
3064 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

Process Discovery Algorithms Using Numerical
Abstract Domains

Josep Carmona, Member, IEEE and Jordi Cortadella, Member, IEEE

Abstract—The discovery of process models from event logs has emerged as one of the crucial problems for enabling the continuous
support in the life-cycle of an information system. However, in a decade of process discovery research, the algorithms and tools that
have appeared are known to have strong limitations in several dimensions. The size of the logs and the formal properties of the model
discovered are the two main challenges nowadays. In this paper we propose the use of numerical abstract domains for tackling these
two problems, for the particular case of the discovery of Petri nets. First, numerical abstract domains enable the discovery of general
process models, requiring no knowledge (e.g., the bound of the Petri net to derive) for the discovery algorithm. Second, by using
divide and conquer techniques we are able to control the size of the process discovery problems. The methods proposed in this paper
have been implemented in a prototype tool and experiments are reported illustrating the significance of this fresh view of the process
discovery problem.

Index Terms—Process discovery, numerical abstract domains, petri nets, formal methods, concurrency

1 INTRODUCTION

PROCESS mining is an essential discipline for address-
ing challenges related to Business Process Management

(BPM) and “Big Data”[1]. Informally, process mining algo-
rithms are meant to extract knowledge from event logs
stored by information systems, and use this knowledge
for supporting the process perspective. Nowadays infor-
mation systems record an overwhelming amount of data
representing the footprints left by process executions.

Process mining faces three challenges relating event data
(i.e., log files) and process models: discovery of a process
model from an event log, conformance checking given a pro-
cess model and a log, and enhancement of a process model
with the information obtained from a log. In this paper
we focus in the problem of discovery of Petri nets [2]
from event logs. However, the techniques presented in this
paper may be adapted for the discovery of other process
formalisms. This paper is an extended version of [3].

There are several Petri net discovery algorithms in the
literature [4]–[11] that demonstrated to be of great value
for undertaking small or medium-sized problem instances.
However, it is well-accepted that current Petri net discovery
algorithms often impose serious restrictions on the class of
behaviors to be identified [4]–[6], or are unable to handle
problems of industrial size [7], [8], [10], [11].

Abstract interpretation [12] is a generic approach for the
static analysis of complex systems. The underlying notion
in abstract interpretation is that of upper approximation: to

• The authors are with the Software Department, Universitat Politècnica
de Catalunya, Barcelona 08034, Spain. E-mail: jcarmona@lsi.upc.edu;
jordi.cortadella@upc.edu.

Manuscript received 5 Feb. 2013; revised 24 July 2013; accepted 3 Sep. 2013.
Date of publication 22 Sep. 2013; date of current version 29 Oct. 2014.
Recommended for acceptance by G. Karypis.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.156

provide an abstraction of a complex behavior with fewer
details. A property about a system, such as an invariant, is
in some way an abstraction: it represents all the states of
the system that satisfy the property.

Intuitively, abstract interpretation defines a procedure to
compute an upper approximation of the behavior of a sys-
tem. This definition guarantees (a) the termination of the
procedure and (b) that the result is conservative. An impor-
tant decision is the choice of the kind of abstraction to
be used, which is defined by a numerical abstract domain.
For a given problem, there are typically several numerical
abstract domains available. Each abstract domain provides
a different trade-off between precision (proximity to the
exact result) and efficiency.

There are many problems where abstract interpreta-
tion can be applied, several of them oriented towards the
compile-time detection of run-time errors in software. For
example, some analysis based on abstract interpretation can
discover numeric invariants among the variables of a pro-
gram. Several abstract domains can be used to describe
the invariants: intervals [13], octagons [14], convex poly-
hedra [15], among others. These abstract domains provide
different ways to approximate sets of values of numeric
variables. This paper uses the domain of convex polyhedra
for the discovery of Petri nets. However, the techniques
presented in this paper can also be applied with other
domains.

The algorithms for Petri net discovery presented in
this paper use as input a Parikh representation of the
log, i.e., a set of vectors denoting the number of occur-
rences of each log event for each intermediate state of
a log trace. For example, for the trace aba there will be
four Parikh vectors (0, 0) (empty prefix, initial state), (1, 0)

(prefix a), (1, 1) (prefix ab) and (2, 1) (prefix aba). The set
of Parikh vectors of an event log is then used to con-
struct a convex polyhedron including these vectors (i.e.,
the convex envelope). Finally, using the H-representation

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



CARMONA AND CORTADELLA: PROCESS DISCOVERY ALGORITHMS USING NUMERICAL 3065

of the convex polyhedra domain, one may obtain a set of
inequalities denoting invariants that relate the occurrence
count between different log events. These inequalities can
then be converted into Petri net elements.

The aforementioned technique guarantees the derivation
of a fitting Petri net, i.e., a Petri net that can reproduce
every trace in the log. Moreover, this paper shows that
when all the inequalities are used, the Petri net derived is
minimal in describing the log behavior, a very interesting
property that relates to the well-known precision dimension
in conformance checking [16]. Remarkably, the theory pre-
sented in this paper is the first one in deriving a general
pure (no self-loops) Petri net without requiring any knowl-
edge on the bounds of the model. This contrasts with the
region-based algorithms [8]–[11], where this information is a
necessary input for the algorithm to be applied. Hence the
only limitation is that no self-loops can be derived.

Moreover, due to the complexity of some of the con-
vex polyhedra algorithms, this paper presents a technique
that allows to decompose a process discovery problem into
smaller instances that can be better handled. The strategy
is based on clustering log events that are related. We use
techniques inspired from Principal Component Analysis [17]
to derive this information.

The paper is organized as follows: we provide a sim-
ple example in Section 2 to illustrate the approach of the
paper. In Section 3, the theoretical basis of the paper is
presented. Section 4 describes an algorithm to perform
the discovery of invariants from an event log. For logs
of medium/large size, the techniques of Section 5 should
be applied in order to alleviate the complexity of the dis-
covery problem. Experiments are reported in Section 6. In
Section 7 we provide a short discussion on the relationship
with the Petri net discovery techniques in the literature.
Finally, conclusions are drawn in Section 8.

2 AN ILLUSTRATIVE EXAMPLE

Let us illustrate the theory of this paper with an example.
Imagine we are given the following log:

In spite of its apparent simplicity, this log represents a
hard case for most of the existing techniques. This is mainly
due to the fact that the log contains complex relations
for the events occurrences, i.e., the synchronic distance [2]
between a and b is non-unitary. The synchronic distance
defines the degree of mutual dependence between a pair
of events. Non-unitary synchronic distance between events
is a common behavior in many domains, e.g., resources
in Manufacturing Systems [18]. To express these complex
relations with simple (restricted) Petri net structures will
make the model to be spaghetti-like, since several ordinary

(a) (b)

Fig. 1. (a) Petri net discovered from state-based regions with bound 7.
(b) Petri net discovered by the approach of this paper.

elements (places, arcs) will be needed to represent a single
complex structural element (e.g., a place with more than
one token, or an arc with non-unitary weight).

The α-miner [4], probably the best-known Petri net
miner nowadays1, can only discover a Petri net accepting
the language defined by the expression a|b, thus derives a
model unable to reproduce anyone of the 10 traces in the
log of the example2 (i.e., an unfitting model), while the ILP
miner [9] (implementing the language-based regions) does
not discover any Petri net element and therefore the Petri
net is simply the two transitions a and b each one with-
out any predecessor/successor place, which generates the
language a∗||b∗, i.e., a very imprecise model. The genetic
miner [7] discovers a heuristic net that can be translated to
a Petri net accepting the same language as the ILP miner,
but in contrast it derives a complicated connected model
with few invisible transitions.

To employ the state-based region algorithms from [10],
one requires to convert the 10 traces above into an automa-
ton that accepts the language of the log [19]. In order to
use the algorithm, one must provide the bound k the Petri
net should have in order for the algorithm to explore the
lattice of k-bounded regions that represent Petri net places
with their corresponding arcs. When setting this bound to
any number less than 7 the algorithm performs as the ILP
miner, i.e., no Petri net element is found. With k = 7 the
algorithm discovers the cyclic Petri net shown in Fig. 1(a).
Notice that this Petri net accepts traces very different from
the ones in the log, e.g., a trace starting as aaaaaabbbbbbb . . .

belongs to the language of this Petri net.
Finally, for applying the approach of this paper, a Parikh

representation of the log will be used. The Parikh represen-
tation of this log contains 61 Parikh vectors: (0, 0), (1, 0),
(0, 1), (1, 1), (2, 0), . . ., (12, 8), (10, 10). From these vectors,
a convex polyhedron is built that represents its minimal
convex envelope. Importantly, the Parikh vectors are the
only input required for deriving the convex polyhedron.
The following are the non-trivial invariants defining this
envelope:

6 − 2 · σ̂ (a) + 3 · σ̂ (b) ≥ 0 (1)
1 + σ̂ (a) − σ̂ (b) ≥ 0, (2)

where σ̂ (x) is a variable denoting the number of
occurrences of the variable x. Invariant (1) ((2)) is trans-
formed to the place on the right (left) of Fig. 1(b). Note that

1. The α-miner is oriented towards the discovery of safe and sound
workflow nets, thus unable to discover this complex behavior.

2. The operators ∗, ||, | and ; denote Kleene closure, interleaving,
union and concatenation, respectively.



3066 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

the Petri net derived by our approach precisely describes
the behavior of the log by using the arc weights computed.

3 PROCESS MINING, PETRI NETS AND
NUMERICAL ABSTRACT DOMAINS

3.1 Process Mining Notation
The behavior of a process is observed as sequences of
events from a given alphabet. For convenience, we use T
to denote the set of symbols that represent the alphabet
of events. A trace is a word σ ∈ T∗ that represents a finite
sequence of events. We denote λ as the empty trace. |σ |a
represents the number of occurrences of a in σ .

A log L is a set of traces from a given alphabet. We say
that σ ∈ L if σ is the prefix of some trace of L.

Definition 1 (Parikh vector). Given an alphabet of events
T = {t1, . . . , tn}, the Parikh vector of a sequence of events
is a function :̂T∗ → N

n defined as σ̂ = (|σ |t1 , . . . , |σ |tn). For
simplicity, we will also represent |σ |ti as σ̂ (ti).

Definition 2 (Parikh vectors of a log). Given a log L, the
set of Parikh vectors of L is defined as

�(L) = {̂σ | σ ∈ L}.
The problem of process discovery requires the compu-

tation of a model M that adequately represents a log L.
A model M is overfitting with respect to log L if it is too
specific and too much driven by the information in L. On
the other hand, M is an underfitting model for L if the
behavior of M is too general and allows for things “not
supported by evidence” in L. Whereas overfitting denotes
lack of generalization, underfitting represents too much
generalization. A good balance between overfitting and
underfitting is a desired feature in any process discovery
Algorithm [1].

3.2 Petri Nets
Definition 3 (Petri net [2]). A Petri net is a tuple

(P, T, F, M0) where P and T represent finite sets of places
and transitions, respectively, and F:(P × T) ∪ (T × P) → N

is the weighted flow relation. A marking M is a function
M:P → N. M0 is a marking that defines the initial state of
the Petri net.

The preset and postset of a place p are denoted as •p and
p•, respectively, and are defined as follows:

•p = {t ∈ T | F(t, p) > 0}
p• = {t ∈ T | F(p, t) > 0}.

A Petri net is said to be pure if it does not have any self-
loop, i.e., ∀p ∈ P: •p ∩ p• = ∅. Henceforth, we will assume
that all Petri nets referred to in the paper are pure. A Petri
net is connected if the underlying graph structure induced
from F is connected.

The dynamic behavior of a Petri net is defined by its
firing rules. A transition t ∈ T is enabled in a mark-
ing M if M(p) ≥ F(p, t) for any p ∈ P. Firing an enabled
transition t in a marking M leads to the marking M′
defined by M′(p) = M(p) − F(p, t) + F(t, p), for any p ∈ P,
and is denoted by M

t−→ M′. A sequence of transitions

σ = t1t2 . . . tn is firable if there is a sequence of markings
M1, M2, . . . , Mn such that

M0
t1−→ M1

t2−→ M2 · · · tn−→ Mn.

Given a Petri net N, L(N) denotes the language of N, i.e.,
the set of firable sequences of transitions. The set of mark-
ings reachable from the initial marking M0 is called the
Reachability Set and denoted as RS(N). Finally, a place p
is redundant if its removal does not change L(N). Fig. 1(b)
contains an example of a Petri net N in which the trace
σ = aaaba belongs to L(N).

3.3 The Marking Equation
Let us consider a place p with •p = {x1, . . . , xk},
p• = {y1, . . . , yl} and all flow relations having weight
1. Let us assume that the place contains M0(p) tokens in
its initial marking. Then, the following equality holds for
any sequence of events σ :

M(p) = M0(p) + σ̂ (x1) + · · · + σ̂ (xk) − σ̂ (y1) − · · · − σ̂ (yl).

The previous equation can be generalized for weighted
flows:

M(p) = M0(p) +
∑

xi∈•p
F(xi, p) · σ̂ (xi) −

∑

yi∈p•
F(p, yi) · σ̂ (yi).

If we formulate the previous equation for all places in a
Petri net, we can compress it using a matrix notation:

M = M0 + A · σ̂ ,

where M and M0 are place vectors and A is the incidence
matrix with |P| rows and |T| transitions that represents the
flow relation of the net. The previous equation is called the
Marking Equation of the Petri net [2].

The set of solutions for which the following inequality
holds

M = M0 + A · σ̂ ≥ 0 (3)

is called the Potentially Reachable Set (PRS(N)). All reachable
markings of a Petri net fulfill (3). However, the opposite
is not always true. In general, there can be unreachable
markings for which (3) also holds, i.e., RS(N) ⊆ PRS(N).
A detailed discussion on the relationship between RS(N)

and PRS(N) can be found in [20].
Fig. 2 illustrates the concept of Potentially Reachable Set.

Fig. 2(a) depicts the set of markings reachable from M0. The
shadowed area represents the set of vectors that contain
at least one negative component, called negative markings3.
The figure shows how a sequence σ1 can travel across
(non-negative) markings. However, the sequence σ2 crosses
some negative markings. Even though σ2 leads to a non-
negative marking, i.e., M0 + A · σ̂2 ≥ 0, the sequence is not
fireable.

A simple example is shown in Fig. 2(b). A subset of
potentially reachable markings is shown in Fig. 2(c). In
this case, the sequences a and aba lead to non-negative
markings. However, aba is not fireable because a negative
marking is visited after ab.

3. We abuse the notation for markings introduced in Def. 3, to
consider also vectors with at least one negative component.



CARMONA AND CORTADELLA: PROCESS DISCOVERY ALGORITHMS USING NUMERICAL 3067

(a) (b) (c)

Fig. 2. Unfeasible event sequences in Petri nets.

3.4 The Language of a Petri Net
Given a Petri net N = (P, T, F, M0), we can define the
potential language of N, denoted by PL(N), as

PL(N) = {σ ∈ T∗ | M0 + Aσ̂ ≥ 0},
where A is the incidence matrix of N. PL(N) contains all
sequences that lead to a non-negative marking. However,
not all sequences of PL(N) may belong to L(N).

L(N) is the subset of PL(N) that contains only those
sequences that do not traverse negative markings. In other
words, L(N) contains all those sequences in which all pre-
fixes also belong to L(N). Thus, L(N) can be recursively
defined as follows:

L(N) = {λ} ∪ {σ | σ = σ ′t, σ ′ ∈ L(N), t ∈ T, M0 + Aσ̂ ≥ 0}.
The main focus of this work is the discovery of Petri

nets from Parikh vectors. Given a log L from which we can
calculate the set of Parikh vectors �(L), we will try to find
A and M0 in (3) such that the associated Petri net is a good
approximation of the process behavior.

3.5 Convex Polyhedra and Integer Lattices
An n-dimensional convex polyhedra is a convex
set of points in R

n. Convex polyhedra admit two
equivalent representations: the H-representation and the
V-representation [21]. The former denotes a convex poly-
hedron P as the intersection of a finite set of half-spaces,
i.e.,

P = {x ∈ R
n | Ax + b ≥ 0}, (4)

where A ∈ R
k×n and b ∈ R

k are the matrix and vector that
represent k half-spaces. The V-representation uses a set
of vertices and rays. The algorithms for convex polyhe-
dra often use both representations and move from one to
another depending on the most convenient representation
for each case [22].

Neither the V- nor the H-representations of a convex
polyhedron are unique. However, some canonical represen-
tations have been proposed [23].

The following result is important for modeling Petri nets
with convex polyhedra.

Theorem 1. Let P be a convex polyhedron defined by the
intersection of a finite set of half-spaces represented as in
expression (4). P contains the origin x = (0, . . . , 0) if and
only if b ≥ 0.

Proof. If the origin belongs to P , then b cannot have any
negative component, otherwise one of the inequalities
would not hold. Conversely, if b ≥ 0, then the origin
fulfills all the inequalities.

Fig. 3. Walks in the integer lattice and Petri net.

Given a polyhedron P , the set of integer points inside P
is called the Z-polyhedron of P . For the sake of brevity, all
polyhedra mentioned in this work will be assumed to be
convex.

3.6 Connecting Petri Nets and Convex Polyhedra
Given a Petri net N, by comparing the expressions (3)
and (4), we can observe that PRS(N) is the Z-polyhedron
of a convex polyhedron that has two properties: A ∈ Z

|P|×n

and M0 ∈ N
|P|. These properties guarantee that the initial

marking is not negative and only markings with integral
token values are reachable.

The n-dimensional integer lattice Z
n is the lattice of

n-tuples of integers. In our context, each lattice point rep-
resents a Parikh vector from an alphabet with n symbols.
Given that we restrict ourselves to non-negative integers,
we will often denote the lattice as N

n.
A log can be represented as a set of walks in N

n. Every
step in a walk moves from one lattice point to another by
only increasing one of the components of the n-tuple by
one unit.

The link between logs and Petri nets is illustrated in
Fig. 3. The figure at the left represents three different walks
in a 2-dimensional space. The shadowed area represents a
polyhedron that covers the points visited by the walks. The
polyhedron can be represented by the intersection of two
half-spaces in R

2:

1 + σ̂ (a) − σ̂ (b) ≥ 0

6 − 2 · σ̂ (a) + 3 · σ̂ (b) ≥ 0.

The polyhedron can also be represented in matrix nota-
tion with a direct correspondence with the marking equa-
tion (3) of a Petri net:

[

1
6

]

+
[

1 −1
−2 3

]

·
[

σ̂ (a)
σ̂ (b)

]

≥
[

0
0

]

.

The figure at the right represents a Petri net obtained
from the interpretation of the marking equation. Each face
of the polyhedron is represented by a place (row in the
matrix). The set of Parikh vectors generated by the Petri
net corresponds to the Z-polyhedron of the polyhedron
depicted at the left.

We can observe there is a promising relationship
between Parikh vectors and polyhedra. We next formalize
this relationship.

3.7 Galois Connection
Definition 4 (Galois connection [24]). Given two partially

ordered sets, (A,≤) and (B,�), a Galois connection between



3068 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

Fig. 4. Galois connection between N
n and P

n.

them is a pair of monotone functions, α:A → B and β:B → A
such that for all a ∈ A and b ∈ B: α(a) � b ⇐⇒ a ≤ β(b).

Galois connections provide the framework for the
approximation of the reachability set of a log using convex
sets. The connection is established between the integer lat-
tice N

n and the set of n-dimensional convex polyhedra P
n.

The two monotone functions for the connection are the
Convex Hull (C) and the Z-polyhedron (Z):

N
n

C
�
Z

P
n.

Given a set of points S ⊆ N
n, C(S) is defined as the

smallest convex polyhedron P ∈ P
n such that S ⊆ Z(P).

An example of the Galois connection is depicted in Fig. 4.
The connection between the set of points and polyhedron
in the figure are as follows:

{(1, 3), (3, 1),

(3, 2), (3, 4),

(4, 5)}
C−→

4x1 − x2 ≤ 3
−2x1 + 3x2 ≤ 7

x1 + x2 ≥ 4

Z−→
{(1, 3), (2, 2), (2, 3),

(3, 1), (3, 2), (3, 3),

(3, 4), (4, 5)}

The convex hull can also be defined for polyhedra.
Given two polyhedra P1 and P2, the convex hull P1 � P2
is defined as the smallest convex polyhedron that con-
tains P1 and P2. The monotonicity of the connections
and the definition of convex hull determine the following
properties:

C(S1 ∪ S2) = C(S1) � C(S1)

C(Z(P)) = P.

This connection provides the core framework to reduce
the discovery of Petri nets to the discovery of convex
polyhedra that cover Parikh vectors associated to logs.

3.8 From Logs to Petri Nets
As it was discussed in Sect. 3.6, a log is a set of walks
in N

n. Let L be a log and P(L) the polyhedron obtained
as the convex hull of �(L). The Galois connection pre-
sented in Sect. 3.7 guarantees that P(L) represents an
over-approximation of �(L).

P(L) is the intersection of a set of half-spaces represented
by Ax + b ≥ 0, as described in (4). Since P(L) contains the
origin, it also holds that b ≥ 0 (Theorem 1).

If T = {t1, . . . , tn} is the alphabet of events of L, then A is
an m×n matrix, where m is the number of half-spaces. The
Petri net N derived from P(L) is the tuple N = (P, T, F, M0)

where

• P = {p1, . . . , pm} is a set of m places, each one
corresponding to one of the half-spaces of P(L).

• T = {t1, . . . , tn} is the alphabet of events of L.

• ∀pi ∈ P, tj ∈ T:

F(pi, tj) = max(0,−Aij)

F(tj, pi) = max(0, Aij).

• M0 = b is the initial marking.
It is interesting to observe that the Petri net is guaranteed

to be pure by construction. If Aij < 0, then F(pi, tj) > 0 and
F(tj, pi) = 0. Conversely, if Aij > 0, then F(tj, pi) > 0 and
F(pi, tj) = 0.

Next, an essential result of this paper follows.

Theorem 2. Let L be a log, P(L) be a polyhedron obtained from
L and N a Petri net derived from P(L) as described above.
Then, L ⊆ L(N).

Proof. By the construction of the Petri net N it is easy
to see that any fireable sequence σ leads to a marking
M = Aσ̂ + b since, by construction, the marking equation
of N coincides with the representation of the half-spaces
of P(L). Now, we need to prove that any sequence
σ ∈ L is fireable in N, and does not visit any nega-
tive marking. We will prove this by induction on the
length σ .

The theorem holds for |σ | = 0 since the empty
sequence leads to marking M0 = b, and we know that
b ≥ 0 by Theorem 1.

Let us now assume that any sequence σ ′ ∈ L belongs
to L(N), for |σ ′| < k. Let us now consider a sequence
σ = σ ′t ∈ L with t ∈ T. By the construction of P(L) as
the convex hull of �(L), we know that

M′ = Aσ̂ ′ + b ≥ 0
M = Aσ̂ + b ≥ 0.

We also know that t is enabled in M′. We can prove
this by contradiction. If t would not be enabled in M′,
then there would be some pi ∈ •t such that M′(pi) <

F(pi, t). By the firing rules of the Petri net we also
know that

M(pi) = M′(pi) − F(pi, t) + F(t, pi).

Since M(pi) ≥ 0 and M′(pi) < F(pi, t), then F(t, pi) > 0
and pi ∈ t•, thus contradicting the assumption that N is
a pure Petri net.

Corollary 3. Let P ′ ⊇ P(L) and N′ a Petri net obtained from
P ′ as described above. Then, L ⊆ L(N′).
The following result complements Theorem 2 and indi-

cates that no pure Petri net can be more precise in
over-approximating the log L.

Theorem 4. Let N be a Petri net derived as in Theorem 2. There
is no pure Petri net N′ such that L ⊆ L(N′) ⊂ L(N).

Proof. By contradiction. Let us assume there is a pure Petri
net N′ such that L ⊆ L(N′) ⊂ L(N). Let us consider the
marking equation of N′

M′
0 + A′σ̂ ≥ 0

that also represents the intersection of a set of half-
spaces, i.e., a convex polyhedron P ′. Since L ⊆ L(N′),
then P ′ also includes all σ̂ such that σ ∈ L.

Since L(N′) ⊂ L(N), then there is some σ �∈ L such
that σ̂ ∈ P(L) and σ̂ �∈ P ′. This contradicts the fact that



CARMONA AND CORTADELLA: PROCESS DISCOVERY ALGORITHMS USING NUMERICAL 3069

P(L) is the convex hull of �(L), since the convex hull
is unique.

4 ALGORITHM

This section presents algorithms supporting the theoretical
framework presented in Section 3. Intuitively, the main
problem is to derive the convex hull of the set of points
representing the Parikh vectors of a log. This problem is
by no means new: there are plenty of algorithms (espe-
cially coming from computational geometry) for solving it.
However, given that only efficient algorithms exist for two
or three dimensions, other strategies are needed [25]. Here
we use the convex polyhedra numerical abstract domain
for several reasons:

• The linear inequalities representing the H-
representation of a convex polyhedron can represent
any pure Petri net (see Section 3.6).

• Although the convex hull construction has a compu-
tational cost, one can control it by monitoring the size
of the constructed polyhedron, or by using divide
and conquer techniques like the ones explained in
Section 5.

• The use of widening [12], [26] enables the han-
dling of large logs, at the cost of deriving under-
fitting models (see Section 3.1). The derivation of
an underfitting model, if done in a controlled man-
ner, may be acceptable in the scope of process
mining.

4.1 The Computation of the Convex Hull
Algorithm 1 formalizes the construction: the input of the
algorithm is the set of Parikh vectors of a log (�(L)), and
computes a (possibly proper) subset of the inequalities from
its H-representation. Any component of a Parikh vector can
be seen as a constraint for the n-dimensional point that it
defines. Hence, a Parikh vector σ̂ = (|σ |t1 , . . . , |σ |tn) can be
seen as the following polyhedron:

Pσ̂ = {x1 = |σ |t1 , . . . , xn = |σ |tn}.

For each trace σ of a log, a polyhedron Pσ̂ can be obtained
(line 4). The polyhedron

P =
⊔

i∈{1...m}
Pσ̂i

which is iteratively computed in line 5, can be obtained
from the convex-hull operator (see Sect. 3.7) on the points
represented by the polyhedra Pσ̂1 , Pσ̂2 , . . . , Pσ̂m , thus repre-
senting completely the behavior of the log.

To alleviate the complexity of the constructed polyhe-
dron, the widening operator can be applied. Widening
operators have been extensively used in order to accelerate
or enforce convergence when dealing with (infinite) ascend-
ing chains of polyhedra (a detailed explanation of these
issues can be found in [26]). Intuitively, a widening oper-
ator on a partial ordered set 〈P,�〉 is defined as a partial
function ∇:P × P → P satisfying:

• for all x, y ∈ P, if x∇y is defined then x � x∇y and
y � x∇y

• for all increasing chains yo � yi � . . ., if the increas-
ing chain xo: = yo and xi+1: = xi∇yi+1 is defined for
all i ∈ N, then it is not strictly increasing.

Remarkably, the second condition ensures convergence in
the application of widening. For instance, in Fig. 7, succes-
sive applications of the widening operator may derive the
polyhedron Pi = {a − b ≤ 1}, which includes all the points
of the log (and many more), and therefore needs not to
be expanded further for representing the log. In this work,
we use the standard widening operator from [12], although
a more precise widening operator like the one explained
in [26] could be also applied. In practice, this operator
should be monitored in order to avoid a degradation of
the derived model in some cases.

In Algorithm 1 the user can control the widening appli-
cation through the parameters f , t and c (lines 6–10). The
frequency at which a widening operation is applied is
controlled through f . To avoid deriving a very imprecise
polyhedron, it is typically required to delay the application
of the widening operator until an initial admissible repre-
sentation has been learned. This is the purpose of parameter
t, which delays the application of widening until sufficient
points have been included. The last parameter, c, sets the
maximal number of applications of widening admitted.

In the last line of the algorithm, a (possibly proper) sub-
set of the H-representation is computed (see next section
for a discussion on this).

Fig. 5(a) shows part of a log4 defined on the set of
events {a, b, c, d, e, x, y, z}. On Fig. 5(b), the log traces are
shown, and corresponding Parikh vectors are depicted in
Fig. 5(c). From these Parikh vectors, a unique polyhedron
is derived by Algorithm 1, and the associated inequalities
are extracted, some of them shown in Fig. 5(d). The final

4. This log contains 100 traces of length 50 each. The reader can
inspect the log by following the reference provided in [27].



3070 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

(a) (b) (c) (d)
Fig. 5. From traces to invariants: (a) Initial log. (b) Corresponding m traces of the log. (c) Parikh vectors associated to the traces. (d) Derived
inequalities.

Petri net is shown in Fig. 6. For instance place p is obtained
from the inequality c + d − y ≥ 0.

There are two potential situations where Algorithm 1
can produce underfitting models, that are the cost for
addressing two important factors: algorithmic convergence
and model visualization. To enforce the convergence of
the algorithm that constructs the convex hull, the widen-
ing operator has been used. As said before, this operator
proved to be very effective in the iterative construction of
convex hulls approximations [12], [26]. However, each time
widening is applied, several points that do not appear in
the log may be incorporated in the polyhedra, thus loosing
the language minimality property of Theorem 4. In contrast,
Theorem 2 will always hold since widening and inequal-
ities dropping enlarges the language of the derived Petri
net.

To improve the visualization of the Petri net corre-
sponding to the convex hull computed (see Sect. 3.8), one
may decide to drop some of the inequalities from the
H-representation, which in turn implies that fewer places
(rows of the matrix) will appear in the resulting Petri net.
However, by considering only a subset of these inequali-
ties, the polyhedron obtained may incorporate other points
not appearing in the log, a problem similar to the use of
widening operator. Next section contains a discussion on
this selection.

4.2 Tuning the H-Representation: Searching a
Balance Between Overfitting and Underfitting

As commented in the seminal book of Process Mining [1],
one of the key challenges of process discovery techniques
is to balance between overfitting (the derived model is too
specific, allowing only the behavior observed) and underfit-
ting (the derived model is too general, allowing too much
unseen and unrelated behavior).

When using the complete set of inequalities from the
H-representation to construct the Petri net, often one may

Fig. 6. Petri net derived from the inequalities shown in Fig. 5(d).

be deriving an overfitting model. In contrast, if too many
inequalities are dropped, an underfitting model may be
derived. The following is a set of empirical conditions
under which an inequality can be dropped without incur-
ring in a great loss of precision:

• An inequality with a large constant bi (e.g., −2x1 +
3x2 + x4 ≤ 78): this often represents a loose relation
between the variables involved in the inequality.

• An inequality relating too many variables: if the coef-
ficients of too many variables are non-zero, then the
corresponding place in the Petri net will have too
many input/output arcs, which may not correspond
to the main behavior represented.

• An inequality with large coefficients (e.g., 224x1 +
30x2 − 11x3 ≤ 7): it may represent a very particular
relation between a group of variables, which may
be not necessary for understanding the complete
behavior.

These heuristics are included in the function
SelectInequalities in line 12 of Algorithm 1. They may be
turned off if one wants a minimal representation of the
behavior of the log by means of a complex polyhedron.
Another aspect is the criteria to determine when a coeffi-
cient is too large: this may be also heuristically determined
when the whole set of inequalities in the H-representation
is available.

4.3 A Note on the Minimality of the Approach
Even when neither widening nor a proper subset of the
H-representation is applied, the technique presented so
far does not necessarily lead to the smallest Petri net
(in number of places/arcs) such that L(Petrinet) ⊇ L.
The following example illustrates the issue. Assume the log
on events a and b contains the following Parikh vectors:
{(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2),

(3, 3), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4), (6, 3), (6, 4), (7, 3),

(7, 4), (7, 5), (8, 3), (8, 4), (9, 3), (9, 4), (9, 5)}. The invariants
computed by Algorithm 1 on these vectors are: I = {−3a +
8b + 3 ≥ 0, a − b + 1 ≥ 0, a − 2b + 3 ≥ 0, a ≤ 9, b ≤ 5}.

Fig. 7 shows the Z-polyhedron derived from the half-
spaces corresponding to each one of the inequalities. One
can see that the inequality a−b+1 ≥ 0 is redundant: it can be
safely removed while keeping the same Z-polyhedron. The
existence of such redundant inequalities hampers the visu-
alization of the Petri net, and therefore, redundant inequali-
ties should be removed as much as possible. Techniques to



CARMONA AND CORTADELLA: PROCESS DISCOVERY ALGORITHMS USING NUMERICAL 3071

Fig. 7. Example of non-minimality of the Petri net derived.

simplify the representation by removing inequalities may
be considered (e.g., [28]). Another possibility is to apply
techniques to remove redundant places at the level of the
Petri net [20].

5 HIGH-LEVEL TECHNIQUES TO HANDLE
LARGE LOGS: PROJECTION AND SAMPLING

The algorithm presented in the previous section cannot be
applied for logs extracted from industrial/real-life applica-
tions, where either the number of events or the number of
Parikh vectors in the traces are too large5. For these situ-
ations, other strategies are required. This section presents
divide and conquer approaches that, although losing the
guarantees provided by Theorems 2–4, alleviate the com-
plexity of the algorithm presented in the previous section.
These options are meant to cut the log either vertically or
horizontally, by using projection or sampling, respectively.
Fig. 8 shows the possible strategies mentioned.

5.1 Projection
The first way of alleviating the complexity of the technique
of the previous section is by reducing the number of dimen-
sions to have in the convex polyhedron one must build to
cover the log points. In this section we present a divide
and conquer approach to accomplish this goal. The intuitive
idea is the following:

1) Compute clusters of events for which there exist
a high correlation between the internal events of
each cluster. The clusters found need not to be a
partitioning of the set of events, i.e., clusters may
overlap. For example, in Fig. 8, the two clusters
c1 = {a, b, c, d, e} and c2 = {x, y, z} have been selected
for projection.

2) Compute relations among clusters. For the example
of Fig. 8 there is some relation between the two clus-
ters found, which involves variables c, d (cluster c1)
and y (cluster c2).

In any of the two steps above, one may use only in the
polyhedron construction the variables involved. Formally,
projection techniques are guided to identify, among the
whole set of activities T, subsets T′ such that T′ ⊆ T,
|T′| � |T| and activities in T′ are correlated. Accordingly,

5. The complexity of the polyhedra construction is worst-case
exponential with respect to the number of dimensions [15].

the method described in Section 4 could be applied only
for the variables in T′, thus relieving the complexity of the
convex-hull algorithms.

The projection algorithm presented in this section will
be based on clustering activities on the set T. The clus-
ters computed may overlap, giving rise to the deriva-
tion of relations between the variables of different clus-
ters, which is a desired feature since this will induce
model’s connectivity: the transitions of related clusters will
be connected by the places corresponding to the invari-
ants found. Models denoting processes are typically con-
nected, and this is the reason for considering connectedness
in the technique proposed.

The clustering strategy presented is based on Principal
Component Analysis (PCA) [17], a exploratory data analy-
sis technique that can also be applied for clustering [29]. In
particular, the algorithm presented is reminiscent to the iter-
ative techniques applied in similarity clustering, where clus-
ters are extracted iteratively on the basis of the weighted
similarity matrix that is updated each time a cluster is com-
puted (the interested reader can have a detailed explanation
in Chapter 6 of [30]).

Informally speaking, PCA is an exploratory data anal-
ysis technique grounded on the use of the eigenval-
ues/eigenvectors of the covariance or correlation matrix. This
matrix is computed from the original data. We now show
how to use some of the PCA steps in order to cluster related
activities from a log.

Given the Parikh vectors σ̂1, . . . , σ̂m of a log L, the
correlation matrix CORR ∈ [ − 1 . . . + 1]|T|×|T| is

CORR(i, j) =
∑m

k=1(|σk|ti − ti)(|σk|tj − tj)

(m − 1)sisj
,

where ti and si are the mean and standard deviation of
variable ti in σ̂1, . . . , σ̂m, respectively. This matrix measures
the amount of correlation between variables ti and tj: when
|A(i, j)| � 1 then both variables are highly correlated (either
directly - when A(i, j) is positive, or inversely - when A(i, j)
is negative).

Ideally, one would like to find groups of variables that
are tightly related between them and loosely related with
the rest of variables of the system. For accomplishing this
goal, the eigenvalues and eigenvectors of the CORR matrix
are used: the eigenvalues are sorted according to the vari-
ance they account for (the highest eigenvalue explains the
highest variance and so on). Hence, the first eigenval-
ues/eigenvectors of the CORR matrix carry the maximal
information regarding correlation on variables.

Each eigenvalue/eigenvector can be used to find a group
of related variables: given an eigenvalue λi, we can select
a leader variable by looking at the corresponding eigenvec-
tor α1 · x1 + . . . + αn · xn: the leader will be the variable xi
(corresponding to ti) for which the absolute value of the
coefficient αi is maximal [17]. The row i of the CORR matrix
can then be used to determine the group lead by ti. The
values |CORR(i, j)| for 1 ≤ j ≤ |T| appear as points in the
interval [0 . . . 1]. Graphically, the distribution of points on
the interval [0 . . . 1] may look like:



3072 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

Fig. 8. Divide and conquer approaches: projection determines sets of related events and projects the log accordingly, giving rise in the figure to two
projected logs. Sampling selects a maximal size (s) and a number of samples (p) and extracts from the log p samples of size at most s. Projection
and sampling can be combined as it is shown in the figure.

And the problem is to find the cluster of points closer to
the right endpoint 1 (highlighted in the previous figure).
The cluster of variables such that their corresponding points
are near to 1 represents variables that are in a similar high
correlation with variable ti. To compute this group, one may
realize that the well-known k-means technique, with k = 2,
provides a fast way to separate the points close to the left
endpoint 0 from those close to the right endpoint 1. Recent
advances in clustering with k-means in one dimension have
provided both efficient and optimal algorithms that can be
used [31].

Algorithm 2 presents the strategy. Two flags are used
to control the algorithm, namely the maximal size allowed
for projection (k) and the request to derive a connected
model when possible (fc). The algorithm has two sequential
loops: the first loop (lines 4-12) extracts groups of vari-
ables for which a high correlation exist. The second loop
(lines 14-21) iteratively tries to compute inequalities that
relate the variables of groups belonging to different con-
nected components of the model corresponding to the set
of inequalities computed so far.

For the first loop, the following pipeline is applied: first,
the most important eigenvector of the correlation matrix
and the corresponding leader variable i (the one with max-
imal absolute coefficient) is computed (lines 5–6). Then the
absolute values of CORR[i] are clustered with the 2-means
algorithm to find the cluster of variables with similar high
correlation (lines 7–8). In case the group found exceeds
the maximal size allowed for projection, the group is trun-
cated to force this maximal size, removing those variables
which have weaker correlation within the group (line 9).

Then the set of inequalities is augmented with those arising
from applying Algorithm 1 on the projected Parikh vec-
tors (line 10). To hide the relationships among the variables
within a cluster and therefore induce finding a new dif-
ferent group in the next iteration, the correlations between
the variables of the group is set to zero after computing the
inequalities (line 11) (inspired from the similarity clustering
techniques from [30]). The loop iterates while non-singleton
groups are found.

The loop to force connectedness of the derived model
uses a similar strategy: while the graph corresponding
to the inequalities found so far is not connected, two
unconnected components having a pair of variables
with the highest correlation are found. The function
Find2ClosestComps returns the variables i and j, belonging
to two different components of the unconnected graph for
which the correlation is maximal (line 15). Then the inter-
val [0 . . . 1] is populated both with |CORR[i]| and |CORR[j]|,
and 2-means clustering is applied to find a new group
which will potentially give rise to connections between
these two unconnected components (line 16). Once the
group is found, the projection and the modifications to the
correlation matrix is done accordingly (as in the first loop).
Function progress() will monitor the loop to decide when its
not worth to keep striving for connectedness. The possible
situations where the connectedness loop is aborted are: i)
the correlation matrix is totally set to zero, or ii) several tri-
als to find inequalities between unconnected groups have
fail.

Following with the running example used in the pre-
vious section (see the resulting Petri net in Fig. 6), we



CARMONA AND CORTADELLA: PROCESS DISCOVERY ALGORITHMS USING NUMERICAL 3073

will show how the same Petri net can be obtained by
the hierarchical approach presented in this section. The
first loop of Algorithm 2 will find the two groups g1 =
{a, b, c, d, e} and g2 = {x, y, z}. Projecting the Parikh vectors
into each group of events will give the inequalities relating
only the events in the group, e.g., for group g1 the inequal-
ities a − c ≥ 0, b − d ≥ 0, e − a − b ≥ 1 and c + d − e ≥ 0 will
be obtained. These inequalities correspond to the subnet to
the left of place p in Fig. 6. The right subnet corresponds
to group g2. The second loop of Algorithm 2 finds relations
between the variables d, c and y and therefore will complete
the missing relation c + d − y ≥ 0, which gives rise to the
place p in the figure.

5.2 Sampling
Orthogonal to the approach presented in the previous sec-
tion, this section introduces a technique to avoid dealing
with a large number of polyhedra and use instead a limited
amount that might be enough for extracting the important
relations between the events. For instance, if the log contains
ten thousand traces of length a hundred, then in the worst
case the techniques presented in the previous sections will
need to compute the convex hull covering a million of points,
a scenario that often can not be completed successfully with
existing libraries for numerical abstract domains.

The general algorithm for sampling is shown in
Algorithm 3. In order to avoid operations with a large num-
ber of polyhedra, one can randomly select a small set of
Parikh vectors for which the convex hull will be computed
(lines 5-9). Once this operation has been done, the set of

inequalities that denote properties for the Parikh vectors con-
sidered must be verified on each one of the Parikh vectors
not considered in the convex hull, and only those inequali-
ties that are true for all the Parikh vectors will be accepted
(lines 10-13). This sampling technique can be applied more
than once, i.e., one can apply p samplings in order to find
the relations on a set of events (external loop starting at
line 3).

Sampling and the strategy presented in the previous sec-
tion can be applied jointly. This will be accomplished by
simply substituting the calls to Algorithm 1 in Algorithm 2
by calls to the function Sampling with a user-defined
sampling size and number of samplings. In the experi-
ments, this joint use of these strategies has enabled dealing
with large specifications.

6 EXPERIMENTS

The theory has been implemented in the prototype tool
aim, which is written in C/C++ and uses the Apron library
for Convex Polyhedra [22]6. For the PCA method which
requires computation of eigenvalues and eigenvectors, the
ALGLIB library [32] was used. Finally, the implementa-
tion of the optimal k-means algorithm in one dimension
from [31] was incorporated into the tool. We consider in
this section two versions of the tool: aim(1) denotes run-
ning the tool for the basic algorithm, i.e., Algorithm 1. On
the other hand, aim(p,s) is used to denote the tool for a
combination of the strategies represented by Algorithms 2
(projection) and 3 (sampling).

The experiments conducted are meant to show the capa-
bility of the algorithms of this paper for deriving interesting
information (a fitting Petri net model) with very limited use
of memory and in very short time. Notice that Theorems 2
and 4 provide a theoretical property on the quality of
the derived models, so in this section we focus on the
performance of the presented algorithms.

6. The tool is available by contacting the first author.



3074 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

TABLE 1
Petri Net Derivation From Synthetic Logs

We have split the experiments depending on the type
of logs used: the first type are synthetic logs representing
well-known benchmarks in the process mining commu-
nity (available within the website [33]), which will allow
to illustrate the performance of Algorithms 1,2 and 3. The
second type of benchmarks are realistic logs (not syntheti-
cally created) representing typical discovery problems in a
real-life scenario. For each benchmark, we report the num-
ber of events (|T|), the number of traces and the number of
Parikh vectors obtained after removing repetitions. For each
tool, the number of places discovered (P) and the number
of arcs (F) is then provided, together with the CPU time
(measured in a desktop computer) in seconds. For testing
each tool, we limited the amount of memory and time that
could be used to 1Gb and 10000 seconds respectively. For
aim(1), the tool was run with different parameters (c.f.,
Algorithm 1) depending on the log (the more complex the
log, the more widening is applied), but in general satisfy-
ing f ≤ 100, t ≥ 50 and c ≤ 10. For the case of aim(p,s),
we set k = 10 and fc = true for all the benchmarks except
for log ProdCons_3, whose corresponding model is not
connected.

The synthetic logs have been used by other algorithms
and therefore will be considered in this paper to perform
a comparison with two other tools for the same purpose
and with similar guarantees (see next section for a dis-
cussion on this). The tools are: genet, which implements
algorithms based on the theory of regions and supports the
mining of k-bounded Petri nets [10], and the ILPMiner [9]
(within ProM), that uses the language version of the the-
ory of regions for the same purpose. For using genet, an
automaton representing all the traces is the input of the
tool. Several algorithms exists to transform the log into an
automaton [19]. For both tools we used the default param-
eters. We have also compared the tool with the Flexible
Heuristic Miner (FHM) [34], which is widely used. Since
the FHM derives Causal nets [1], a translation to Petri nets is
used for the sake of comparison. Moreover, since the FHM
incorporates invisible transitions in the derived model, we
have removed some of these transitions with behavior-
preserving Petri net reductions [2]. For this miner, we show
in parenthesis the remaining invisible transitions for each
model.

Some conclusions can be drawn from the results
reported in Table 1. Regarding aim(1), the use of widen-
ing has enabled handling some of the large logs considered.

When widening requires too much memory or it is too
aggressive (i.e., introducing too many points not belonging
to the log, see Section 4.1), one may use aim(p,s) to also
derive valuable models in considerably shorter CPU time.
Remarkably, the Petri nets derived with any of the aim
versions have the same arcs and places of the other tools
often. Often extra causalities might be obtained, denoting
redundant information (unnecessary places in the model)
that can be removed by a final application of well-known
Petri net methods for redundant places removal [20].
This issue was already mentioned in Section 4.3. The
FHM is the best miner in terms of computation time
(although we do not provide the time taken to apply
the invisible transition removal), but when compared with
the rest of approaches, it derives significantly bigger Petri
nets: the reason for this is that the translation from causal
nets to Petri nets introduces plenty of invisible transitions
that complicate considerably the model. By the applica-
tion of the behavior-preserving invisible transition removal,
the models have been considerably improved, but still are
considerably larger than the ones derived by the rest of
approaches, e.g., for the a22f0n00_1 benchmark, 35 invisible
transitions remain.

The last two benchmarks of Table 1 represent the activity
of a system of producers and consumers where compo-
nents are synchronized through unbounded places. For
ProdCons_1, the Petri net derived by any version of our
tool is the one shown in Fig. 6. The traces for ProdCons_3
contain the interleaving of three independent instances
of Petri nets like the one in Fig. 6. genet, FHM and
the Parikh Miner have problems in dealing with these
logs: genet and the FHM cannot derive the unbounded
place p in ProdCons_1 and genet received a timeout for
ProdCons_3, whereas the ILPMiner did not obtain any
relation between the activities of the log7. The FHM could
not find the In contrast, aim(p,s) was able to discover the
exact Petri net in both logs.

Table 2 provides similar information to the one of
Table 1, but now with real-life logs. A detailed descrip-
tion of he DigitalCopier logs can be found in [35]. Logs
BuildingPermit represent two different situations in a
municipality to apply for a building permit. As in the case

7. By changing the default parameters of the ILPMiner, 5 places
and 11 arcs are derived for ProdCons_1, but for ProdCons_3 the net
is degraded (49 places, 239 arcs).



CARMONA AND CORTADELLA: PROCESS DISCOVERY ALGORITHMS USING NUMERICAL 3075

TABLE 2
Petri Net Derivation From Realistic Logs

for synthetic benchmarks, the aim(p,s) tool is able to
derive the process model in short time8.

7 RELATED WORK

In the last decade there have been proposals to solve the
problem of Petri net discovery from logs. However, only
the approaches grounded in the theory of regions [36] can
be compared with the approach presented in this paper,
due to the similar guarantees provided (general pure Petri
nets). The rest of approaches in the literature typically
impose stringent conditions on the class of Petri nets that
can discover, e.g., the well-known α-algorithm [4] only
considers Structured Workflow Nets.

Existing region-based tools for discovery can be parti-
tioned into language-based regions tools [8], [9] and state-based
regions tools [10], [11]. Informally, these approaches require
as input a natural number determining the boundedness
of the Petri net to derive. This is a rather strong restric-
tion, since in order to derive the model, one must tell to
the algorithm the maximal bound the model should have,
which is a knowledge typically not available9. The theory
of this paper does not need this information to find out the
best possible way to represent the input log in terms of a
Petri net with the necessary bounds and arc weights (c.f.,
Theorems 2 and 4). Additionally, the algorithms presented
may also discover unbounded models, i.e., models represent-
ing systems for which some unbounded use of resources
exist.

8 CONCLUSION AND FUTURE WORK

In this paper we describe a novel approach for the discov-
ery of Petri nets from event logs. When compared with
existing approaches in the literature, the approach over-
comes the current limitations. The first restriction is the type
of Petri nets current approaches can derive, which is sig-
nificantly extended in this paper (general pure Petri nets).
The second limitation, for those techniques in the literature
with similar features like the one of this paper, is the knowl-
edge the discovery algorithm needs in order to perform the
discovery: the approaches presented in this paper require
no knowledge of the model to derive, e.g., no knowledge
on the bound of the Petri net to compute. Moreover, we
describe divide and conquer strategies for projecting the
log, guided to alleviate the complexity of the convex hull
construction. Additionally, we show how sampling can help

8. Although the size of the problem of logs BuildingPermit is larger
than some logs of Table 1, the projections derived by Algorithm 2 were
smaller, thus requiring less computation time.

9. In [10], an strategy with exponential complexity is proposed to
determine such bound.

into reducing the complexity of the problem by considering
only small fractions of the log.

The algorithms of this paper have been implemented
into a tool, and experimental results devoted to evaluate its
performance have shown significant improvements when
compared with the approaches in the literature.

As future work, we plan to explore strategies for filtering
noise and guiding the discovery of behavioral elements that
can be identified in the Petri net structure, e.g., the resource
part in a manufacturing system.

ACKNOWLEDGMENTS

The authors would like to thank A. Adriansyah and
R. P. J. C. Bose for providing some of the logs. This
work was supported in part by projects FORMALISM
(TIN2007-66523) and in part by TIN2011-22484.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Discovery, Conformance
and Enhancement of Business Processes. Berlin, Germany: Springer,
2011.

[2] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[3] J. Carmona and J. Cortadella, “Process mining meets abstract
interpretation,” in ECML/PKDD (1), J. L. Balcázar, F. Bonchi,
A. Gionis, and M. Sebag, Eds. Berlin, Germany: Springer, 2010,
pp. 184–199, LNCS 6321.

[4] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, Sept. 2004.

[5] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining pro-
cess models with non-free-choice constructs,” Data Min. Knowl.
Discov., vol. 15, no. 2, pp. 145–180, Oct. 2007.

[6] L. Wen, J. Wang, W. van der Aalst, B. Huang, and J. Sun, “A
novel approach for process mining based on event types,” J. Intell.
Inform. Syst., vol. 32, no. 2, pp. 163–190, Apr. 2009.

[7] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M.
Weijters, “Genetic process mining,” in Proc. 26th Int. Conf. Applicat.
Theory Petri Nets, Miami, FL, USA: Springer, 2005, pp. 48–69,
LNCS 3536.

[8] R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser, “Process
mining based on regions of languages,” in Proc. 5th Int. Conf.
Business Process Management, Brisbane, QLD, Australia, Sept. 2007,
pp. 375–383.

[9] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens,
and A. Serebrenik, “Process discovery using integer linear pro-
gramming,” in Petri Nets, K. M. van Hee and R. Valk, Eds. XiŠan,
China: Springer, 2008, pp. 368–387, LNCS 5062.

[10] J. Carmona, J. Cortadella, and M. Kishinevsky, “New region-based
algorithms for deriving bounded Petri nets,” IEEE Trans. Comput.,
vol. 59, no. 3, pp. 371–384, Mar. 2009.

[11] M. Solé and J. Carmona, “Light region-based techniques for pro-
cess discovery,” Fundam. Inform., vol. 113, no. 3–4, pp. 343–376,
Aug. 2011.

[12] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in Conf. Rec. 6th Annu. ACM
SIGPLAN-SIGACT Symp. POPL, Los Angeles, CA, USA: ACM
Press, 1977, pp. 238–252.



3076 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 12, DECEMBER 2014

[13] P. Cousot and R. Cousot, “Static determination of dynamic prop-
erties of programs,” in Proc. 2nd Int. Symp. Program., Paris, France,
1976, pp. 106–130.

[14] A. Miné, “The octagon abstract domain,” in Analysis, Slicing
and Tranformation (in Working Conf. Reverse Engineering), IEEE
CS Press, Oct. 2001, pp. 310–319, IEEE [Online]. Available:
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf

[15] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in Proc. 5th ACM
SIGACT-SIGPLAN Symposium POPL, New York, NY, USA: ACM
Press, 1978, pp. 84–97.

[16] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Inf. Syst., vol. 33,
no. 1, pp. 64–95, Mar. 2008.

[17] I. T. Jolliffe, Principal Component Analysis. New York, NY, USA:
Springer, 2002.

[18] L. Recalde, M. Silva, J. Ezpeleta, and E. Teruel, “Petri nets and
manufacturing systems: An examples-driven tour,” in Lectures
on Concurrency and Petri Nets, J. Desel, W. Reisig, and G.
Rozenberg Eds. Berlin, Germany: Springer, 2003, pp. 742–788,
LNCS 3098.

[19] W. M. P. van der Aalst et al., “Process mining: A two-step
approach to balance between underfitting and overfitting,” Soft.
Syst. Model., vol. 9, no. 1, pp. 87–111, Jan. 2010.

[20] M. Silva, E. Teruel, and J. Colom, Linear Algebraic and Linear
Programming Techniques for the Analysis of Place/Transition Net
Systems. Berlin, Germany: Springer-Verlag, 1998, LNCS 1491.

[21] R. T. Rockafellar, Convex Analysis, Princeton, NJ: Princeton
University Press, 1970.

[22] B. Jeannet and A. Miné, “Apron: A library of numerical abstract
domains for static analysis,” in CAV, A. Bouajjani and O. Maler,
Eds. Berlin, Germany: Springer, 2009, pp. 661–667, LNCS 5643.

[23] K. Fukuda, S. Picozzi, and D. Avis, “On canonical representations
of convex polyhedra,” in Proc. 1st Int. Congr. Math. Softw., 2002,
pp. 350–360.

[24] O. Ore, “Galois connexions,” Trans. Am. Math. Soc., vol. 55, no. 3,
pp. 493– 513, May 1944.

[25] D. Avis, D. Bremner, and R. Seidel, “How good are convex
hull algorithms?” Comput. Geometry, vol. 7, no. 56, pp. 265–301,
Apr. 1997.

[26] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella, “Precise
widening operators for convex polyhedra,” Sci. Comput. Program.,
vol. 58, no. 1–2, pp. 28–56, Oct. 2005.

[27] Example log [Online]. Available:
http://www.lsi.upc.edu/~jcarmona/prodcons1000.tr

[28] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems
past HyTech,” in HSCC, M. Morari and L. Thiele, Eds. Berlin,
Germany: Springer, 2005, pp. 258–273, LNCS 3414.

[29] C. H. Q. Ding and X. He, “K-means clustering via principal com-
ponent analysis,” in ICML, vol. 69, C. E. Brodley, Ed. New York,
NY: ACM, 2004. p. 29, ACM International Conference Proceeding
Series.

[30] A. N. Gorban, B. Kgl, D. C. Wunsch, and A. Zinovyev, Principal
Manifolds for Data Visualization and Dimension Reduction. Berlin,
Germany: Springer, 2007.

[31] H. Wang and M. Song, “Ckmeans.1d.dp: Optimal k-means
clustering in one dimension by dynamic programming,” R J.,
vol. 3, no. 2, pp. 29–33, 2011.

[32] ALGLIB library [Online]. Available: http://www.alglib.net
[33] Process mining [Online]. Available:

http://www.processmining.org
[34] A. J. M. M. Weijters and J. T. S. Ribeiro, “Flexible heuristics miner

(FHM),” in IEEE Symp. CIDM, Paris, France, 2011, pp. 310–317.
[35] R. J. C. Bose, “Process Mining in the Large: Preprocessing,

Discovery, and Diagnostics,” Ph.D. dissertation, Eindhoven Univ.
Technol., Eindhoven, The Netherlands, 2012.

[36] A. Ehrenfeucht and G. Rozenberg, “Partial (Set) 2-Structures. Part
I, II,” Acta Informatica, vol. 27, no. 4, pp. 315–368, 1990.

Josep Carmona received the M.S. and the
Ph.D. degrees in computer science from the
Technical University of Catalonia, in 1999 and
2004, respectively, where he is currently an
Associate Professor with the Department of
Software. His current research interests include
formal methods, concurrent systems, and pro-
cess and data mining. He has co-authored more
than 50 research papers in conferences and jour-
nals. In 2009, he received the Best Paper Award
at the International Conference on Application of

Concurrency to System Design. He is a member of the IEEE.

Jordi Cortadella received the M.S. and the
Ph.D. degrees in computer science from the
Universitat Politècnica de Catalunya, Barcelona,
Spain, in 1985 and 1987, respectively, where
he is currently a Professor with the Department
of Software. In 1988, he was a Visiting Scholar
at the University of California, Berkeley, CA,
USA. His current research interests include for-
mal methods and computer-aided design of VLSI
systems with special emphasis on asynchronous
circuits, concurrent systems and logic synthesis.

He has co-authored numerous research papers and has been invited
to present tutorials at various conferences. Dr. Cortadella has served
on the Technical Committees of several international conferences in
the field of design automation and concurrent systems. He received
the Best Paper Awards at the International Symposium on Advanced
Research in Asynchronous Circuits, and Systems and the Design
Automation Conference in 2004 and also the International Conference
on Application of Concurrency to System Design in 2009. In 2003, he
was the recipient of a Distinction for the Promotion of the University
Research by the Generalitat de Catalunya. He is a member of the IEEE.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


