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Abstract

Methods for the synthesis of asynchronous circuits from
Signal Transition Graphs (STGs) have commonly used the
State Graph to solve the two main steps of this process:
the state assigment problem and the generation of hazard-
free logic. The size of the State Graph can be of order
0(2"), where n is the number of signals of the circuit. As
synthesis tools for asynchronous systems start to mature,
the size of the STGs increases and the exponential algo-
rithms that work on the State Graph become obsolete. This
paper presents alternative algorithms that work in polyno-
mial time and, therefore, avoid the generation of the SG.
With the proposed algorithms, STGs can be synthesized and
hazard-free circuits generated in extremely low CPU times.
Improvements in 2 or 8 orders of magnitude (from hours
to seconds) with respect to existing algorithms are achieved
when synthesizing fairly large STGs.

1 Introduction

Asynchronous circuits have gained interest in the last
few years, specially in the area of interface circuits. How-
ever they have not been widely used due to the difficulty
of design and the lack of synthesis and verification tools.
Signal Transition Graphs (STGs) have been proposed as
a specification formalism for asynchronous control circuits
[1, 13].

Most current designs based on STG specifications have
been handcrafted and, therefore, their complexity is rela-
tively manageable by designers. Even for some of such de-
scriptions, the synthesis algorithms take a significant CPU
time, of the order of several minutes or hours. This results
directly from the fact that the number of states derived
from an STG rapidly exploits with the number of signals
and the degree of parallelism intrinsic to the underlying
net. Similarly to what happened with synchroncus FSMs,
as high-level synthesis tools start becoming mature, asyn-
chronous FSMs will be automatically generated to specify
the behavior of interface and data-path controllers [3] and
its complexity will be no longer manageable by exponential
algorithms.

Therefore, there is a need to devise algorithms whose
complexity depends on the size of the description rather
than in the number of states. This paper aims at making

*Work funded by CYCIT TIC 91-1036, ACiD-WG (Esprit
7225) and Dept. d’Ensenyament de la Generalitat de Catalunya

1063-6757/93 $03.00 © 1993 IEEE

250

some key contributions in this direction. The algorithms
proposed to verify the Complete State Coding (CSC) prob-
lem and to synthesize hazard-free circuits must, first, avoid
the enumeration of the states generated by the STG de-
scription and then, avoid net traversals that depend on
the number of states of the STG. In this way, polynomial
algorithms are proposed.

The two-level circuits generated by the proposed poly-
nomial algorithms can be valid implementations of the
specifications if the environment behaves as assumed by
the STG. Furthermore, this implementation can be trans-
formed into a multi-level logic circuit with more general
delay models by using existing techniques [6].

1.1 Previous work

Methods for solving the CSC problem in STGs have
been proposed in {7, 14, 15, 16]. Vanbekbergen {14} and
Ykman [16] have presented algorithms that work directly
on the STG, but only in {14] a polynomial-time technique
based on the lock graph theory has been proposed. How-
ever, this technigue is only applicable to marked graphs
with single transitions. The other approaches require the
construction of the State Graph (SG), which can have a
number of states of O(2"), being n the number of signals.

Algorithms for hazard-free synthesis from STGs have
been proposed by Chu [2], Moon et al. [9], and Lavagno et
al. [5] assuming different delay models and modes of oper-
ation. The most general delay model (bounded wire delay)
has been considered in [6] where hazards are eliminated by
solving a linear programming problem.

However, all the proposed approaches require an ex-
haustive analysis of the states of the system either at the
level of State Graph (SG) or next-state tables and, there-
fore, their corresponding algorithms are exponential.

2 Definitions

This section presents some basic definitions and nota-
tions used along the paper. We have imported other pre-
liminary definitions and results from (1, 4, 7, 10, 14].

Signal Transition Graphs (STGs) are Petri nets, whose
transitions are interpreted as value changes on signals of
the circuit. Rising and falling transitions for signal ¢ are
denoted by t1 and t~ respectively, while t* denotes an up-
or down-transition. S, denotes the set of all signals in the
STG, and Sy denotes the set of non-input signals.



If the STG is live, each state (marking) s; of the State
Graph is assigned a binary vector of signal values (state
code). The binary vector v; € {0,1}" (n = |Sa|) is the
code of state s;, while v! denotes the value of signal ¢; in
the state si. f M = {m1,...,mn} is a set of markings of
an STG, then M = {v1,...,vn} denotes the set of state
codes of the SG corresponding to the markings in M.

(a)

Figure 1: (a) STG Specification of a PLA interface circuit,
(b) SMC descomposition

Figure 1(a) depicts an example of STG with two in-
put signals (Ri and Ai) and one output signal (Ro), and
its initial marking. This example has been taken from [7]
and specifies the behavior of a PLA interface circuit. Fig-
ure 1(b) shows the State Machine Components (SMCs)
that cover all the transitions for each signal in the STG.

3 A P-time Algorithm for CSC

Verification
Next we present a novel approach to verify the CSC
property for Free-choice STGs. Previously, we propose an
exponential method that operates directly on the STG.
Then we make it polynomial by using some relaxations.

Definition 1 Given an STG S and a non-input signal t;,
we define

M} = {m; € ma) | 3t} myle}))
Ml ={m; € [mo) | vj=1A At :m;(t])}
M? = {m; € [ma) | 37 : myfi7))
M] = {mj €[mo) | v;=0A At} :m;lt})}

M} (M7) is the set of markings in which some ¢} (¢]7)
is enabled. ./\/(1 (M?) is the set of markmgs in which the
correspondmg state code is such that v; =1 (v = 0) and
no t; transition is enabled.

Theorem 2 [12] An STG S has the CSC property iff
Vi;€Snr MINM?=0 A MynM! =9

The calculation of the M; sets requires a complete
reachability analysis of the net. The approach we propose
avoids the exponentiality of this analysis by overestimating

the M; sets.
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Definition 3 For each place p and transitiont of an STG,
we define

Vo = {m; € [mo) | m;(p) = 1}
Ve = {m; € [mo) | m;[t)}

Definition 4 Given a place p and a transition t, we de-
fine Cp and C, as the smallest cubcs (z e. with the greatest

number of literals) that cover V,, and Vt respectively.

C, and C; can be calculated in polynomial time for free-
choice nets by using the algorithm presented in [11].

Definition 5 A set of SMCs, ¥ = {S;}, s an SM-cover
of an STG S if all members of ¥ are SMCs of S and all
the places and transitions of S are covered by some S;. An
SM-cover ¥ is irredundant if no subset of ¥ is an SM-
cover.

Finding an SMC that covers a place or a transition
can be done in polynomial time by using the extension of
Hack’s algorithm [4] presented in [11). Finding an irredun-
dant cover can be done by iterative generation of SMCs
that cover places or transitions not covered by previous
SMCs.

The following algorithm makes a conservative verifica-
tion of the CSC property, i.e. if a CSC conflict exists then
it is detected by the algorithm. On the other hand, the
use of the C cubes instead of the M sets may produce the
detection of non-existing conflicts as “potential conflicts”.
State signals are inserted to disambiguate the CSC con-
flicts using the approach presented in [11].

has.cscproperty (8) {
Let £ = {S;x} be an irredundant SM-cover of S
foreach S,, € £ do
foreach pair p; and p; covered by Sy, s.t. j > k do
foreach non-input signal t; do
if (3tf € p}) A (Cp, NCp,s # 9) then return false;
if (3t] € p2) A (Cp; NCp,. # B) then return false;

return true;

4 Hazard-free Next-state Function

Once an STG satisfies the CSC property, a hazard-free
logic circuit can be derived. In this section a polynomial
time algorithm for the synthesis of hazard-free two-level
circuits under Multiple Signal Change (MSC) conditions
and unbounded gate-delay model (speed independent) is
presented. Additionally, a well-behaved environment is as-
sumed [8] (it does not apply inputs too quickly so that the
circuit can become stable). This circuit can be a starting
point for other synthesis steps oriented to multi-level logic
and/or more general delay models [6].

The proposed approach assumes that the CSC property
has been guaranteed by using the CSC solving procedure
presented in the previous section. Moreover, it requires
the SM-cover used for CSC verification to be well-formed
for synthesis.



Figure 2: (a)PLA interface circuit with the CSC property,
(b) SMC for signals Ro and s, (c) State Graph

Definition 6 Given an STG S, an SM-cover ¥ = {Si}
is said to be well-formed for synthesis if for any t; € Sny
there is an S; € L such that all transitions of signal t; are
covered by S;.

From now on, we will denote by S; an SMC that covers
all transitions of signal t; (note that one SMC can cover
more than one signal). Tables 1 and 2 show the V sets and
their corresponding cubes for the encoded PLA interface
circuit depicted in Figure 2(a). The SMC that covers all
transitions of signals Ro and s is in Figure 2(b) and the
State Graph is in Figure 2(c).

e_1 Vo [.C» (RiAiRos) ||
Po {m5, mé} 1-01
Py {m1, m2, m7, m8, m9, m15} 1---
P2 {m3, m4, m10, m11, m12, m16} 0---
P3 {m7, m8 m10, m11} --11
P4 {m9, m12} -110
Py {m1, m2, m3, m4} --00
P {m1, m3, m5, m7, m10, m13% -1--
p7 {m2, m4, m6, m8, m11, mi4 -0--
Po1 {m13, m14} 0-01
P2 {m15, m16} -010

Table 1: V, and Cp for the places of the example

13 1 Vi ¢ (R At Ros) ]
R+ {m13, m14} 0-01
R+ {m5, mé} 1-01
R~ {m1, m2, m7, m8, m9, m15} 1---
A+ {m15, m16} -010
R, {m9, m12} S110
A- {m1, m3, m5, m7, m10, mi3} -1--
S {m3, m4} 0-00
5~ {m8, m11} -011

Table 2: V;: and C: for the transitions of the example

4.1 Deriving Logic from a State Machine

We will denote by F; and R; the on-set and off-set cov-
ers derived for the next-state function of the non-input
signal t;. The on-set and the off-set of the next-state func-
tion f; can be expressed in terms of the XA\; sets:

On-set(f;) = /\/./?,-'F U /(4\,1
Off-set(fi) = M; U M®
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Instead, we calculate covers by using the cubes C, and
C, for all places and transitions of signal ¢; of S;.

Given an SMC S; that covers signal #;, the places cov-
ered by S; can be partitioned into four sets: P! (places
between a  and a ¢ transitions and not predecessor of
any ¢ transition), P{ (places between a ] and a t] transi-
tions and not predecessor of any ¢} transition), P,T;' (places
predecessor of a t} transition) and, P~ (places predecessor
of a t; transition).

Clearly, the state codes of the markings that have a
token in some place in P} belong to  the on-set of fi. These

codes belong to the corresponding Vp sets and are covered
by the Cp cubes.

The state codes in ]7,,.+ for any rising transition of t;
belong to the on-set of f;. These codes are covered hy the
C:;+ cubes.

Finally, the state codes in V, — Vi, - for any p € P and
predecessor of t;—, belong to the on-set of fi. These codes
are also covered by D = C, — C;;—. Note that D is not a
cube, but a cover. Its calculation can be done in polyno-

mial time and, the fact that D covers V, — widehatVy,—
results from the CSC verification procedure of the previous
section as shown in [12].

Thus, an initial F; cover can be obtained by using
this approach (similarly for an initial R; cover). For haz-
ard elimination, consensus between cubes corresponding
to pairs of adjacent places (separated by one transition)
and pairs of adjacent places and transitions are properly
added. Finally, a prime cover is obtained by expanding
the resulting cubes in F; against R;.

The following algorithm obtains a SOP hazard-free
cover F; for the next-state function f;.

hazard-free_.SOP. implementation {
let S; be an SMC that covers signal t;
Fi = R; =

/* Calculate an initial cover for F; */
foreach place p; covered by S; do
(A=t € p_g') Dp; =Cp; —Ct
else if (3t = tf e p;) Dp; =Cy
else Dp; = Cp;
F; = F; UDpj

/* Calculate an initial cover for R; */
... Similarly to Fj ...

/* Add consensus for hazard elimination */
foreach transition t covered by S; do
let pi be the place in the inset of ¢ covered by S;
let p; be the place in the outset of ¢ covered by S;
F; = F; U Consensus(Dp, , Dp,)
/* if some D contains more than one cube,
consensus is generated for all cubes */

F; = expand(F;, R;)
/* F; is expanded against R;,
and cubes included in other cubes are eliminated */



Fr, Crot UCpy UCp,, U (Cp, — Cro-)U Ri Ro's + Ro s + Ai'Ro &’
(Crot O Cps) U (Cpy O Cpyy) Y (Cpey © (Cpy — Cro-)) +Ri s+ Ai'Ro
Rro Cro— UCps UCy,, U(Cpy — Crot )V Ai Ro s' + Ro's' + Ri'Ro’s
F, Cor UCp,, UCpy U (Cp, — C,-) Ri'Ro’s’ + Ri'"Ro’s + Rt R,s+ Ai' Ro's’
(Cet © Cort) U (Cors © Con) U (Con © (€3 = C,-)) +R'Ro + Ro's + R Ai s
R, C,-UCp_, UCp, U(Cp, —C,+) Ai'Ro s+ At Ro s' + Ai Ro s’ + Ri Ro's’

Table 3: F and R covers for signals R, and s (® stands for consensus)

Table 3 presents the F' and R covers calculated by the
synthesis procedure before expanding F against R. The
final result of the synthesis is:

Fg,
F,

Ros+ Ris + Al
Rls+ Ais+ RR,

Theorem 7 [12] The F; and R; covers obtained by the
synthesis procedure are valid on-set and off-set covers of
fi, i.e. every on-set (off-set) vertex and no off-set (on-set)
vertez of fi is covered by a cube in Fi (R:).

4.2 Hazard-freeness under MSC
Condition
Theorem 8 [12] The two-level sum-of-product implemen-

tation obtained by the synthesis procedure is free of hazards
under MSC conditions.

Proof: Let us assume that s; is the state in which a set
T of concurrent transitions is enabled. Let s; be the state
reached from s; after firing all transitions in 7. Let us
define Cr, the transition cube for T, as follows:

~ ifsomet; €T
v] otherwise

Cr
Since T is a set of concurrent transitions (they can be fired
in any order), all states covered by Cr are valid states of
the SG. Let us assume we are deriving an on-set cover
for signal ¢; by using the SMC S; according to synthesis
procedure.

0 = 0 transitions. All states covered by Cr belong to
the off-set of f;. Therefore, no cube of F; covers any of
them, otherwise the STG would not have the CSC prop-
erty. Hence, no 1-hazards can be produced.

0 = 1 transitions. All states covered by Cr belong to
the off-set of fi, excepting s;. Therefore, there is at least
one cube of F; that covers s; and no cube of F; that covers
the rest of states covered by Cr, otherwise the STG would
not have the CSC property. Hence, no hazards can be
produced.

1 = 1 transitions. Let us call m; and m2 the markings
corresponding to states s; and s;. There is a place py
covered by Si such that mi{p1) = 1. Let us call ¢ the
transition in the outset of p; covered by S;. If t ¢ T
then Cr is completely covered by Cp, and no 0-hazards
can be produced. If t € T, let us call p» the place in the
outset of t covered by Si;. Hence m2(p2) = 1. According
to the synthesis procedure, Cr will be covered by Cp, U
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Figure 3: Hazard-free 1 — 0 transition for signal t;

Cp,. Since Cr is a cube, then Cr is completely covered
by the consensus(Cp,,Cp,) and thus no 0-hazards can be
produced. .

1 = 0 transitions. We will prove this case, without loss
of generality, by means of the example shown in Figure 3.
State sz (with code vz) is the one in which ¢;~ is enabled.
t1+, t2+, and i3+ are the set of concurrent transitions T.
The synthesis procedure will include the following cubes
to Fi: Cp,, Cp, — Ct;~, and consensus(Cp,,Cp, — Ci;—). If
we only consider those literals involved in the transitions
of the example, the cubes mentioned before have the fol-
lowing literals: Cp, = 15, Cp; — Cy;— = t1t2 + 1312, and
consensus(Cp,,Cp, — Ce;—) = t1 + t5. After eliminating
cubes included in other cubes, the resulting cubes will be
t1, t3, and t3. This three cubes cover Cr — v2 and, fur-
thermore, they change monotonically from 1 to 0 as the
corresponding transition fires. Hence, no hazards can be
produced. This proof can be easily extended to any num-
ber of concurrent transitions. ]

5 Experimental results

The examples used for our experiments have been ob-
tained from [7]. Moreover, we have also included some
STGs automatically generated by high-level synthesis tools
(gcd-alu, gcd_reg-a).

Table 4 presents de results obtained by sis [7] and our
approach. The number of states of the original STG, the
number of signals and transitions before and after state
assigment and the number of literals of the resulting cover
are presented. CPU time is given in seconds. Results for
sis synthesizing gcd-alu and ged.reg-a have been obtained
in our machine (SPARC IPX with 32 Mbyte main mem-
ory). The other results for sis have been obtained from

(7.



il 1l initial | final [7] I} final (this paper) ]
I STG [ sig T tr [ states || sig | tr [ it | CPU time |{ sig [ tr [ lit T CPU time ||
alloc-outbound T 18 17 9122119 6 9] 22 28 1.5
atod 6 12 20 7 14 14 5.2 7 14 20 0.7
nak-pa g | 18 56 10 | 22 | 30 9.9 10 | 20 32 1.9
ram-read-sbuf 10 20 36 11 22 20 8 11 22 40 2.7
sbuf-ram-write 10 20 58 12 24 30 11.5 12 24 43 3.6
sbuf-read-ctl 6 1 12 14 7114 | 13 5.2 7114 11 1.1
sendr-done 3 6 7 4 8 5 3.5 4 8 6 0.2
vbeda 6 12 76 8 16 22 10.1 8 16 25 0.8
vbe6a 8 16 128 10 20 30 184 10 20 48 1.4
master-read 13 26 8932 16 36 77 1635.1 15 30 46 3.5
gedoalu 8 16 228 12 24 41 344.0 12 24 84 3.2
gcdreg.a 20 | 58 1274 25 § 75 | 84 5648.0 25 | 75 | 124 72.2

Table 4: Experimental Results

Two conclusions can be derived from the results:

e The CPU times obtained by sis grow exponentially
with the size of the STG. Exponential algorithms will

become obsolete for large STGs.

The size of the circuit obtained by sis is usually
smaller due to the relaxations introduced in our algo-
rithms to maintain their polynomial complexity.

The most significant exception is the master.read ex-
ample, where we obtain a two-level cover of 46 literals and
sis generates 77 literals. Furthermore, only 2 state signals
are inserted with our approach.

The key result is that for moderately large STGs (mas-
teraead, gcd-alu, and gcd-reg-a) the amount of CPU time
spent by the polynomial algorithm is of 2-3 orders of mag-
nitude smaller than that used by exponential algorithms.

6 Conclusions

Polynomial algorithms for the synthesis of asyn-
chronous circuits from STGs have been presented in this
paper.

It seems that polynomial algorithms are the only valid
approach to manage fairly large examples with moderate
CPU times. The quality of the obtained circuits is compa-
rable to those obtained by exponential techniques. How-
ever they are usually larger due to the relaxations intro-
duced in the algorithms to make them polynomial.

Current efforts are directed towards extending the pro-
posed techniques to more general delay models (bounded
and unbounded wire delays) and to wider classes of Petri
nets. Also, more accurate heuristics to improve the quality
of the circuits are explored.
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