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Abstract

This paper presents a new technique for decomposition and tech-
nology mapping of speed-independent circuits. An initial circuit
implementation is obiained in the form of a netlist of complex
gates, which may not be available in the design library. The pro-
posedmethod iteratively performs Boolean decomposition of each
such gate F into a two-input combinational or sequential gate G
available in the library and two gates Hy and H, simpler than F,
while preserving the original behavior and speed-independence
of the circuit. To extract functions for H, and H, the method
uses Boolean relations, as opposed to the less powerful algebraic
factorization approach used in previous methods. After logic de-
composition, the overall library matching and optimization is car-
ried out. Logic resynthesis, performed after speed-independent
signal insertion for H and H,, allows for sharing of decomposed
logic. Overall, this method is more general than the existing
techniques based on restricted decomposition architectures, and
thereby leads 1o better results in technology mapping.

1 Introduction

Speed-independent circuits are hazard-free under the unbounded
gate delay model. [4, 9, 6] provide general conditions for logic
implementability of specifications into complex gates. The latter
are allowed to have an arbitrary fanin.

To achieve greater practicality more recent work has been fo-
cused on the development of logic decomposition techniques. It
falls into two categories. One of them attempts to achieve logic de-
composition through the use of standard architectures. The other
group comprises work targeting the decomposition of complex
gates directly, by finding a behavior-preserving interconnection
of simpler gates. In both cases, the major functional issue, in
addition to logic simplification, is that the decomposed logic must
not violate the original speed-independent specification.

Two examples of the first category are [1, 8]. The basic circuit
architecture includes C elements (acting as latches) and combina-
tional logic. This logic is assumed to consist of AND gates with
potentially unbounded fain and unlimited input inversions and
bounded fanin OR gates. Monotonic Cover (MC) requirements
ensure implementability of a specification in this "standard-C" ar-
chitecture and have an intuitive objective of making the first level
(AND) gates work in a one-hot fashion with acknowledgment
through one of the C-elements. Following this approach, meth-
ods for speed-independent decomposition into implementable li-
braries have been developed. E.g., the method of [13] decomposes
(if possible) existing gates (e.g., a 3-input AND into two 2-input
ANDs), without any further search of the implementation space,
and the method of [7] extends the decomposition to more complex
(algebraic) divisors, but does not tackle the limitation of the initial
MC architecture.

*This work has been funded by ESPRIT ACiD-WG Nr, 214949, CICYT TIC
95-0419,EPSRC grants GR/L24038 and GR/K70175, and MURST (project “VLSI
Architectures”).
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The best representative of the second category appears to be
the work of S. Burns [3]. It provides general conditions for speed-
independentdecomposition of complex (sequential) elements into
two sequential elements (or a sequential and a combinational el-
ement). Notably, these conditions are analyzed using the original
(unexpanded) behavioral model, thus improving the efficiency of
the method. This work is, in our opinion, a big step in the right
direction, but addresses mainly correctness issues. It does not
describe how to use the efficient correctness checks in an opti-
mization loop, and does not allow the sharing of a decomposed
gate by different signal networks.

In [14, 12] methods for technology mapping of fundamental
mode and speed-independent circuits using compiex gates were
presented. These methods however only identify when a set of
simple logic gates can be implemented as a complex gate, but
cannot perform a speed-independent decomposition of a signal
function in case it does not fit into a single gate. A BDD-based
implementation of [12] is used after decomposition as a post-
optimization step in this work.

In our present work we are considering a more general frame-
work which allows use of arbitrary gates and latches available
in the library to decompose a complex gate function, as shown
in Figure 1. In that respect, we are effectively making progress
towards the more flexible second approach. The basic idea of this
new method is as follows.

An initial complex gate is characterized by its function F'. The
result of decomposition is a library component designated by ¢
and a set of (possibly still complex) gates labeled Hy, Hy, . .. Hn.
The latter are decomposed recursively until all elements are found
in the library and optimized to achieve the lowest possible cost.
We thus by and large put no restrictions on the implementation
architecture in this work. However, as will be seen further, for
the sake of practical efficiency, our implemented procedure deals
only with the 2-input gates and/or latches to act as G-elements
in the decomposition. The second important change of this work
compared to [7] is that the new method is based on a full scale
Boolean decomposition rather than just on algebraic factorization.
This allows us to widen the scope of implementable solutions
and improve on area cost (future work will tackle performance-
oriented decomposition).

Our second goal in generalizing the C-element based decom-
position has been to allow the designer to use more conventional
types of latches, e.g. D-latches and SR-latches, instead of C-
elements that may not exist in conventional standard-cell libraries.
Furthermore, as our experimental results show (see Section 6), in
many cases the use of standard latches instead of C-elements helps
improving the circuit implementations considerably.

The power of this new method can be appreciated by looking
at the example hazard. g.The original STG specification and its
state graph are shown in Figure 2,a and b. The initial implemen-
tation using the “standard C-architecture” and its decomposition
using two input gates by the method described in [7] are shown
in Figure 2,c and d. Our new method produces a much cheaper



Figure 1: Framework for speed-independent decomposition

solution with just two D-latches, shown in Figure 2,e. Despite
the apparent triviality (for an experienced human designer!) of
this solution, none of the previously existing automated tools has
been able to obtain it. Also note that the D-latches are used in a
speed-independent fashion, and are thus free from meta-stability
and hazard problems.
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Figure 2: An example of Signal Transition Graph (a), State Graph
(b) and their implementation (c)(d)(e) (benchmark hazard. g)

The paper is organized as follows. Section 2 introduces the
main theoretical concepts. Section 3 presents an overview of the
method. Section 4 describes the Boolean relation-based decom-
position technique in more detail. Section 5 briefly describes its
algorithmic implementation. Experimental results are presented
in Section 6.

2 Background
2.1 State Graphs and Logic Implementability

A State Graph (SG) is a labeled directed graph whose nodes are
called states. Each arc of an SG is labeled with an event, that is a
rising (a+-) or falling (a.—) transition of a signal a in the specified
circuit. We also allow notation a* if we are not specific about
the direction of the signal transition. Each state is labeled with a
vector of signal values. An SG is consistent if its state labeling
v : .S — {0,1}" is such that: in every transition sequence from
the initial state, rising and falling transitions alternate for each
signal. Figure 2,b shows the SG for the Signal Transition Graph
in Figure 2,a, which is consistent. We write s 2 (s At ) if there
is an arc from state s (to state s') labeled with a.

The set of all signals whose transitions label SG arcs are
partitioned into a (possibly empty) set of inputs, which come
from the environment, and a set of outputs or state signals that
must be implemented. In addition to consistency, the following
two properties of an SG are needed for their implementability in
a speed-independent logic circuit.

The first property is speed-independence. It consists of three
parts: determinism, commutativity and output-persistence. An
SG is called deterministic if for each state s and each label a
there can be at most one state s’ such that s — s'. An SG is
called commutative if whenever two transitions can be executed
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from some state in any order, then their execution always leads
to the same state, regardless of the order. An event a”* is called
persistent in state s if it is cnabled at s and remains enabled in any
other state reachable from s by firing another event b*. An SG is
called output-persistent if its output signal events are persistent in
all states and no output signal event can disable input events. Any
transformation (e.g., insertion of new signals for decomposition),
if performed at the SG level, may affect all three properties.

The second requirement, Complete State Coding (CSC), be-
comes necessary and sufficient for the existence of a logic circuit
implementation. A consistent SG satisfies the CSC property if
for every pair of states s, s’ such that v(s) = v(s’), the set of
output events enabled in both states is the same. (The SG in Fig-
ure 2,b is output-persistent and has CSC.) CSC does not however
restrict the type of logic function implementing each signal. 1t
requires that each signal is cast into a single atomic gate. The
complexity of such a gate can however go beyond that provided
in a concrete library or technology.

The concepts of excitation regions and quiescent regions are
essential for transformation of SGs. A set of states is called
an excitation region (ER) for event ¢ (denoted by £ R(a*)) iff

s € ER(a*) & s 5. The quiescent region (QR) (denoted by
QR(a™)) of a transition «*, with excitation region ER(a”*), is
the set of states in which a is stable and keeps the same value.
Examples of ER and QR are shown in Figure 2,b.

2.2 Property-preserving event insertion

Event insertion is an operation on an SG which selects a subset
of states, splits each of them into two states and creates, on the
basis of these new states, an excitation region for a new event.
Figure 3 shows the chosen insertion scheme, analogous to that
used by most authors in the area [15]. We say that an inserted
signal a is acknowledged by a signal b, if b is one of the signals
delayed by the insertion of a, (the same terminology will be used
for the corresponding transitions). For example, d acknowledges
 in Figure 3.

(a)

()
Figure 3: Event insertion: (a) before, (b) after insertion

State signal insertion must preserve the speed-independence
of the original specification. The events corresponding to an
inserted signal x are denoted z*, z+, z—, or, if no confusion
occurs, simply by z. Let A be a deterministic, commutative SG
andlet A’ be the SG obtained from A by inserting event z. We say
that an insertion state set ZR(x) in A is a speed-independence
preserving set (SIP-set) iff: (1) for each event a in A, if a is
persistent in A, then it remains persistent in A’, and (2) A’ is
deterministic and commutative. The formal conditions for the set
of states 7 to be a SIP-set can be given in terms of intersections of
r with the so-called state diamonds of SG [5].

A new signal is inserted using an I-partition of a set of states
S into four blocks: {ER(z+), QR(z+), FR(z—), QR(z—)}
(similar to [15]). QR(z—){QR(z+)) defines the states in which
z will have the stable value 0 (1). ER(z+) (ER(z—)) defines
the excitation region of « in the new SG A’. To distinguish be-
tween the sets of states for the excitation (quiescent) regions of
the inserted signal = in an original SG A and the new SG A’ we
will refer to them as ERA(z*) and ER 4/ (z*) (QRA(x*) and
QR 4/(zx)), respectively. If the insertion of = preserves consis-
tency and persistency, then the only transitions crossing bound-



aries of the blocks are the following: QR(z—) — ERa{z+) —
QR(z+) — ERa(z—) — QR(z-).

Example 2.1 Figure4 shows three different cases of the insertion
of a new signal z into the SG for the hazard.qg example. The
insertion using ERa(s+) and ERa(z—) of Figure 4,a does
not preserve speed-independence as the SIP set conditions are
violated for E R s(z+) since transition d-+, enabled in state 1100,
will be delayed in state 0100 after inserting .

When signal x is inserted by the excitation regions in Figure 4,b
then its positive switching is acknowledgedby transitions a—, d+,
while its negative switching by transition z—. The corresponding
excitation regions satisfy the SIP conditions and the new SG A,
obtained after insertion of signal x, is shown in Figure 4,b. Note
that the acknowledgment of -+ by transitions a—, d-+ results in
delaying some input signal transitions in A' until z+ fires. This
changes the original I/O interface for SG A, because it requires
the environment to look at the new signal before it can change a
and d. This is generally undesirable and hence this insertion is
rejected.
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Figure 4: Different cases of signal insertion for benchmark
hazard.qg: violating the SIP-condition (a), changing the 1/O
interface (b), correct insertion (c)

The excitation regions ERs(z+) and ERs(x—) shown in
Figure 4,c are SIP sets. They comply with the original I/O in-
terface because positive and negative transitions of signal © are
acknowledged only by output signal z. This insertion scheme is
valid.

2.3 Basic definitions about Boolean Functions and Relations

An incompletely specified (scalar) Boolean function is a mapping
F:B"™ — {0,1,—}, where B = {0,1} and *~’ is a don’t care
value. The subsets of domain B™ in which F' holds the 0, 1 and
don’t care value are respectively called the OFF-set, ON-set and
DC-set. F is completely specified if its DC-set is empty. We shall
further always assume that F' is a completely specified Boolean
function unless said otherwise specifically.

Avariable x € X is essential for function F' (or I is dependent
on z) if there exist at least two minterms v1, v2 different only in
the value of z, such that F'(vl) # F(v2). The set of essential
variables for a Boolean function F' is called the true support of F
and is denoted by sup(F'). It is clear that for an arbitrary Boolean
function its support may not be the same as the true support. E.g.,
for a support X = {a, b, c} and a function F(X) = b+ c the true
support of F'(X) is sup(F') = {b, c}, i.e. only a subset of X

The cofactor of F(X) with respect to z; (&7) is defined as
Foi = F(xy,...,20 = 1,...,2,) (Fer = F(zy,...,2i =
0,..., x,}) respectively). The Shannon expansion of a Boolean
function F'(X) is basedonits cofactors: F(X) = z; Fy, + T Fyr.
The Boolean difference, or Boolean derivative, of F(X) with
respectto x; € X is defined as 6 F'/6x = Fy, @ Fir
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do
1: foreach non-input signal « do
solutions(x): =0 ;
2: foreach gate G € {latches, and2, or2} do
solutions(x): =solutions(x) U decompositions(x,G);
endfor
3: best_H(x) := Best SIP candidate from solutions(x);
endfor
4: if foreach ®, bestH(x) is implementable
or foreach ®, bestH(x) is empty then exitloop;
S: Let H be the most complex best H(x);
6: Insert signal 2 implementing H, derive new SG;
forever
7: Library matching;

Figure 5: Algorithm for logic decomposition and technology map-
ping.

A function F(z1,...,%s,...,%n) is unate in variable =; if
either Fz; < Fip; or Fy; < Fgyunderordering0 < — < 1. In
the former case (Fgy < Fy,) it is called positive unate in «;, in
the latter case negative unate in x;. A function that is not unate in
z; is called binate in «;. A function is (positive/negative) unate if
it is (positive/negative) unate in all support variables. Otherwise
it is binate. For example, the function /' = a - b -+ T is positive
unate in variable @ because F, = 1> Fg=b+©.

For an incompletely specified function F(X) with a DC-
set, let us define the DC function Fpe : B" — B such that

ON(Fpe) = DC(F). We will say that a function F is an

implementationof Fif - Fpe < F < F+ Fpe.

A Boolean relation, R, is a generalization of a Boolean func-
tion, where a point in the domain B™ can be associated with
several points in the codomain,i.e. R C B™ x {0,1}™ [2, 11].
Sometimes, we use the "—" symbol as a shorthand in denoting
elements in the codomain vector, e.g. —0 for 10 and 00. Boolean
relations play an important role in multi-leve] logic synthesis [11],
and we shall use them in our decomposition method.

Consider a set of Boolean functions H = {H;, H,..., Hun }
with the same domain. Let R C B™ x {0,1}"™ be a Boolean
relation with the same domain as functions from H. We will say
that M is compatible with R if for every point v in the domain
of R the vector of values (v, Hy(v), H2(v),. .., Hrn(v)) is an
element of R.

3 Overview of the method

Our proposed method for sequential decomposition of speed-
independent circuits aimed at technology mapping consists of
three main steps:

1. Synthesis via decomposition based on Boolean relations;
2. Signal insertion and generation of a new SG;
3. Library matching

The first two steps are iterated until all functions are decom-
posed into implementable gates or no further progress can be
made, Each time a new signal is inserted (step 2), resynthesis
is performed for all output signals (step 1). Finally, step 3 col-
lapses decomposed gates and matches them with library gates.
The pseudo-code for the technology mapping algorithm is given
in Figure 5.

By using a speed-independent initial SG specification, a com-
plex gate implementation for each SG signal is guaranteed to be
speed-independent. Unfortunately this gate may be too large to
be implemented in a library. The goal of the proposed method
is to break this gate starting from its output by using sequential
(if its function is self-dependent, i.e. it has internal feedback) or
combinational gates.



Given a vector X of SG signals and given one non-input signal
y € X we try to decompose the function F'(X) into (line 2 of
algorithm in Figure 5):

¢ a combinational or sequential gate with function G(Z, y),
where Z is a vector of newly introduced signals,

e a vector of combinational® functions H(X) for signals Z,

so that G(H(X)) implements F'(X). Moreover, we require the
newly introduced signals to be speed-independent (line 3).

The problem of representing the flexibility in the choice of the
‘H functions has been explored, in the context of combinational
logic minimization, by [18] among others. Here we extend its for-
mulation to cover also sequential gates (in Sections 4.1 and 4.3).
This is essential in order to overcome the limitations of previous
methods for specd-independent circuit synthesis that were based
on a specific architecture. Now we are able to use a broad range
of sequential elements, like set and reset dominant SR latches,
transparent D latches, and so on. We believe that overcoming
this limitation of previous methods (that could only use C ele-
ments and dual-rail SR-latches) is one of the major strengths of
this work. Apart from dramatically improving some experimental
results, it allows one to use a “generic” standard-cell library (that
generally includes SR and D latches, but not C elements).

The algorithm proceeds as follows. We start from an SG and
derive a logic function for all its non-input signals (line 1). We
then perform an implementability check for each such function as
alibrary gate. The largest non-implementable function is selected
for decomposition. In orderto limit the search space, we currently
try as candidates for G (line 2):

¢ all the sequential elements in the library (assumed to have
two inputs at most, again in order to limit the search space),

o two-input AND, OR gates with all possible input inversions.

The set of function pairs (Hi, H) compatible with the
Boolean relation is then checked for speed-independence (line 3),
as described in Section 2.2. If both are not speed-independent,
the pair is immediately rejected.

Then, both H; and H; are checked for approximate (as dis-
cussed above) implementability in the library, in increasing order
of estimated cost. We have two cases:

1. both are speed-independent and implementable: in this case
the decomposition is accepted,

otherwise, the most complex implementable H; is selected,
and the other one is merged with G.

2.

The latter is a heuristic technique aimed at keeping the decompo-
sition balanced. Note that at this stage we can also implement H,
or H, as a sequential gate if the sufficient conditions described in
Section 4.3 are met.

The procedure is iterated as long as there is progress or un-
til everything has been decomposed (line 4). Each time a new
function H; is selected to be implemented as a new signal, it is
inserted into the SG (line 6) and resynthesis is performed in the
next iteration.

The incompleteness of the method is essentially due to the
greedy heuristic search that accepts the smallest implementable
or non-implementable but speed-independent solution. We be-
lieve that an exhaustive enumeration with backtracking would
be complete even for non-autonomous circuits, by a relatively
straightforward extension of the results in [16].

At the end, we perform a Boolean matching step ({10]) to
recover area and delay (line 7). This step can merge together
the simple 2-input combinational gates that we have (conserva-
tively) used in the decomposition into a larger library gate. It is
guaranteed not to introduce any hazards if the matched gates are
atomic.

The restriction that % (X ) be combinational will be partially lifted in Sectiond.3.
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4 Logic decomposition using Boolean relations
4.1 Specifying permissible decompositions with BRs

In this paper we apply BRs to the following problem.

Given an incompletely specified Boolean function F’ ()(2 for signal
¥,y € X, decomposeit into two-levels y = G(Z,y); Z = H(X)
such that G(H(X), y) implements F(X) and functions G and H
have a simpler implementation than F (any such H will be called
permissible).

The first-level function H(X) = {Hi(X),..., Ho(X)} is a
multi-output logic function, specifying the behavior of internal
nodes of the decomposition, 7 = {z1,...,zn} .

At each step of decomposition a small mappable piece (func-
tion ) is cut from the potentially complex and unmappable func-
tion F. For a selected G all permissible implementations of
function H are specified with a BR and then via minimization of
BRs a few best compatible functions are obtained. All of them
are verified for speed-independence by checking SIP-sets. The
one which is speed-independent and has the best estimated cost is
selected.

Since the true support of function F' can include the output
variable y, it can specify sequential behavior. In the most general
case we perform two-level sequential decomposition such that
both function G and function H can be sequential, i.c., contain
their own output variables in the true supports. The second level
of the decomposition is made sequential by selecting a latch from
the library as a candidate gate, G. The technique for deriving a
sequential solution for the first level H is described in Section 4.3.

We next show by example how all permissible implementa-
tions of decomposition can be expressed with BRs.

Figure 6: Sequential decomposition for y = acd + y(¢ + d)

Example 4.1 Consider the STG in Figure 6,a, whose SG ap-
pears in Figure 7,a. Signals a, c and d are inputs and y is an
output. A possible implementation of the logic function for y is
F(a,c,d,y) = acd + y(¢ + d). Let us decompose this function
using as G a reset-dominant Rs-latch represented by the equa-
tion y = G(R,S,y) = R(S + y) (see Figure 6,b). At the first
step we specify the permissible implementations for the first level
functions R = Hy and S == H, by using the BR specified in Fig-
ure 7,b. Consider, for example, vector a, c,d, y = 0000. It is easy
to check that F(0,0,0,0) = 0. Hence, for vector 0000 the table
specifies that (R, S) = {11,10,00} = {1—, -0}, i.e. any im-
plementation of R and S must keep for this input vector either 1 at

2For simplicity we consider the decomposition problem for a single-output binary
function F, although generalization for the multi-output and multi-valued functions
is straightforward.



acdy "’S
0000 0 1--0
0001 1 0-
0010 0 1--0
0011 1 0-
0100 0 1--0
0101 1 0-
0110 0 1--0
0111 0 1-
1000 0 1--0
1001 1 —
1010 0 1--0
1011 1 0-
1100 1 01
1101 1 0-
1110 0 1--0
1111 - -

(a)

~
=
=

Figure 7: (a) State graph, (b) Decomposition of y by an Rs latch

Region D-Tatch Rs AND ~OR
¢, D RS H,, Hy Hy, H>
ER y+; T 01 11 {1—,—1{
QR(y+ {o—, -1} 0- 11 1— —1
ER(y— 10 1- 10—, -0 00
QR(y— {0—, -0} {1~, -0} 0—,-0 00
unreachable —-— - —_ _

Table 1: Boolean relations for different gates

Ror0at S. On the other hand, only one solution R =0, S =1
is possible for the input vector 1100 which corresponds to setting
the output of the Rs-latch to 1. The Boolean relation solver will
Jfind, among others, the two solutions illustrated in Figure 6,c,d:
(I)R=cd; S=acdand(2)R =cd+7c; S =a. Anyof
these solutions can be chosen depending on the cost function.

Table 1 specifies compatible values of BRs for different types
of gates: a D-latch, a reset-dominant Rs-latch, a two input AND
gate and a two input OR gate. All states of an SG are partitioned
mto four subsets, ER(y+), QR(y+), FR(y—), and QR(y—),
with respect to signal y with function F'( X)) for which decompo-
sition is performed. All states that are not reachable in the SG
form a DC-set for the BR. E.g., for each state, s, from FR(y+)
only one compatible solution, 11, is allowed for input functions
Hy, H, of a D-latch. This is because the output of a D-latch in
all states, s € ER(y+) is at 0 and F(s) = 1. Under these con-
ditions the combination 11 (clock and data inputs are both high)
is the only possible input combination that implies 1 at the output
of a D-latch. On the other hand, for each state s € QR(y+), the
output y = 1 and F'(s) = 1, hence it is enough to require either
data input to be in 1 or clock input to be in O to keep the output of
alatch in 1. This is expressed by values {0—, —1} in the second
line of the table.

4.2 Functional representation of Boolean relations

Given an SG satisfying CSC requirement, each output signal
y € X is associated with a unique incompletely specified function
F(X), whose DC-set represents the set of unreachable states.
F(X) can be represented by three completely specified functions,
denoted ON (y)(X), OFF(y)}X{{ and DC(y)(X ) representing
the ON-, OFF-, and DC-set of F'(X'), such that they are pairwise
disjoint and their union is a tautology.

Let a generic n-input gate be represented by a Boolean equa-
tion ¢ = G(Z,q), where Z = {z1,..., zn} are the inputs of the
gate, and ¢ is its output. The gate is sequential if ¢ belongs to the
true support of G(Z, q).
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We now give the characteristic function of the Boolean relation
for the implementation of F'(X) with gate G. It represents all
permissible implementations of z; = Hi(X),...,zn = Hn(X)
that allow F to be decomposed by G.

BR(y)(X,Z) = ON(y)(X) - G(Z,y) +

OFF(y)(X) - G(Z,y) + DC(y)(X) M

Given characteristic function (1), the corresponding table de-
scribing Boolean relation can be derived using cofactors. For
each minterm m with support in X, the cofactor BR(y)m gives
the characteristic function of all compatible values for 21, .
(see example below).

Finding a decomposition of F' with gate G is reducedto finding
a set of n functions H(X) = (H;(X),..., H,(X)) such that

BR(y)(X,H(X)) =1 @

Example 4.2 (Example 4.1 continued.) The SG shown in Fig-
ure 7.a corresponds to the STG in Figure 6. Let us consider
how the implementation of signal y with a reset-dominant Rs
latch can be expressed using the characteristic function of BR.
Recall that the table shown in Figure 7.b represents the function
F(a,c,d,y) = acd+ y(¢+ d) and the permissible values for the
inputs R and S of the Rs latch. The ON-, OFF-, and DC-sets of
function F(a,c,d, y) are defined by:

.y Zn

ON(y) = y(E+d)+acd
OFF(y) = g@+c+d)+acd
DC(y) = acdy

The set of permissible implementations for R and S is charac-
terized by the following characteristic function of the BR specified
in the table. It can be obtained using equation 1 by substituting
expressionsfor ON (y), OF F(y), DC(y), and the function of an

Rs-latch, R(S + y):

BR(y)(a,¢,d,y, R, S) = RSacd + Ry(c + d) +
(R+ S)yy(@+ 7T+ d) +acd(R + 57) + acdy

This function has value 1 for all combinations represented in
the table and value O for all combinations that are not in the
table (e.g., for (a,c,d, y, R, S) = 000001). For example, the set
of compatible values for acdy = 0110 is given by the cofactor
BR(y)acag = R+ S which correspond to the terms 1 — and —0
given for the Boolean relation for that minterm.

Two possible solutions for BR(y)(a, c,d,y, R, S) = 1 cor-
responding to Figure 6,c,d are:

(1) R=cd; S=acd (2) R=cd+7¢; S=a
4.3 Two-level sequential decomposition

Accurate estimation of the cost of each solution produced by
the Boolean relation minimizer is essential in order to ensure
the quality of the final result. The minimizer itself can only
handle combinational logic, but often (as shown below) the best
solution can be obtained by replacing a combinational gate with a
sequential one. This section discusses some heuristic techniques
that can be used to identify when such a replacement is possible
without altering the asynchronous circuit behavior, and without
undergoing the cost of a full-blown sequential optimization step.
Let us consider our example again.

Example 4.3 (Example 4.1 continued.) Let us assume that the
library contains three-input AND, OR gates and Rs-, Sr- and D-
latches. Implementation (1) of signal y by an Rs-latch with inputs

R=cd and S=acd matches the library and requires two AND gates



(one with two and one with three inputs) and one Rs-latch. The
implementation (2) of y by an Rs-latch with inputs R=cd+9y¢and
S=a would be rejected, as it requires a complex AND-OR gate
which is not in the library. However, when input  in the function
cd + Y ¢ is replaced by signal R, the output behavior of R will
not change, i.e. function R=cd + € can be safely replaced by
R=cd + Re. The latter equation corresponds to the function of a
D-latch and gives the valid implementation shown in Figure 6,e.

Our technique to improve the accuracy of the cost estimation
step, by partially considering sequential gates, is as follows:

1. Produce permissible functions z; H 1(X ) and =z
H>(X) via the minimization of Boolean relations (z; and
# are always combinational as z;, z2 € X).

. Estimate the complexity of Hy and H»:
if H; matches the library then Complexity = cost of the gate
else Complexity = literal count

. Estimate the possible simplification of H and H due to
adding signals z; and #, to their supports, i.c. estimate the
complexity of the new pair {H{, H;} of permissible func-
tions z1 = H{(X, 21, z2), 22 = Hy(X, 21, 22).

4. Choose the best complexity between H (H,) and Hi (Hj).

Let us considerthe task of determining H{ and H3 asin step 3. Let
Abe an SG encoded by variables fromset Vandlet z = H (X, y),
such that X C V) y € V, be an equation for the new variable
z & V which is to be inserted in A. The resulting SG is denoted
A'=Ins(A, z==H(X,y)) (or A'=Ins(A, z1,..., zx) when more
than one signal is inserted).

A solution for Step 3 of the above procedure can be obtained
by minimizing functions for signals z; and z; in an SG A’ =
Ins(A, z1,2). However this is rather inefficient because the
creation of SG A’ is computationally expensive. Hence instead
of looking for an exact estimation of complexity for signals z;
and z, we will rely on a heuristic solution, following the ideas on
input resubstitution presented in Example 4.3. For computational
efficiency, the formal conditions on input resubstitution should be
formulated in terms of an original SG A rather than in terms of
the SG A’ obtained after the insertion of new signals’.

Lemma 4.1 Let Boolean function H(X,y) implement the in-
serted signal z Function H can be represented as H(X,y) =
Fy + Gy + R, where F,G and R are Boolean functions not
depending on y. Let H'(X,z) = #(F + G) + R, then SGs
A'=Ins(A, z=H(X,y))and A"=Ins(A, z=H"'(X, z)) areiso-
morphic iff the following conditions are satisfied:

SH(X,y)/by 5" (1) (2),
where S*and S*are characteristic Boolean functions describ-

ing sets of states ER4(z+) U ERa(2—) and ERA(z+) in A,
respectively.

FxGxRnst=0

Informally Lemma 4.1 states that resubstitution of input y
by z is permissible if in all states where the value of function
H(X,y) depends on y, the inserted signal z has a stable value.
The conditions of Lemma 4.1 can be efficiently checked within
our BDD-based framework. They require to check two tautologies
involving functions defined over the states of the original SG A.

Example 4.4 (Example 4.1 continued.) Let input R of the RS-
latch be implemented as c¢d + YT (see Figure 6,d). The ON-set of
function H=cd-+y T is shown by the dashed line in Figure 7,a. The
input border of H (denoted by I B(H)) is the set of states by which

3Note that this heuristic estimation covers only the cases when one of the input
signals for a combinational permissible function H ; is replaced by the feedback 2
from the output of H; itself. Other cases can also be investigated, but checking them
would be too complex.
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its ON-set is enteredin the original SG A, i.e. I B(H) = {0111},

By similar consideration we have that I B(H) = {0100}. These
input borders satisfy the SIP conditions and hence 1 B(H) can be
takenas ER 4(R+), while E R A( R—) must be expanded beyond

IB(H) by state 1100 for not to delay the input transition a+
(ERA(R-) = {0100,1100}).

H is negative unate in y and hence Condition 2 of Lemma
4.1 is always satisfied. The set of states where the value of
function H essentially depends on signal y is given by the func-
tion H(X,y)/6y = ac. Cube ac has no intersection with
ERA(R+) U ERA(R-) and Condition 1 of Lemma 4.1 is also
satisfied. Therefore literal § can be replaced by literal R, thus
producing a new permissible function R=cd + Rec.

5 Implementation aspects

The method for logic decomposition presented in the previous
section has been implemented in a synthesis tool for speed-
independent circuits. The main purpose of such implementation
was to evaluate the potential improvements that could be obtained
in the synthesis of speed-independent circuits by using a Boolean-
relation-based decomposition approach. Efficiency of the current
implementation was considered to be a secondary goal at this
stage of the research,

5.1 Solving Boolean relations

In the overall approach, it is required to solve BRs for each output
signal and for each gate and latch used for decomposition. Fur-
thermore, for each signal and for each gate, several solutions are
desirable in order to increase the chances to find SIP functions.

Previous approaches to solve BRs [2, 17] do not satisfy the
needs of our synthesis method, since (1) they minimize the number
of terms of a multiple-output function and (2) they deliver (without
significant modifications to the algorithms and their implementa-
tion) only one solution for cach BR. In our case we need to obtain
several compatible solutions with the primary goal of minimizing
the complexity of each function individually. Term sharing is not
significant because two-level decomposition of a function is not
speed-independentin general, and hence each minimized function
must be treated as an atomic object. Sharing can be exploited, on
the other hand, when re-synthesizing the circuit after insertion of
each new signal. For this reason we devised a heuristic approach
to solve BRs. We next briefly sketch it.

Givena BR BR(y)(X, Z), each function H; for z; is individ-
ually minimized by assuming that all other functions H; (¢ # jy)
will be defined in such a way that H({X) will be a compatible
solution for BR. In general, an incompatible solution may be
generated when combining all H,’s. Taking the example of Fig-
ure 7, an individual minimization of R and S could generate the
solution R = cd and $ = 1.

Next, a minterm with incompatible values is selected, e.g.
acdy for which RS = 01 but only the compatible values 1 or
-0 are acceptable. New BRs are derived by freezing different
compatible values for the selected minterm. In this case, two new
BRs will be produced with the values 1— and —0, respectively for
the minterm @¢dy. Next, each BR is again minimized individually
for cach output function and new minterms are frozen until a
compatible solution is obtained.

This approach generates a tree of BRs to be solved. This
provides a way of obtaining several compatible solutions for the
same BR. However, the exploration may become prohibitively
expensive if the search tree is not pruned. In our implementation,
a branch-and-bound-like pruning strategy has been incorporated
for such purpose. Still, the time required by the BR solver domi-
nates the computational cost of the overall method in our current
implementation. Ongoing research on solving BRs for our frame-
work is being carried out. 'We believe that the fact that we pursue
to minimize functions individually, i.e. without caring about term



sharing among different output functions, and that we only deal
with 2-output decompositions, may be crucial to derive algorithms
much more efficient than the existing approaches.

5.2 Selection of the best decomposition

Once a set of compatible solutions has been generated for each
output signal, the best candidate is selected according to the fol-
lowing criteria (in priority order):

1. At least one of the decomposed functions must be speed-
independent.

2. The acknowledgment of the decomposed functions must not
increase the complexity of the implementation of other sig-
nals (see section 5.3).

3. Solutions in which all decomposable functions are imple-
mentable in the library are preferred.

4. Solutions in which the complexity of the largest non-
implementable function is minimized are preferred. This
criterion helps to balance the complexity of the decomposed
functions and derive balanced tree-like structures rather than
linear ones®.

5. The estimated savings obtained by sharing a function for the
implementation of several output signals is also considered
as a second order priority criterion.

Among the best candidate solutions for all output signals, the
function with the largest complexity, i.e. the farthest from imple-
mentability, is selected to be implemented as a new output signal
of the SG.

The complexity of a function is calculated as the number of
literals in factored form. In case it is a sequential function and it
matches some of the latches of the gate library, the implementation
cost is directly obtained from the information provided by the
library.

5.3 Signal acknowledgment and insertion

For each function delivered by the BR solver, an efficient SIP
insertion must be found. This reduces to finding a partition
{ERAa(z+),QRa(z+), FERA(z—),QRA(z—)} of the SG A
such that ERa(z+) and ERA(z—) are restricted to be SIP-
sets (Section 2.2). In general, each function may have several
ER4(z+) and ER4(z—) sets acceptable as ERs. Each one
corresponds to a signal insertion with different acknowledging
outputs signals for its transitions. In our approach, we per-
form a heuristic exploration secking for different E'R 4(z+) and
E R 4(z—) sets for each function. We finally select one according
to the following criteria:

e Sets that are only acknowledged by the signal that is being
decomposed (i.e. local acknowledgment) are preferred.

¢ If no set with local acknowledgment is found, the one with
least acknowledgmentcost is selected. The costis calculated
by incrementally deriving the new SG after signal insertion.

As an example consider the SG of Figure 4,¢ and the insertion of
a new signal x for the function z = ¢ + d. A valid SIP set for
ER4(z+) would be the set of states {1100,0100,1110,0110},
where the state {1100} is the input border for the inserted func-
tion. A valid SIP set for ER a(x—) would be the set of states
{1001, 0001}. With such insertion, ER 4 (z+) will be acknowl-
edged by the transition z+ and ERa(z—) by z—. However,
this insertion is not unique. For the sake of simplicity, let us
assume that a and d are also output signals. Then an insertion
with ER 4(z+) = {1100} would be also valid. In that case, the
gansition z+ would be acknowledged by the transitions a— and
+.

“Different criteria, of course, may be used when we also consider the delay of the
resulting implementation, since then keeping late arriving signals close to the output
is generally useful and can require unbalanced trees.
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Circuit Titerals/latches CPU Area Area ST
old new | (secs) non-SI 2i 3i
alloc-outbound 14/4 1272 8 264 256 264
chul33 12/1 12/1 208 210 200
chuls0 1472 8/3 8 144 144 160
converta 12/3 8/3 9 312 232 224
dff 12/2 0/2 1 128 80 80
ebergen 20/3 6/2 3 176 136 136
half 212 2/3 1 176 138 130
hazard 12/2 0/2 1 112 96 96
master-read 30/9 26/13 112 688 668 634
mp-forward-pkt 12/3 14/1 5 232 224 232
mrl 36/9 26/10 253 592 762 846
nak-pa 20/4 18/1 12 248 304 328
nowick 16/1 16/1 6 232 232 304
rant-read-sbuf 20/4 22/3 23 360 378 344
rev-setup 10/1 8/1 1 120 128 128
rpdft 22/1 22/0 12 176 200 216
sbuf-ram-write 22/6 20/3 79 288 378 338
sbuf-send-ctt 22/5 22/2 16 280 262 250
sbuf-send-pkt2 32/5 30/5 113 296 530 304
seq-mix 30/6 30/7 64 592 586 664
seqd 1877 18/5 131 400 582 450
trimos-send 36/8 12/9 101 480 600 644
vbe5b 10/2 8/4 2 216 204 226
vbeSc 4/3 2/3 2 216 168 168
vbeba 16/7 32/10 16 600 456 456
vbe10b 2817 26/11 35 608 552 584
wrdatab 48/7 30/9 290 608 708 714
Total 530/114 | A30/116 8752 0214 79129

Table 2: Experimental results.

5.4 Library mapping

The logic decomposition of the non-input signals is completed
by a technology mapping step aimed at recovering area and de-
lay based on a technology-dependent library of gates. These
reductions are achieved by collapsing small fanin gates into com-
plex gates, provided that the gates are available in the library.
The collapsing process is based on the Boolean matching tech-
niques proposed by Mailhot et al. [10], adapted to the existence
of asynchronous memory elements and combinational feedback
in speed-independent circuits. The overall technology mapping
process has been efficiently implemented using BDDs.

6 Experimental results
6.1 Results in decomposition and technology mapping

The method for logic decomposition presented in the previous
sections has been implemented and combined with the algebraic
method presented in [7]. The results obtained from a set of
benchmarks are shown in Table 2. The benchmarks correspond
to those presented in [7] that were completely decomposed into
2-input gates.

The columns “literals/latches” report the complexity of the
circuits derived after logic decomposition into 2-input gates. The
results obtained by the method presented in this paper (“new”) are
significantly better than those obtained by the method presented in
[71 (“old™). Note that the library used for the “new’ experiments
was deliberately restricted to D, Sr and Rs latches (i.e. without
C-clements, since they are generally not part of standard cell
libraries). This improvement is mainly achieved because of two
reasons:

¢ The superiority of Boolean methods versus algebraic meth-
ods for logic decomposition.

o The intensive use of different types of latches to implement
sequential functions compared to the C-element-based im-
plementation in [7].

However, the improved results obtained by using boolean
mcthods arc paid in terms of a significant increase in terms of
CPU time. This is the reason why the boolean method has been
combined with the algebraic method (instead of substituting it), in
such a way that boolean relations are only solved to find solutions




that improve the cost of the solutions previously obtained by using
algebraic methods.

6.2 The cost of speed independence

The second part of Table 2 is an attempt to evaluate the cost of im-
plementing an asynchronous specification as a speed-independent
circuit. The experiments have been done as follows. For
each benchmark, the following script has been run in SIS,
using the library asynch.genlib: astg.to.f; source
script.rugged; map. Theresulting netlists reported in col-
umn area non-SI could be considered a lower bound on the
area of the circuit regardless of its hazardous behavior (i.e. the cir-
cuit only implements the correct function for each output signal,
without regard to hazards). script.rugged is the bestknown
general-purpose optimization script for combinational logic.

The columns labeled area ST report the results obtained by
the method proposed in this paper. We report results on two
strategies for decomposition before mapping the circuit onto a
library:

¢ Decompose all gates into 2-input gates (21).
e Decompose all gates into 3-input gates (31).

Experiments have also been run for 4-input gates, with no tan-
gible improvements. In both cases, decomposition and mapping
preserve speed independence, since we do not use gates (such as
MUXes) that may have a hazardous behavior when the select input
changes. There is no clear evidence that performing an aggres-
sive decomposition into 2-input gates is always the best approach
for technology mapping. The insertion of multiple-fanout signals
offers opportunities to share logic in the circuit, but also precludes
the mapper from taking advantage of the flexibility of mapping
tree-like structures. This trade-off must be better explored in
forthcoming work.

Looking at the best results for non-SI/SI implementations, we
can conclude that preserving speed independence does not involve
a significant overhead. In our experiments we have shown that
the reported area is similar’. Some benchmarks were even more
efficiently implemented by using the SI-preserving decomposi-
tion. We impute these improvements to the efficient mapping of
functions into latches by using Boolean relations.

7 Conclusions and future work

In this paper we have shown a new solution to the problem of
multi-tevel logic synthesis and technology mapping for asyn-
chronous speed-independent circuits. The method consists of
three major parts. Part 1 uses Boolean relations to compute a set
of candidates for logic decomposition of the initial complex gate
circuit implementation. Thus each complex gate F' is iteratively
split into a two-input combinational or sequential gate G available
in the library and two gates H; and H, that are simpler than F',
while preserving the original behavior and speed-independenceof
the circuit. The best candidates for H, and H are selected for the
next step, providing the lowest cost in terms of implementability
and new signal insertion overhead. Part 2 of the method performs
the actual insertion of new signals for H; and/or H into the state
graph specification, and re-synthesizes logic from the latter. Thus
parts 1 and 2 are applied to each complex gate that cannot be
mapped into the library. Finally, Part 3 does library matching to
recover area and delay.

This method improves significantly over previously known
techniques [1, 8, 7]. This is due to the significantly larger opti-
mization space exploited by using (1) Boolean relations for de-
composition and (2) a broader class of latches®. Furthermore, the
ability to implement sequential functions with SR and D latches
significantly improves the practicality of the method.

STaking the best results from 21 and 31 the total is 8582
%In fact, any sequential gate could be used, including, e.g., asymmetric C ele-
ments, the only limit being the size of the space to be explored.
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In the future we are planning to improve the Boolean relation
solution algorithm, aimed at finding a set of optimal functions
compatible with a Boolean relation. This is essential in order to
improve the CPU times and synthesize successfully more complex
specifications.
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