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