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ABSTRACT
The continuous minituarization of integrated circuits may
reach atomic scales in a couple of decades. Some researchers
have already built simple computation engines by manip-
ulating individual atoms on metal surfaces. This paper
presents a systematic approach to automate the design of
logic gates using molecule cascades. Temporal logic is used
to characterize molecular interactions and specify the be-
havior of logic gates. Model-checking techniques are used for
the exploration of structures behaviorally equivalent to the
logic gates. As an example, a complete library of combina-
tional logic gates has been designed using a particular molec-
ular system. This new approach provides a methodology to
bridge the gap between physical chemists and computer sci-
entists in seeking computational structures at atomic scales.

Categories and Subject Descriptors: B.6.3 [Hardware]:
Logic Design - Design Aids.
General Terms: Algorithms, Design
Keywords: Nanocomputing, formal methods, nanocascades

1. INTRODUCTION
Integrated circuits have experienced revolutionary density

increases over the last decades, resulting in powerful com-
puters, but it is expected [3, 13, 18] that this progress may
level off in a decade, renewing interest in different technolo-
gies and architectures. Much research has focused on ex-
tending current designs—based on the gating of electrical
current by transistors—towards realizations by novel mate-
rials, like carbon nanotubes [1]. Different physical mecha-
nisms to compute on molecular and atomic scales, however,
may just as well be possible, and even be more efficient,
as hinted by Richard Feynman in his famous 1959 address
to the American Physical Society. Single electronics [21],
molecular electronics [14], and spintronics [23] may serve as
examples that hold promise beyond silicon. There is also
increasing interest in alternative circuit architectures, in-
cluding those based on cellular arrays [8, 17,22].
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1.1 Molecule cascades
Nanocascades are systems of particles (or molecules) ar-

ranged such that the interaction of one particle (or a set of
particles) with a second particle (or a set thereof) triggers
the interaction of the second particle with a third particle
(or a set thereof), and so on. Nanocascades resemble top-
pling dominoes that are placed in a row. Typically, the
particles in a nanocascade are in a metastable configuration
that can be triggered to cascade into a lower energy con-
figuration by other particles. By arranging the particles in
suitable configurations, one can realize wires to transmit sig-
nals, or even logic gates. Molecule cascades, the topic of this
paper, are nanocascades in which interactions take place be-
tween molecules. Researchers have succeeded [11] to create
molecule cascades of Carbon Monoxide (CO) molecules ar-
ranged on a copper (Cu) surface. There is a weak repulsion
between the molecules when they are in nearest grid points.
This repulsion is sufficient in certain configurations to move
molecules one grid point away, and it has been exploited to
realize configurations with the functionality of wires, NOT-
gates, and AND-gates [9]. These elements have been in-
geniously combined into a 3-bit sorter circuit, of which a
fascinating video is available online [12].

Though the molecule cascades in [11] are still far from
practical applications, their disadvantages—like an operat-
ing temperature below 5K, the need to set up molecules by
a Scanning Tunneling Microscope (STM), and a setup and
operating time in the order of hours—are not of a funda-
mental nature [11]. This kind of nanocomputing systems
can be realized on extremely small scales, and they signify a
radically new approach to nanometer-scale logic. Though it
is possible to analyze the interactions between the molecules
in molecule cascades, and derive empirical rules for them, it
is still a sizeable task, given these rules, to design configu-
rations suitable for logic operations, especially if the num-
ber of molecules and the sizes of configurations increase. It
is thus helpful to have systematic methods to make a se-
lection of promising configurations, before realizing them
experimentally. Preferably, such methods are run on com-
puters because of the huge number of possibilities in which
molecules can be arranged. Even computer-directed search
through molecular configurations, however, eventually has
to face the reality of combinatorial explosions, due to which
many reasonably sized configurations are out of reach.

1.2 Formal methods
Fortunately, computer scientists have devoted significant

efforts to develop formal methods for verifying the correct-
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Figure 1: Tilting of CO molecules as a result of mu-
tually repulsive forces

ness of systems faced with the state explosion problem. Sym-
bolic methods based on Binary Decision Diagrams [4] have
been crucial to verify finite-state concurrent systems in this
context [15]. The problem discussed in this paper belongs to
this class. In addition, model checking methods [6], which
are commonly used to verify that a model (implementation)
satisfies a formal specification, are used in this paper to find
possible implementations, based on molecule cascades, that
satisfy the behavior of logic gates. The behavior is specified
using temporal logic formulae [7].

1.3 Organization of the paper
Section 2 intuitively describes the physics behind CO mo-

lecule-based interactions and computation. Section 3 intro-
duces the formal background required to model molecular
systems. Section 4 presents a generally applicable method-
ology used to derive molecular configurations implementing
the behavior of logic gates. A case study, based on the
molecule cascades in [11], is presented in Section 5. We fin-
ish with conclusions.

2. MOLECULAR SYSTEMS
The molecular systems considered in this paper consist

of a surface of Copper (Cu) atoms arranged in a regular
grid, such that the Cu crystal structure is cut along the
111-plane, denoted as a Cu(111) surface. Carbon monox-
ide (CO) molecules, placed on top of this surface, will bond
to the grid points, with the carbon atoms oriented towards
the surface. The interaction of CO molecules with metal-
lic surfaces has been studied extensively, for example for
Pd(110) [16], Ni(100), Pd(100), and Cu(100) [25].

Apart from the bonding of CO molecules to a Cu surface,
there are also interactions between CO molecules, through
repulsive and attractive forces, like Pauli repulsion, Born re-
pulsion, van der Waals attraction, and electrostatic forces.
Due to repulsion, CO molecules tend to avoid being in near-
est neighbor sites. Once two CO molecules occupy neigh-
boring sites, however, the carbon-copper bonding is strong
enough to keep them in place, though they will tilt away
from each other to maximize their distance (Fig. 1).

Tilting of crowded CO molecules on metallic surfaces can
be modeled as a spring lattice model, whereby each CO
molecule is regarded as a rigid mass bound with springs to
a flat surface and to other neighboring CO molecules [16].
Though this model neglects many parameters correspond-
ing to the detailed lattice structure, it is intuitive and serves
our purposes well. When distances between CO molecules
increase, attractive forces like van der Waals forces become
dominant, albeit, unlike with springs, van der Waals forces
decrease quickly with increasing distances, so the spring
model has limited value in this case.
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Figure 2: Stable and unstable configurations of CO
molecules. Tilting of a molecule is indicated by a
displacement with respect to its grid point. (a)
Two CO molecules in their nearest neighbor con-
figuration are stable, as well as (b) three molecules.
(c) The chevron configuration is unstable and the
central molecule will eventually tunnel to the right.
This process can be impeded by placing molecules
at the two left-most dashed circles at distance 1
from the destination of the central molecule. On
the other hand, the process is accelerated by mov-
ing the two molecules to the two dashed circles at
the right, since those molecules weakly attract the
center molecule. (d) Three molecules placed on a
line are very instable, as a result of which one of
the side molecules will move away quickly from the
central molecule, to a grid point indicated by the
arrows.
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Figure 3: (a) Linked chevron cascade that can be
used to propagate a signal from the upper left to the
lower right, (b) Operation C = A ∧ B implemented
by a chevron cascade.

In many configurations of CO molecules, the carbon-cop-
per bonding is strong enough to keep CO molecules anchored
to Cu grid points, e.g., like when we have an isolated CO
molecule, a pair of CO molecules at their nearest (distance 1)
grid points (Fig. 2(a)), or a triangle of nearest CO molecules
(Fig. 2(b)). In some configurations, however, repulsion be-
comes so strong that it cannot be compensated for by tilting
of the CO molecules. In that case, a CO molecule may tun-
nel to a neighboring grid point, a phenomenon that is called
hopping. A typical example is the chevron configuration in
Fig. 2(c), where the central molecule has tilted to the ex-
tent that it will hop one grid point to the right. Fig. 2(d)
shows another example where hopping takes place. In this
case, the left and right molecules are tilted to a great extent,
since the central molecule exerts strong forces on them due
to its upright position. As a result, one of the left or right
molecules will hop away from the central molecule, possibly
biased in an upward or downward direction.

Hopping of CO molecules has been exploited by research-



ers from IBM to create cascading systems of wires and gates [9,
11]. Fig. 3 (a) shows a configuration of a linked chevron
cascade, in which the hopping of the left-most molecule is
carried over to the next, and so on. Hopping of a chevron
cascade can also be used to construct logic gates. Fig. 3(b)
shows an AND-gate based on the chevron interaction.

As pointed out in [11], the above configurations for signal
propagation and the AND-gate are for one-time computation
only, since molecules that are energetically unstable tend to
hop to lower energy states, but not back. Once used, a con-
figuration needs to be reset in its original state to conduct
an operation again. A manual reset mechanism, using the
tip of an STM, is employed in [11]. No fundamental argu-
ments exist to preclude the existence of a reset mechanism
inherent in a molecular system.

3. ABSTRACT MODEL OF MOLECULAR
SYSTEMS

We introduce an abstract model to represent the behavior
of molecular systems.

3.1 Boolean functions
We aim to implement Boolean functions by molecular

systems. A Boolean function F is a mapping F : Bn 7→
B, where B = {0, 1}. Boolean functions are composed of
Boolean variables and operators. We use ¬, ∧ and ∨ to
denote the complement, conjunction and disjunction opera-
tors, respectively1. We also use implication operators

a ⇒ b ≡ ¬a ∨ b

a ⇔ b ≡ (a ∧ b) ∨ (¬a ∧ ¬b)

and the conjunction (
V

) and disjunction (
W

) quantifiers. A
literal is a variable (xi) or its complement (xi). A minterm
of an n-variable Boolean function F (x1, . . . , xn), is a product
term with n literals from different variables.

Given two functions F and G, we say that F ≤ G if
F (X) = 1 ⇒ G(X) = 1 for any input assignment X. Given
a function F (x1, . . . , xn), the positive and negative cofactors
of F with respect to xi are defined as

Fxi = F (x1, . . . , xi = 1, . . . , xn)

Fxi = F (x1, . . . , xi = 0, . . . , xn)

We will also use the existential and universal abstraction
of a function F (X) with respect to xi:

∃xiF = Fxi ∨ Fxi , ∀xiF = Fxi ∧ Fxi

Cofactors and abstractions can be naturally extended from
one variable to sets of variables.

A function is positive unate in variable xi if Fxi ≤ Fxi ,
and it is negative unate in variable xi if Fxi ≤ Fxi .

3.2 Transition systems
A transition system (TS) is a triple M = 〈S, T, s0〉, where

S is a set of states, T ⊆ S × S is a set of transitions and
s0 ∈ S is the initial state. A transition (s, s′) is also repre-
sented by s → s′. A path of length n in M is a sequence
of transitions s → s1, s1 → s2, . . . , sn−1 → sn, and is rep-

resented by s
n→ sn. A path of any length (including zero

1For simplicity, we will also use ¯ and · to denote the com-
plement and conjunction, respectively.
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Figure 4: State of a molecular system
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Figure 5: Possible transitions of configurations

length) is represented by s
∗→ s′. A state s in M is said to

be reachable if there is a path s0
∗→ s.

Molecular systems can be modeled as transition systems
in which states represent molecular configurations and tran-
sitions represent molecule hops.

3.3 Configurations of molecules (states)
A molecular system evolves on a finite grid of points in

which each point can potentially hold a molecule. The pres-
ence or absence of a molecule at each point is modeled by a
Boolean variable. A configuration (state) of a system with n
grid points can be represented by a minterm of an n-variable
Boolean function.

Figure 4 depicts a 5x5-grid system. The state of point
(i, j) in row i and column j is modeled by variable xij . The
state s of the system is represented by a minterm in which
the literals xij and xij denote the presence and absence,
respectively, of a molecule in the point (i, j).

3.4 Hopping of molecules (transitions)
The molecule-hopping mechanism illustrated in Fig. 3 is

modeled by a set of local transition rules in the transition
system. These rules can be specified as transition relations
in the Boolean domain. Let state s be represented by an
n-variable minterm

s(X) =
^
i,j

x̂ij , x̂ij ∈ {xij , xij},

then a transition s → s′ can be represented by a 2n-variable
minterm s(X) · s′(Y ), where s(X) and s′(Y ) represent the
states s and s′ before and after the transition, respectively.

A transition rule R is characterized by a sub-configuration
with an unstable molecule (enabling condition) that can
change its location through a molecule hop (firing). The
configuration in Fig. 5(a) is unstable unless there are two
molecules at the points holding the dotted circles. The
configuration in Fig. 5(b) is still unstable, but the one in
Fig. 5(c) is stable, since the repulsive force of the two molecules
at the right prevent the molecule in the middle to hop.

If the unstable molecule is in location (i, j), the rule cor-
responding to the configurations in Figs. 5(a-c) can be char-



acterized by the following Boolean functions:

Enablingi,j(X) = xi+1,j−1 · xi,j · xi−1,j ·
xi,j+1 · xi+1,j · xi−1,j+1 ·
(xi+1,j+1 ∨ xi−1,j+2)

Firingi,j(X, Y ) = (xi,j · yi,j) · (xi,j+1 · yi,j+1) ·^
(k,l) 6∈{(i,j),(i,j+1)}

(xk,l ⇔ yk,l)

The interpretation of these equations is as follows. The
enabling condition models the configurations in which the
molecule at (i, j) is unstable and willing to hop to (i, j + 1).
This occurs when the three shadowed locations in Fig. 5(a)
have a molecule and the three locations next to them are
empty. Moreover, it is also required that at least one of the
dotted locations is free (represented by the disjunction in
the formula). The rule is enabled in a state s if

s(X) =⇒ Enablingi,j(X).

If the rule is enabled in s, a new state s′ can be reached. The
relation between s and s′ is modeled by the Firing predi-
cate. It indicates that all the locations (k, l) have the same
value (xk,l ⇔ yk,l) except for locations (i, j) and (i, j +1) in
which the configuration changes. Formally, s′ is reachable
from s in one hop using this rule if

s(X) · s′(Y ) =⇒ Firingi,j(X, Y ).

Every abstract rule can have different instances when ap-
plied to different grid points using different rotations. In
an n × m grid, the rule depicted in Fig. 5 can have up to
6nm instances when applied to every grid point in the six
different rotations (multiples of 60◦). Figure 5(d) illustrates
one of the possible rotations of the rule.

4. MODEL CHECKING OF MOLECULAR
SYSTEMS

The problem of finding logic gates in a molecular grid
space can be reduced to a model checking problem: finding
initial molecular configurations that satisfy a set of proper-
ties. Model checking is a discipline that has been intensively
studied, and different tools and techniques have been pro-
posed for several areas of applications in which formal veri-
fication is required [6]. This paper employs Computational
Tree Logic (CTL) [7] to describe the properties that char-
acterize logic gates. For the reader unfamiliar with CTL we
have added short explanations of some temporal operators,
but a more detailed understanding will require knowledge of
CTL syntax and semantics.

Molecular systems are inherently concurrent, since every
configuration may have multiple unstable molecules that can
hop independently. Concurrency is one of the main causes of
combinatorial explosions of states in transition systems. As
typically done with model checking techniques, the combina-
torial explosion of configurations is tackled by representing
sets of states symbolically in a more condensed form; we
have used Binary Decision Diagrams [4] to this end.

4.1 Finding Gates
Assume gates have two inputs, a and b, and one output z.

The extension to larger gates is straightforward. Consider
a molecular n ×m grid and a set of rules R describing the
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Figure 6: (a) Classification of the rules, (b) Example
of AND gate

dynamics of the underlying system. R can be partitioned
into three categories (see Fig. 6(a)):

1. Rin, the set of rules to insert molecules from the en-
vironment into specific locations of the grid,

2. Rout, the set of rules to move molecules out of the grid
to locations different from z, and

3. Rint, the set of rules to move molecules within the
grid.

Figure 6(b) shows an example of an AND gate based on
a molecular system that obeys the rules described in Fig. 5:
the reader can verify that the initial configuration (x1,1 ·
x1,2 · x1,3 · · · ·x5,3 · x5,4) ensures the desired behavior. Our
goal is to find those initial configurations automatically by
satisfying a CTL formula.

Stable configurations. The initial configurations in the
absence of molecules at the input locations should be stable,
but in the presence of these molecules they should become
enabled. The CTL formula Stable describes those config-
urations as follows:

Stable(X) =
^

r∈R\Rin

¬Enablingr(X).

No external interaction. We need to avoid configurations
where the molecules move out of the grid, except for the par-
ticular output locations, like the one depicted in Fig. 6(a)
with the label z. The formula Good Interface(X) char-
acterizes the configurations that avoid this situation in any
reachable state of the system:

Good Interface(X) =
^

r∈Rout

AG(¬Enablingr(X))

The AG(p) operator indicates that property p globally
holds (G) for all paths (A) reachable from the initial state.
The AG operator is typically used to specify invariants of
the system.

Predictable behavior. In any molecular system, there can
be particular configurations for which predicting the behav-
ior of the system is extremely difficult2. To avoid visiting
such configurations, the analysis is reduced to few specific
patterns whose behavior can be predicted either analytically
or experimentally (e.g. using an STM, like in [11]). For this
reason, every system is assumed to have a set U ⊆ Bn of
undesired configurations (see next section for an example).
One should avoid initial configurations that include or lead

2Calculating the exact interaction among n molecules re-
quires the solution of the very complex n-body problem.



to these undesired configurations. The formula Safe(X) en-
sures this:

Safe(X) =
^
c∈U

AG(¬c(X))

Logic behavior. The functionality of any logic gate can
be expressed by a truth table. A gate evaluates true when
the following predicate holds:

Gate True(X) = AF AG(z).

The AF (p) temporal operator indicates that property p will
eventually hold in the future (F ) for any path (A) in the
transition system. When combined with AG(z), the predi-
cate indicates that every trace in the system will eventually
reach a state in which the output location z holds a molecule,
and that molecule will be kept stable in the future.

Similarly, a gate evaluates false when the output location
z never holds a molecule, i.e.:

Gate False(X) = AG(¬z).

The behavior for any input assignment can be described with
the previous predicates. For instance, to model the AND
gate behavior for the (1,1) input assignment, the following
CTL formula is used:

(a ∧ b) ⇒ Gate True(X)

A logic gate is represented as the conjunction of the CTL
formulas for every row of its truth table. The CTL formula
for the AND gate will then be:

Gate(X) =
[(¬a ∧ ¬b) ⇒ Gate False(X)]∧
[(¬a ∧ b) ⇒ Gate False(X)]∧
[(a ∧ ¬b) ⇒ Gate False(X)]∧
[(a ∧ b) ⇒ Gate True(X)]

In conclusion, the initial configurations that behave as a
particular logic gate are characterized by the following CTL
formula:

Confs(X) = Stable(X) ∧Good Interface(X)∧
Safe(X) ∧Gate(X)

Each assignment of X represents a valid configuration for
the gate.

Efficient representation and exploration of configu-
rations.

The set of all possible valid configurations implementing
a gate can be exponentially large in terms of the size of the
grid. However, symbolic techniques similar to the ones used
for model checking finite systems can also be applied in this
context. For those readers unfamiliar with these techniques,
a short summary is presented in the Appendix.

4.2 Optimization and Verification of proper-
ties

Besides finding correct molecular gates, our approach can
also be used to find configurations with specific properties.
Examples of properties or cost functions that may be in-
cluded in the search are:

• Configurations with the minimum number of molecules.

(d) (e)

(b)(a) (c)

Figure 7: (a-c) Rules derived from [9], (d-e) Prohib-
ited patterns

• Configurations using the minimum number of hopping
rules.

• Configurations minimizing the critical path length (num-
ber of hops from inputs to output).

• Configurations with multiple-entry inputs, i.e. gates in
which each input can enter the gate through multiple
locations.

The gates with the minimum number of molecules can for
example be obtained by finding the configuration with the
minimum number of positive literals. This problem reduces
to finding the shortest path in the BDD that characterizes
all configurations [19]. Lack of space prevents us from going
into details of how to include specific properties; we will,
however, give some examples in Section 5.

5. A CASE STUDY: IBM CASCADES
In this section, we derive a universal library of gates for

the IBM molecular cascades. The library has been automat-
ically obtained by the techniques of the previous section.

5.1 Rules and unsafe patterns
Apart from the main rules in Fig. 2, which are inspired by

the heuristic rules in [9], there are configurations (Fig. 7),
including unsafe ones, that need a careful consideration.

Fig. 7(a) describes how to destabilize a triangle of three
molecules, which, if isolated, would be stable. The pres-
ence of an additional molecule near the top of the triangle
produces a hop of the bottom right-most molecule. This
hop is nondeterministic, since the molecule can hop to two
different destinations. In practice, finding gates with deter-
ministic behavior that are based on nondeterministic rules is
difficult, since the probability of having a unique observable
outcome is drastically reduced when the internal behavior of
the gate can diverge. On the other hand, nondeterministic
rules may be crucial to implement special gates like arbiters
(an example appears in [9]). For the sake of completeness,
we add a rule corresponding to the behavior in Fig. 7(a).

The configuration in Fig. 7(b) is stable, but when an ad-
ditional molecule is placed in one (or both) of the dashed
circles, the central molecule will hop to the right. So, we
add a rule corresponding to this behavior.

The rule for the configuration of three molecules on a line
in Fig. 7(c) is highly nondeterministic, as we have seen in
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Figure 8: Library of gates: three implementations for the AND and OR gates

AND OR NOT
z = x ∧ y z = x ∨ y z = ¬x

zt = xt ∧ yt zt = xt ∨ yt zt = xf

zf = xf ∨ yf zf = xf ∧ yf zf = xt

Table 1: A complete family of dual-rail gates

Section 2. Even if this rule could be considered legal, the
chances of finding a gate using it are extremely small3. For
this reason, we have declared this rule unsafe.

Finally, the two configurations shown in Figs. 7(d-e) de-
scribe situations with highly unpredictable behavior, given
the complexity of the interactions between the molecules.
Accordingly, these configurations have been declared unsafe
as well.

5.2 Complete library of dual-rail gates
Molecule cascades can implement positive unate gates in

a natural way. Negative gates (e.g. NOT, NAND, NOR) are
difficult to implement, however, since this would require the
output molecule to “untopple” when the input molecules
topple [9]. Dealing with this problem requires that nega-
tive functions are implemented by positive gates, and delay-
insensitive codes [26] are very helpful to this end. The most
popular of these is dual-rail encoding [20], in which every
bit x of information is encoded by two signals x = (xt, xf ).
The values x = 0 and x = 1 are encoded as (0,1) and (1,0),
respectively. The combination (0,0) is used as a spacer be-
tween subsequent signals, and (1,1) is unused.

Table 1 describes how dual-rail gates can be implemented
using single-rail positive gates. The implementation of a
NOT gate is simply done by crossing the xt and xf wires.

Fig. 8 presents a library with different implementations of
AND/OR gates. In the same way as is done for standard-
cell libraries, grid spaces with a fixed height have been used,
whereas widths may vary from one implementation to an-
other. In the first column, two implementations for the

3Actually, no gate in [9] uses this rule.

AND/OR gates are presented, in which entry and exit points
are fixed. CPU times for the computation4 and the number
of valid configurations found are also shown in the figure.
Apart from the configuration shown for the AND gate, 19
more configurations are valid. The presented techniques can
also be used to obtain negative results: we have found, for
example, that it is impossible to lay out an OR gate in a
grid with the same size and the same entry/exit points as
the grid used for the AND gate (this explains why the OR
gate is one unit wider than the AND gate).

In the second column of Fig. 8, configurations satisfying
a certain property (see Section 4.2) are presented: a config-
uration with the minimal number of molecules for the AND
gate, and a configuration that minimizes the length of the
critical path for the OR gate. For finding those optimal con-
figurations, the selection of the optimal exit point is left to
the tool. It turns out that the OR gate requires one internal
hop less for the input assignment (0,1) than the OR gate of
the first column.

Finally, the third column of Fig. 8 shows the implementa-
tions of a 3-AND gate and a 3-OR gate, the former of which
requires no additional area as compared to the 2-AND gate.
For these 3-input gates, it was left to the tool to decide the
three entry points and the exit point, and this explains the
increased requirements in CPU time.

The configuration in Fig. 9 implements a dual-rail NOT-
gate. Intuitively, the gate simply crosses the wires xt and
xf . It can be verified easily, however, that the gate only
works correctly when the two wires are mutually exclusive,
but this poses no problems in dual-rail encoding, since the
combination (1,1) is supposed to never occur. A crossover
gate is also presented in [9], and it does not work for the
(1,1) assignment either. The construction of a crossover
gate that works correctly for all logic combinations seems
to require additional considerations about the specific ori-
entations of the O atoms with respect to the second layer
of Cu atoms directly beneath the top layer [11]. Using our
systematic approach, we did not find a complete crossover

4The experiments have been carried out on a desktop with
a 1.86 GHz Pentium M 750 processor and 2GB of memory.
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Figure 10: Fork

that works for all logic combinations either, even though
we let the system run on several different grid spaces. This
suggests that other physical considerations must be included
into our logic model (timing assumptions, orientation with
the second-layer, etc.) to find a complete crossover.

A cell to fork a signal is presented in Figure 10. It has the
same height as the gates in the library.

6. CONCLUSIONS
We have proposed a systematic method to find functional

structures of molecules, given the interaction rules govern-
ing the molecules. Since the rules are represented by logic
formulae, there is a limitation to the range of rules that can
be handled by the method. Interactions whose description
require complex models that include variables with continu-
ous values may be less suitable for our method. Discretiza-
tion of the variables may offer some solutions in that case,
though some molecular systems may be less suitable to such
an abstraction than others.

We have applied our method to find logic gates based on
CO molecules on a Cu(111) surface. Though very fascinat-
ing to computer scientists, this context may prove of limited
practical value—at least in the coming decade—for the re-
alization of successors of integrated circuits. On a shorter
term, however, there are other applications that may profit
from our method. These applications may be characterized
by the need to check out a large number of molecular config-
urations in order to obtain those with certain desired func-
tionalities, whereby, once found, the speed by which transi-
tions in these configurations take place is of less importance.
Applications in surface chemistry come to mind at first, but
wider applicability in chemistry may even be possible, since
our method is not restricted to the regular topologies typi-
cal of metallic surfaces or to any homogeneity in the types
of molecules used. The proposed method may thus play an
important role in guiding material science research, and it
may even suggest unexpected molecular configurations and
interactions that initiate fruitful follow-up studies. In this

context, CAD tools and formal models may be indispensible
to deal with large and complex systems.

In the context of circuits and computation there are still
many open issues. An important one has already been men-
tioned in Section 2: the CO-Cu based molecule cascades
are one-time computing structures. The design of molecular
structures that are reusable or reversible (e.g. [2]) will re-
quire further research. Several authors have invested efforts
to reversible logic, though not so much motivated by the
need to restore the initial state of a computation, as well as
to achieve zero- or reduced-energy computation [10].
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APPENDIX
A. SYMBOLIC ANALYSIS OF SYSTEMS

A.1 Binary Decision Diagrams
Binary Decision Diagrams (BDDs) [4] are a reduced form

of Decision Trees. The Boolean functions described in Sec-
tions 3 and 4 can be efficiently represented and manipulated
with BDDs. Besides being canonical, BDDs are usually
more compact than other representations, such as conjunc-

tive or disjunctive normal forms. In the area of computer-
aided design, BDDs have been extensively used.

Stone’s representation theorem [24] states that every Bool-
ean algebra is isomorphic to the Boolean algebra of sets.
Based on this important result, the sets of configurations can
be represented by Boolean functions and, thus, by BDDs.
In particular, a set S can be represented by the Boolean
function S(X), where X is a set of variables encoding the
elements of the set. The predicate x ∈ S can be described as
S(x) = 1 and operations on sets can be expressed as Boolean
operations.

A.2 Symbolic reachability analysis
This section describes the classical symbolic algorithm to

calculate the reachable states of a finite-state system [15].
Consider the transition system M = 〈S, T, S0〉 that mod-

els a molecular system in a n×m grid with S0 as initial set
of molecular configurations, represented by the BDD S0(X).
Moreover let the BDD T (X, Y ) represent the transition re-
lation T (X and Y are disjoint sets of variables). The goal
is to compute the set S by traversing the edges in T . In set
notation, the set of molecular configurations S1 reachable in
at most one hop from S0 is

S1 = S0 ∪ {s′|∃s ∈ S0 ∧ (s, s′) ∈ T}

Given the BDDs S0(X) and T (X, Y ), a BDD representing
S1 can be computed by applying only boolean operations
corresponding to the expression above:

S1(Y ) = S0(Y ) ∨ ∃x∈X [S0(X) ∧ T (X, Y )]

where the existential quantifier indicates quantification over
all variables in X, thus representing the reachable states
with the variables Y . The general predicate for describing
the set of molecular configurations that can be reached in
at most k + 1 hops is

Sk+1(Y ) = Sk(Y ) ∨ ∃x∈X [Sk(X) ∧ T (X, Y )] (1)

Since Sk ⊆ Sk+1 and the number of molecular configurations
on an n×m grid is finite, there exists a k for which Sk+1 =
Sk. Therefore the symbolic traversal algorithm iterates until
the least fixed point is reached.

A.3 Partitioned Transition Relation
The transition relation T must contain all possible molecule

hops in the n × m grid space. The BDD for T can be ob-
tained by the disjunction of the BDDs representing all pos-
sible molecule hops, i.e.:

T (X, Y ) =
_

r∈R

Tr(X, Y )

where Tr(X, Y ) = Enablingr(X) ∧ Firingr(X, Y ). The
BDD T (X, Y ), known as the monolitic transition relation,
can grow exponentially in terms of the number of disjunc-
tions Tr(X, Y ). If the number of transition rules is large,
then the size of T (X, Y ) can be prohibitive. Alternatively,
T can be represented as a partitioned transition relation [5].
In this way, equation (1) can be rewritten as follows:

Sk+1(Y ) = Sk(Y ) ∨
_

r∈R

∃x∈X [Sk(X) ∧ Tr(X, Y )]

Hence, the expensive relational product is only performed on
the small transition relations of each rule. This strategy im-
proves the efficiency of the traversal algorithm significantly.


