Time-Constrained Loop Pipelining *

Fermin Sanchez

Jordi Cortadella

Dept. of Computer Architecture, Univ. Politécnica de Catalunya
08071 Barcelona, (Spain).

Abstract

This paper addresses the problem of Time-Constrained Loop
Pipelining, i.e. given a fixed throughput, finding a schedule of
a loop which minimizes resource requirements. We propose a
methodology, called TCLP, based on dividing the problem into
two simpler and independent tasks: retiming and scheduling.
TCLP explores different sets of resources, searching for a max-
imum resource utilization. This reduces area requirements. After
a minimum set of resources has been found, the execution through-
put is increased and the number of registers required by the loop
schedule is reduced. TCLP attempts to generate a schedule which
minimizes cost in time and area (resources and registers). The
results show that TCLP obtains optimal schedules in most cases.

1 Introduction

This paper presents TCLP, a methodology to solve Time-
Constrained Loop Pipelining. TCLP is NP-complete [3].

Two types of timing constraints (7Cs) have been considered
in the literature: local TCs to specify minimum and/or maximum
TCs between operation pairs [111], and global TCs to specify a
maximum delay time to process a set of data.

The term TCs has been previously used to refer to both lo-
cal and global TCs, despite they are completely different. Ap-
proaches to solve scheduling with local TCs can be found in
{7, 10, 11]. On the other hand, some Integer Linear Program-
ming (ILP) approaches have been proposed to solve scheduling
(not loop pipelining) with global TCs [1, 5]. Force Directed
Scheduling [12] solves both local and global TCs. This paper
addresses loop pipelining with global TCs. Henceforth, we will
indiscriminately use the terms global TCs and TCs.

1.1 New contributions

Henceforth, Tinaz will denote the maximum number of cycles to
execute each loop iteration. The main contributions of TCLP with
regard to the previous time-constrained scheduling approaches
[1, 5, 12] are the following:

e Loop pipelining is supported. It is reduced to two simpler
and independent tasks: retiming and scheduling.

e Absolute lower bounds are computed for each type of re-
source. When these bounds are met, the solution is optimal.

o Once a set of resources has been computed for a given Tnaz,
the execution throughput is increased without varying the set
of resources.

e The number of required registers is finally reduced, produc-
ing a schedule with lower cost in time and area.

*This research was supported by the Ministry of Education of Spain (CICYT)
under contract TIC-95-0419

592

1063-6757/95 $04.00 © 1995 IEEE

1.2 Overview

TCLP works as follows (Figure 1 shows the flow diagram):

1. Compute the minimum initiation interval (MII) of the loop'.
There is no solution when Trer < MIL

2. Calculate the absolute lower bound on the required number
of resources of each type.

3. Find a schedule in Tnq. cycles by using the initial set of
resources calculated at step 2. The loop is successively
retimed and scheduled until a schedule is found or no further
retiming can be performed. If a schedule is found, go to step
5. Otherwise, go to step 4.

4. Increase the set of resources. Heuristics are used to select
the type of resource to be increased. One instance of the
selected resource is added and step 3 is executed again.

5. Reduce the current set of resources while maintaining the
throughput of the schedule. This step corrects overestima-
tions of resources introduced at step 4.

6. Increase the execution throughput without varying the set of
resources. Throughput is explored in increasing order by
using different unrolling degrees.

7. Reduce the number of registers required by the schedule.

Computing MII

NO FEASIBLE
SOLUTION

NO

Computing lower

Incrementing
set of resources

Optimizing throughput
pressure
FINAL
SCHEDULE
Figure 1: Flow Diagram of TCLP

The initiation interval (I) is defined as the average number of cycles elapsed
between the issuing of two consecutive iterations of the loop.

1.3 Representation of a loop

A loop is represented by a labelled directed dependence graph,
DG(V, E). Vertices represent operations of the loop body, and
edges represent data dependences. Two labellings are defined:

o \(u), index defined on vertices, denotes the iteration to which
the execution of u corresponds in the schedule. A(u) = i
will be denoted by u; in the DG.

o 8(u,v), distance defined on edges, is the number of itera-
tions traversed by dependence (u,v). §(u,v) = O corre-
sponds to an intra-loop dependence (ILD), and &(u, v) > 0
corresponds to a loop-carried dependence (LCD). An ILD
between « and v is represented as u; — v;. An LCD of

. . d
distance d between u and v is represented as u; — v;.

The operations considered by TCLP can take several cycles
and use several (possibly pipelined) functional units (FUs). The
execution of an operation is statically led by an execution pattern.
Figure 2 shows an example. The value in each cell denotes the
number of resources of each type required at a given cycle. In
order to execute axpy, the set of resources must contain at least 1
multiplier, 1 adder and two input/output register ports.

reg port |2 |1 1
multiplier 1 time
adder 1

1 2 3 4 5
Figure 2: Execution pattern of operation axpy (z = a - = + y)

2 Loop pipelining
2.1 Lower bounds on resources and initiation interval

Let R; be the number of times a resource of type ¢ is used by
an iteration of the loop. LB; = I'T,%J] is a lower bound on
the number of resources of type ¢ required to execute the loop.
Sometimes the execution pattern of any operation may require
EP; (EP; > L B;)resources of a given type ¢ to be executed (for
example, operation axpy from Figure 2 requires Eng_port =2
at cycle 1). Therefore, the absolute lower bound on resources of
type ¢ is N; = max(LB;, EP;). TCLP starts with N; resources
for each type of resource ¢.

Recurrences in a loop impose a lower bound on the IT of any
schedule. Let T, be the total execution time (delay) of instruction
». In general, the MIT imposed by a recurrence R is [14]:

MIlg = %‘E where T = Tuandbr= Y. &(u,v)
(u,v)ER (u,v)ER
In a loop with several recurrences, the one which produces the
maximum such ratio is the one which determines the MIT of the
loop. The MII of a loop without recurrences is 0. MII can be
calculated in polynomial time by using Karp’s algorithm [6] to
find the minimum mean-weight cycle of a graph.

2.2 Dependence retiming

Aitd A B; and A; — B; represent the same dependence{15]in
a DG(V,E). Therefore, two different labellings (A, §) and (X, §’)
are equivalent (they represent the same loop) if, V(u, v) € E, the
following condition holds:

A(v) — Mu) + 8(u, v) = XN (v) = N(w) + 6 (u,0) Q)

593

By using Equation (1) we have derived a DG transformation,
called dependence retiming, which produces the same effect as
retiming [8, 2, 13). Dependence retiming increases the distance
of a dependence (u, v) as follows:

o M(u)=A(u)+1
o Y(u,z) € E,§(u,5) = 8(u,z) + 1
e Y(z,u) € E, 8 (z,u) = §(z,u) — 1

@‘ loop body
Api Boj Ay By| | Ail Bi . Ax1Bia
@ @ Co C G Ck-1
a
time (cycles) ()
steady
@‘ gmlogue{———————srate > epilogue
/N1 " Ao AL A2 A Ak
@ @ By [By || Bi |- |Bka/Bkt
Co|Cy G (CalCry
(b

Figure 3: Reducing the II by means of dependence retiming

Dependence retiming implicitally pipelines the loop. The ex-
ample shown in Figure 3 depicts two equivalent DGs and their
schedules, assuming all operations are additions that can be exe-
cuted in one cycle and three adders are available. The execution of
each iteration of the loop in Figure 3(a) requires two cycles, due to
the existence of the ILDs (A, B) and (A, C). The LCD (A, A) is
always honored by the sequential execution of the iterations of the
loop. However, the loop body in Figure 3(b) may be scheduled in
only one cycle because no ILD exists after retiming dependence
(A, B) (note that dependence (A, C) is also transformed in LCD
as a side effect).

2.3 Retiming and scheduling

This section presents a loop pipelining algorithm to find a schedule
in a previously known number of cycles. The DG to schedule may
contain operations belonging to different iterations. Therefore,
the length of the pipelined schedule may be different from the
iteration time. For example, the II of the schedule in Figure 3(b)
is 1, but the iteration time is 2 (two cycles are required to execute
each iteration from the original loop).

We reduce loop pipelining to two simpler and independent
tasks: retiming and scheduling of DGs. First, the DG is trans-
formed into another equivalent one by means of dependence re-
timing. Next, we try to find a schedule of the retimed DG in the
expected number of cycles. This process is iteratively repeated
until a schedule is found or no further dependence retiming can
be done. The scheduling features, such as multicycle operations,
chaining, pipelined functional units, functional pipelining, local
timing constraints, etc. are hidden into the scheduling algorithm.

Since retiming and scheduling are independent tasks in TCLP,
any scheduling algorithm for basic blocks can be used. In other
loop pipelining approaches, such as modulo scheduling [14] or
rotation scheduling [2}, both tasks are highly interdependent.

The scheduler can be potentially often called by TCLP. Thus,
we are interested in an scheduler with the lowest run-time com-
plexity. For this reason, we use list scheduling, which executes in
linear time. Details about the scheduling algorithm are out of the
scope of this paper. They can be found in [16].

function retiming_and_scheduling(G1,11);
Gy =Gy
Repeat
S:=scheduling(Gy);
if (scheduledength = IT) then return true endif;
e:=select_edge(G); {selects an edge for retiming }
if (edge_selected) then
G = dependence retiming(G-, €);
if better(G2, G1) then G1 := G endif;,
endif;
Until no edge can be selected
return false; {schedule not found}
endfunction

The loop pipelining algorithm (retiming_and_scheduling) is
described in lines above. Heuristics are provided to select an edge
for retiming (function select_edge) and determine when no further
retiming can be done (function better). Function select-edge
selects for retiming the head or the tail of a critical path. An edge
cannot be selected twice without finding a better DG. Function
better tries to guess whether a DG is better for scheduling than
another one before doing scheduling. Function better selects DGs
with the shortest critical path and the lowest number of ILDs.

24 Which type of resource must be increased ?

The current set of resources is increased when retim-
ing.and_scheduling does not find a schedule in the expected num-
ber of cycles. Heuristics are used to determine which type of
resource must be added to the set. After adding the resource, re-
timing_and_scheduling is executed again, and so on. Two different
reasons can preclude to find a schedule:

o Some operation cannot be scheduled because not enough
resources are available. When an operation » cannot be
scheduled at cycle ASAP(u) because > of the lack of re-
sources, it is deferred to the next cycle. Deferring v may
produce the deferring of some successors of «, and so on.
As the number of resources is limited, some of these suc-
cessors may not be scheduled within their time frame for
scheduling (ALAP — ASAP). When this happens, the re-
source which causes the deferring of v is increased in one
unit.

There is no time frame to schedule some operation w. Figure
4 illustrates this fact with an example. Let us assume that the
execution time of the operations in the DG from Figure 4(a)
is 2 for and v, and 1 for w. Figure 4(b) shows a possible
schedule in which » and w have already been scheduled at
cycles 1 and 4 respectively, and v has not yet been scheduled.
When the scheduler attempts to schedule v, it finds that »
should be scheduled after (or at) cycle 3 because of ILD
(u, v) (time frame T'F3), and before (or at) cycle 2 because
of ILD (v, w) (time frame 7'F}). Since both time frames
are disjoint, the scheduler fails. When this occurs, TCLP
increments the resource most used by the loop.

3

3.1 Reducing area cost

Optimizing area, throughput and registers

The heuristics used to increase the set of resources may overesti-
mate the resources required to find a schedule. In order to solve
this mishap, TCLP attempts to reduce the number of resources
after a schedule is found. To do so, resources are explored in

2ASAP(w)and AL AP(u) are respectively the first and the last cycle at which
u may be scheduled. ASAP(u) and ALAP(u) dynamically change depending
on where the predecessors and successors of u have been scheduled.

594

time (cycles)

(b)
Figure 4: (a) DG (b) v has no time-frame to be scheduled

@

decreasing order of area looking for a schedule with a lower area
cost. This step is able to correct errors introduced by the heuristics
described in Section 2.4. The combination of both steps produces
optimal results in almost all cases, as results in Section 5 show.
The algorithm used to optimize the area cost of the schedule is
shown in lines below. In the algorithm, N; is the absolute lower
bound on the number of resources of type 2 required to execute
the loop, and R; is the current number of resources of type 7.
function Optimize_-area(G,IT);
foreach type of resource (i) do
(explored in decreasing order of area)
reducible := true;
while R; > N; and reducible do
reducible := false;
remove a resource of type i;
found := retiming_and_Scheduling(G,II);
if found then reducible := true;
else add a resource of type z;
endif;
endwhile;
endforeach;
endfunction;

3.2 Increasing throughput

Given a loop and a set of resources, the throughput of a schedule
can be represented in a diagram, as shown in Figure 5(a). The
y axis represents the unrolling degree of the loop (X'), and the
z axis represents the number of cycles of the schedule (II). A
point (I, K) in the diagram represents a possible schedule of X
iterations of the loop in IT cycles. The throughput (Th) of such
a schedule is % iterations per cycle. All points representing
schedules with the same throughput fall in a line (see points A
and C). Point B is over the line which includes points A and C
because the throughput of B is greater than the throughput of A
and C. Point D is under this line because it represents a schedule
with lower throughput.

Th=MaxTh

3 @ Maxl ®)
Figure 5: (a) Throughput diagram (b) Representation of Farey’s
series F5s in a diagram

The maximum throughput achievable by a schedule (MaxTh)
is bounded by the recurrences of the loop and the set of available
resources. Any feasible schedule of the loop is represented by a
point below the line Th=MaxTh. Note that non-integer ITs can
be achieved by unrolling the loop (for example, the average IT of
a single iteration of the schedule represented by point A is).
We are interested in exploring these points in increasing order of

throughput, starting at point (Trmaz, 1) and finishing at any point
in the line Th=MaxTh. Since the number of points between lines
Th=MaxTh and Th = = "f” is infinite, we limit such number by
limiting the maximum number of cycles of any schedule. This
bound is denoted by MazII. MaxII may be greater than Trnqx
because it may represent the length of a schedule of several loop
iterations.

For a fixed n > 0, the sequence of all the reduced fractions
with nonnegative denominator < = arranged in increasing or-
der of magnitude is called the Farey’s series of order n, and
denoted by Fy, [4] For example, Fs is the series of fractions:

8Ly %, 2,4,3,23 4....}. Figure 5(b) shows a diagram
representing such a sequence. Numbers in the diagram state the
order of the fractions in the series F5. Point (4,2) is not in the
sequence, since it represents a fraction with the same value as
point (2,1), and therefore it is not reduced.

The throughput of a schedule is a fraction with a denominator
lower than or equalto Maxz 1. Therefore, Farey’s series of order
M azI1 forms the sequence of points to explore in the throughput
diagram. The ith element of the series Farqaz 11 is represented by
the fraction %,f and can be recurrently computed as:

————Mar;il yJ y Yipi=y+ Y {*.___Ma‘”;f yJ
where z and y are two integers satisfying the relation
ged(Y:, —Xi) = Y: -z + (—X:) - y. The coefficients ¢ and
y can be easily computed by using the extended gcd [4]. The
algorithm to increase the schedule throughput is shown below.
Function unroll(G, X) returns the graph G unrolled X times.

funct)i;m mclrease.throughpuz(initial loop),
found = true;
while found and £ < MaxTh do
G:=unroll(initial loop,X);
found =retiming_and_scheduling(G,Y);
X :=Next element from Fizqz11;

elndwﬁll
endfunction;

X,‘+|=1:+X,--[

maxs

Increasing the unrolling degree of the loop also increases the
register pressure. Therefore, this step may be avoided when the
number of registers is limited or the size of the registers has great
influence in the final area of the chip. Moreover, in a scheduleof a
loog(unrolled X times taking Y ¢ Xycles each iteration is executed
in $ cycles on average, with & < Tinae. However, a single
iteration may be longer than Tma, In some applications, this
fact must be verified before considering the schedule as a valid
schedule.

3.3 Reducing register pressure

An absolute lower bound on the number of registers required for
a schedule is the maximum number of variables whose lifetimes
overlap at any cycle. This number (R) can be reduced by reduc-
ing variable lifetimes. This can be done in two different ways:
(1) by moving operations across schedules of consecutive itera-
tions (SPAN reduction) and (2) by moving operations within the
schedule of an iteration (incremental scheduling).

3.3.1 SPAN reduction

The SPAN of a DG is defined as Aynaz — Amin + 1, where Apnag and
Amin are the maximum and minimum values for A respectively.
The SPAN of a DG can be reduced by a transformation similar to
dependence retiming. Reducing the SPAN of a DG reduces the
distance of some dependences, and thus the variable lifetimes.

595

Figure 6 shows an example, in which variable lifetimes are repre-
sented as lines. A point in a line crossing two consecutive cycles
represents a register. Schedule in Figure 6(b) requires 3 registers,
whilst schedule in Figure 6(d) requires only 2 registers. The SPAN
of the DG has been reduced by reducing the index of operations
A and D (see Figure 6(c)).

(a)

® Y]

Figure 6: Example of SPAN reduction (a) DG example before
SpPAN reduction (b) Scheduling of (a) requiring 3 registers (c) DG
after SPAN reduction (d) Scheduling of (c) requiring 2 registers
3.3.2 Incremental scheduling

Unlike SPAN reduction, incremental scheduling does not change
the iteration index of any operation. Two movements are con-
sidered: (1) Re-scheduling operation moves an operation from
the current cycle to another cycle so that sufficient resources are
available, and (2) swapping two operations when both operations
have the same execution pattern.

' ®
3lc
e,

@) ®)
Figure 7: Reducing R by incremental scheduling.

Figure 7 shows an example of incremental scheduling. Note
that 2 registers are required to store the variables which are alive
between cycles two and three in Figure 7(a), and therefore R = 2.
Figure 7(b) shows the schedule after swapping operations B and
C. Variable lifetimes have been reduced, and now R = 1.

4 Example of TCLP

We have chosen the Fast Discrete Cosine Transform Kemel
(FDCT) from [9] to illustrate how TCLP works. The DG is
shown in Figure 8(a). The throughput requirement is Tinqaz = 18.
As in [9], we will assume each operation is executed in a single
cycle in the appropriate FU (multiplier, adder or subtracter).

The lower bound on the number of required resources is 1
resource of each type. Retiming_and_scheduling finds a schedule
in 18 cycles in less than 0.8 seconds. The number of resources
cannot be reduced, since it is minimal.

Now, TCLP attempts to reduce the length of the schedule. The
maximum number of cycles, MazII, has been set to 50 cycles
Therefore, Farey’s series Fsp are explored, starting at fraction & %
Since the MIIcomputed by using one FU ofeach typeis MII = 16,
the last fraction to be cons1dered is us The fractions explored
L4, 1,3, 2, 2 and &. These fractlons are depicted in

Figure 8(b) between the lines Th = T and Th = MazTh.
A fraction is explored only when a schedule has been found for

3
W
2 4 T

14

i6 18 3335

®)

4950

(a)
Figure 8: (a) DG of FDCT (b) Throughput exploration

the previous one. TCLP stops when a schedule for 1 iteration
in 16 cycles is found. The time used to explore all the fractions
has been 44.2 seconds. This is the most time consuming step in
TCLP.

After reducing the length of the schedule, TCLP attempts to
reduce the number of registers. The schedule found after the
exploration of Farey’s series uses 18 registers. After reducing the
SPAN, the schedule requires 15 registers. The final schedule (after
incremental scheduling) requires only 12 registers. The time used
to reduce the number of registers was 2.55 seconds.

5 Results

‘We present here some well-known examples: the Cytron’s DG, the
resolution of the differential equation and the Fifth-Order Elliptic
Filter. More results can be found in [17].

Optimal time-constrained scheduling has been studied in 1, 5],
and some results® can be found in [1]. We will compare the
results with the MIT and with the lower bounds on the number of
resources.

Tables 1 to 4 show the results. The first columns show Thax
(T') and the lower bounds (I.B) on FUs computed for each Tingz.
Next columns specify the number and type of resources required
to achieve the given Trna. (FUs). The following columns show
the MII calculated for each set of FUs, the II of the schedule
(of a single iteration) found by TCLP, the number of registers
required for each schedule (R) and the fraction of the Farey’s
series which is associated to the schedule (K/IT). Finally, last
two columns show the time used (on a SPARC-10 workstation) to
find an optimal schedule in area cost (Tf) and the time required
to optimize the schedule throughput and reduce register pressure
(Tr). We have considered MazII = 50 for all the examples.
Note that an optimal solution (by taking resource requirements
into account) is achieved in almost all cases.

B s esults pu (secs
=T+ IT>T+ M [ITTR{KE/T || T | Tr ||
16 1 2 213 16 16 710 1716 J] 7181 0.00
17 1 2 212 16 T 110 1T 300] 1538
BNTT212]72 16 17 110 717 292 [192
19 TT 2071712 16 19 9 1719~ 0.73 [636 |
27 1 1 1172 16 19 179 1719 342 1 223
T 1 T T 26 12 178 0.70 [1.70

Table 3: Fifth-Order Elliptic Filter with Non-Pipelined Multipliers

T LB FUs FUs Results u (secs)
* + * | + M|l II | R| K/IT T Tr
16 1 2 113 16 16 1 10 1716 338 1 0.00
T7 1 2 1 2 16 17 9 7 107571 157
20 1 2 I 2 16 1719 T7T7 11063 1 233
26 1 1 172 16 17 9 | A7 [070 | 338
27 1 1 1172 16 17 9 117 0.68 1 36.7
28 1 1 T T 26 28 111 1728 0.70 T 163

Table 4: Fifth-Order Elliptic Filter with Pipelined Multipliers
6 Conclusions

This paper has presented TCLP, a new approach for loop pipelin-
ing with timing constraints. TCLP is divided into three main
phases. First, a schedule with minimum resource requirements is
found for a given throughput. Next, the throughput is increased
by exploring different unrolling degrees of the loop. Finally, the
number of registers is reduced while maintaining the throughput.
TCLP achieves optimal results in almost all cases. We have shown
several examples to illustrate its efficacy.

References

(11 H. Achatz. Extended 0/1 LP formulation for the scheduling problem in high-
level synthesis. In Proc. European Design Automation Conf., pages 226-231,
1993.

[2] L-E Chao, A. LaPaugh, and E. H-M. Sha. Rotation scheduling: a loop

pipelining algorithm. In Proc. of the 30th Design Automation Conf., pages

566572, June 1993.

M.R, Garey and D.S. Johnson. A Guide to the Theory of NP-Completeness.

W. H. Freeman and Company, 1979.

G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers.

Oxford University Press, 1979.

C-T. Hwang, J-H. Lee, and Y-C. Hsu. A formal approach to the scheduling

problem in high level synthesis. JEEE Trans. on CAD, 10(4):464-475, April

1991.

3]
(4]
&)

[6] R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Mathematics, 23:309-311, 1978.

D.C. Ku and G. De Micheli. Relative scheduling under timing constraints. In
Proc. of the 27th Design Automation Conf., pages 59-64, June 1990.

C.E. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuitry by
retiming. In Proc. Third Caltech Conf. on VLSI, pages 87-116, March 1987.
D.J. Malion and P.B. Denyer. A new approach to pipeline optimization. In
Proc. European Conf. on Design Automation, pages 83-88,1990.

J. Nestor and G. Krishnamoorthy. SALSA: A new approach to scheduling
with timing constraints. In Proc. Int. Conf. Computer-Aided Design, pages
262-265, November 1990.

J. Nestor and D.E. Thomas. Behavioral synthesis with interfaces. In Proc. Int.
Conf. Computer-Aided Design, pages 112-115, November 1986.

P.G. Paulin and JP. Knight. Force-directed scheduling for the behavioral
synthesis of ASICs. IEEE Trans. on CAD, 8(6):661-679, June 1989.

7
[8]
[93

M. Potkonjak and J. Rabaey. Optimizing resource utilization using transfor-
mations. IEEE Trans. on CAD, 13(3):277-292,March 1994.

B.R. Ran and C.D. Glaeser. Some scheduling techniques and an easily schedu-
lable horizontal architecture for high performance scientific computing. In
Proc. of the 14th Annual Workshop on Microprogramming, pages 183-198,

F Sdnchez and J. Cortadella. Resource-constrained pipelining based on loop

T LBFUs [FUs “Resulis NMEON (1]
¥ T | || 1T 1T
3 6 3 T 1 3 19 18 0200 [
T 3 3 134 [34 [31| A7 [011 | 768
3 7 T [AB 35 [A a7 {013 | 143"
6 T T 366 | 566 [T7 [37 [011 | 203 12
7 3 3 1566 |[566 | T7 | 37 [016 [7L .
Table 1: Cytron’s example

[14]

T LB FUs FUs Results {secs)
T A% &7 R EJIT || T | I o, of the 1

s T21 1T N 2111 6 5 1 6] 156] 010000 18]
£ A O W O 6 161 16 [0I5 408
T T T T I T I s Iz 08 00

Table 2: Differential Equation (FU A is an ALU)

3When comparing TCLP to [1], TCLP obtains schedules requiring less area,
because [1] is an ILP approach which does not perform loop pipelining.

596

transformations. Microprocessing and Microprogramming, 38(1-5):429-436,
S ber 1993.

[16] F Sénchez and J, Cortadella. Resource-constrained software pipelining for
high-level synthesis of DSP systems. In Marc Moonen and Francky Catthoor,

editors, Algorithms and Parallel VLSI Architectures IlI, pages 377388, 1995.

F. Sanchez and J. Cortadella. Time-constrained loop pipelining. Technical
Report RR-1995/11, UPC-DAC, April 1995.

[17]

