
ILP Models for the Synthesis
of Asynchronous Control Circuits

Josep Carmona
Computer Architechture Department
Universitat Politècnica de Catalunya

Avda. Canal Olimpic, s/n
Barcelona (08860), Spain

Jordi Cortadella
Software Department

Universitat Politècnica de Catalunya
Jordi Girona 1-3

Barcelona (08034), Spain

ABSTRACT
A new technique for the logic synthesis of asynchronous cir-
cuits is presented. It is based on the structural theory of
Petri nets and integer linear programming. The technique
is capable of checking implementability conditions, such as,
complete state coding, and deriving a gate netlist to imple-
ment the specified behavior. This technique can synthesize
specifications with few thousands of transitions in the Petri
net, providing a speed-up of several orders of magnitude
with regard to other existing techniques.

1. INTRODUCTION
It is well known the leadership of the synchronous paradigm

in the hardware design industry. However, factors like per-
formance, power efficiency, modularity and clock skew among
others invite both theoreticians and designers to look into
the asynchronous world in order to improve the quality of
their designs [6]. Nowadays, the major drawback for going
asynchronous is that they are difficult to design, and oppo-
site to the synchronous counterpart, the level of maturity of
existing CAD tools for asynchronous design is still insuffi-
cient. However, in the last ten years several research groups
around the world have developed CAD tools for the synthe-
sis and verification of asynchronous circuits which represents
the first step in filing the gap [1, 17, 20, 10, 5]. This paper
presents a novel approach for the synthesis of asynchronous
circuits.

The synthesis of asynchronous circuits from a given for-
malism like an automaton or a Petri net can be split into two
steps [5]: (i) checking and (possibly) forcing implementabil-
ity conditions and (ii) deriving the next-state function for
each signal generated by the system. Existing CAD tools
for synthesis perform steps (i) and (ii) at the underlying
state graph level, thus suffering from the well known state
explosion problem. These tools, although using symbolic
techniques for alleviating the cost of representing the state
space, can only synthesize specifications with moderate size.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

In order to avoid the state explosion problem, structural
methods for steps (i) and (ii) have been proposed in the liter-
ature [19, 16, 12]. The work proposed in [19, 16] uses graph
theoretic-based algorithms while [12] use both graph theo-
retic (by using causal order partial semantics of the Petri
net, called unfoldings [13]) and linear algebraic techniques.
A new and promising direction is presented in [11], where
the encoding problem [4] is faced by adopting the Boolean
Satisfiability (SAT) approach.

To the best of our knowledge, the work in [12] is the first
one that uses linear algebraic techniques to approach the
encoding problem. Although completely characterizing the
encoding problem, the techniques presented in [12, 11] need
to compute the unfolding of the net, whose size can be ex-
ponential on the size of the net. In addition, the checking of
the Complete State Coding (CSC) in [12] needs to solve non-
linear integer programming problems, which are NP-hard.
The work presented in this paper proposes linear algebraic
methods for deriving sufficient conditions for the encoding
problem and novel methods for performing the synthesis in
a modular fashion. In our approach, the computation of
the unfolding is not performed, at the expense of checking
only sufficient conditions for synthesis. However, the experi-
mental results indicate that this approach is highly accurate
and provides a speed-up of several orders of magnitude with
regard to [12, 11].

Moreover, a novel algorithm for computing the set of sig-
nals needed to synthesize a given signal is presented, which
also uses integer programming techniques. This allows to
project the behavior into that set of signals and perform
the synthesis on the projection. Experimental results are
presented, illustrating the improvement with respect to pre-
vious methods for synthesis.

In summary, the work presented in this paper aims at
facing the two important steps (i) and (ii) in the synthe-
sis of asynchronous circuits: it proposes powerful methods
for checking CSC/USC and a novel method for decompos-
ing the specification into smaller ones while preserving the
implementability conditions. The methods presented here in
combination with the ones presented in [3] provide a com-
plete design flow for the synthesis of controllers. The overall
design flow can synthesize large, highly concurrent speci-
fications that cannot be handled by state-based methods.
Moreover, the quality of the circuits is comparable to the
one obtained by state-based methods. The results show
that the approach is specially suited for the synthesis of
well-structured specifications, that can be generated auto-
matically from Hardware Description Languages (HDL).

818

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

p5

t2

p4

t1

p1

t5 t6

p3p2

t3 t4

(a)

1

0

0

0

0

−1

+1

+1

−1

−1

+1

+1

+1

−1

+1

−1

−1

−1

−1

−1

+1 +1

0

0

0 0

0 0

0

0

0

0 0

0

0

3

2

0

0

1

1

σ

+

0

0

0

2

0

=

M = Mo + N

(b)

10000

01100

00011

01001 00101

t3 t4

t3 t4 t3
t4

t1

t2

t4

t5 t6

t3

01010

00002

00110

00200

00020

02000

(c)

Figure 1: (a) Petri net, (b) Spurious solution M = (00020)T , (c) Potential reachability graph.

The paper is organized as follows. Section 2 presents defi-
nitions and basic background needed in this paper. Section 3
describes the methods to check the correct encoding. Sec-
tion 4 describes the framework for synthesis of asynchronous
circuits. Sections 5 and 6 present a case study and give ex-
perimental results, respectively.

2. BASIC DEFINITIONS
The theory presented in this paper holds for the class of

consistent Signal Transition Graphs. The necessary defini-
tions to support the theory are presented next.

2.1 Petri Nets
A Petri Net (PN) is a 4-tuple N = 〈P, T ,F ,M0〉, where
P is the set of places, T is the set of transitions, F : (P ×
T) ∪ (T × P) → {0, 1} is the flow relation, and M0 is the
initial marking. A marking of a PN is an assignment of a
non-negative integer to each place. If k is assigned to place
p by marking M , denoted M(p) = k, we will say that p is
marked with k tokens. Given a node x ∈ P ∪ T , its post-
set and pre-set are denoted by •x and x• respectively. An
example of Petri net is shown in Figure 1(a).

A transition t is enabled in a marking M when all places
in •t are marked. When a transition t is enabled, it can fire
by removing a token from each place in •t and putting a
token to each place in t•. A marking M ′ is reachable from
M if there is a sequence of firings t1t2 . . . tn that transforms
M into M ′, denoted by M [t1t2 . . . tn〉M ′. A sequence of
transitions t1t2 . . . tn is a feasible sequence if it is firable from
M0. The set of reachable markings from M0 is denoted by
[M0〉. A PN is k-bounded if no marking in [M0〉 assigns more
than k tokens to any place. The language of N, denoted by
L(N), is the set of feasible sequences of N .

2.2 Linear Algebra
A linear programming problem (LP) is a system A ·X ≤ B

of linear inequalities called constraints, and optionally a lin-
ear function CT · X called the objective function [14]. A
solution of the problem is a vector of rational numbers that
satisfies the constraints. A solution is optimal if it maximizes
the value of the objective function over the set of all solu-
tions. An integer linear programming problem (ILP) is an LP
where every element in the solution is in Z. An (integer)
linear problem is feasible if it has a solution.

Given an occurrence sequence M0
σ→ M of a system N ,

the number of tokens for each place p in M is equal to the
number of tokens of p in M0 plus the number of tokens added
by the input transitions of p appearing in σ minus the tokens
removed by the output transitions of p appearing in σ. If

we denote #(σ, t) the number of times that a transition t
occurs in σ, we can write the token conservation equation
for p as:

M(p) = M0(p) +
∑
t∈•p

#(σ, t)F(t, p)−
∑
t∈ p•

#(σ, t)F(p, t)

The token conservation equations for all the places in the
net can be written in the following matrix form (see Fig-
ure 1):

M = M0 + N · ~σ

where ~σ = (#(σ, t1), ...,#(σ, tn)) is called the Parikh vector
of σ, and N ∈ ZP×T is the incidence matrix of N defined
by:

N(p, t) = F(p, t)−F(t, p)

If a marking M is reachable from M0, then there exists a
sequence σ such that M0

σ→ M , and the following problem
has at least the solution X = ~σ

M = M0 + N ·X (1)

The equation M = M0 + N · X is called the marking
equation. If the marking equation is infeasible, then M is
not reachable from M0. The inverse does not hold in gen-
eral: there are markings satisfying the marking equation
which are not reachable. Those markings are said to be
spurious [18]. Figure 1(a)-(c) presents an example of spuri-
ous marking: the Parikh vector ~σ = (3, 2, 0, 0, 1, 1) and the
markingM = (00020) are a solution to the marking equation
of the Petri net of Figure 1(a), as is shown in Figure 1(b).
However, M can not be reachable by any feasible sequence:
only traces visiting negative markings, i.e. markings where
some place is negatively marked, can lead to M . Figure 1(c)
depicts the graph containing the reachable markings and the
spurious markings (shadowed). This graph is called the po-
tential reachability graph. The initial marking is represented
by the state (10000).

Therefore the marking equation provides only a necessary
condition for reachability of a marking. However, if the net
is Free-choice [8], live, bounded and reversible, the mark-
ing equation, together with the set of traps of the system,
completely characterizes reachability [7].

2.3 Signal Transition Graphs
A Signal Transition Graph (STG) [4] is a triple 〈N,Σ,Λ〉,

where N is a Petri net, Σ is a set of signals, partitioned
into input signals (ΣI), output signals (ΣO), and internal
signals (ΣINT), and Λ is the labeling function Λ : T →
(Σ × {+,−}) ∪ {ε}, where all transitions not labeled with

819

the silent event (ε) are interpreted as signal changes. Ris-
ing and falling transitions of a signal a ∈ Σ are denoted
by a+ and a−, respectively, while a∗ denotes a generic ris-
ing or falling transition1. A signal is said to be enabled
in a marking M if there is a transition of the signal en-
abled in M . Function Λ can be defined for transition se-
quences: Λ(t1t2 . . . tn) = Λ(t1)Λ(t2) . . .Λ(tn). We define
L(S) = {σ|t1t2 . . . tn ∈ L(N) ∧ Λ(t1t2 . . . tn) = σ}.

An example of STG is shown in Figure 3(a). For sim-
plicity, those places that only have one predecessor and one
successor transition are not depicted. In that case, the to-
kens are held on the corresponding arcs.

Let R ⊆ [M0〉 be the set of markings where transition
ti is enabled. Transition tj triggers transition ti (tj → ti)
if there exists a reachable marking M such that M [tj〉M ′,
M /∈ R and M ′ ∈ R. Given two signals a and b, we say
that b triggers a if there are two transitions ai∗ and bj∗
such that bj∗ → ai∗. We will call Trig(a) the set of trig-
ger signals of a. The projection of an STG S onto a set of
signals Σ′ is another STG, denoted by SΣ′ , whose behavior
is observationally equivalent to S after hiding the signals in
Σ\Σ′ [2]. The STG in Figure 3(d) is a projection of the one
in Figure 3(c) onto the set of signals {d, ldtack, csc}.

Finally, one of the basics ingredients for Sections 3.1, 3.2
and 4 is introduced: the concept of complementary sequence.
Given a set of signals Σ = {a1, . . . , an}, and a transition se-
quence σ, we define code change(Σ,σ) as a vector of length
|Σ| where component i corresponds to the result of the equa-
tion

∑
ai+

#(σ, ai+)−
∑
ai−#(σ, ai−). When the i-th com-

ponent of the vector is 0, we say that the signal ai is bal-
anced. A balanced signal means that the number of positive
and negative transitions of the signal in the sequence is the
same. A complementary sequence σ is a feasible transition
sequence such that code change(Σ,σ) = 0 (i.e. all the sig-
nals are balanced).

2.4 Encoding
Each marking of an STG is encoded with a binary vector

of signal values by means of a labeling function λ : [M0〉 →
{0, 1}|A|. All markings must be consistently encoded by
λ, i.e. no marking M can have an enabled rising (falling)
transition a+ (a−) if λ(M)a = 1 (λ(M)a = 0). Intuitively
consistency ensures that the rising and falling transitions of
the same signals alternate in any feasible sequence of tran-
sitions.

Figure 3(b) depicts the set of reachable states derived from
the STG in Figure 3(a), with the corresponding encoding.
The derived graph is called state graph (SG).

An STG is said to satisfy the complete state coding (CSC)
property if, when the same binary code is assigned to two
different markings, the set of internal and output signals en-
abled at each marking is the same. The STG in Figure 3(a)
does not satisfy the CSC property, since there are two dif-
ferent markings with the code 10101, and two output tran-
sitions, d+ and lds−, only enabled in one of them.

A more restrictive property, called unique state coding
(USC), holds if all reachable markings are assigned a unique
binary code, i.e., ∀M1,M2 ∈ [M0〉 : M1 6= M2 ⇒ λ(M1) 6=
λ(M2).

The CSC property is a necessary condition for the correct
implementation of an STG specification (see Section 2.5 be-

1Along this paper, we will often use the label of a transition
to denote the transition itself.

low). When the CSC condition holds, the events that the
circuit must produce at each reachable state are uniquely
determined by the binary code of the state itself.

2.5 Synthesis of speed-independent circuits
Here, we briefly sketch how a circuit can be derived from

an STG. This theory is valid for the class of speed-independent
circuits, which are correct when assuming that all compo-
nents of the circuit can have any delay [15].

For an STG S to be correctly implemented by an speed-
independent circuit, four conditions must hold [5]:

1. the set of reachable states of S must be finite (bound-
edness),

2. function λmust consistently encode the reachable mark-
ings of S (consistency),

3. S must fulfill the CSC property,

4. for any pair of signals x and y such that x disables
y it implies that x and y are input signals (output
persistency).

If we call a1, . . . , an the signals of the circuit, each non-
input signal x can be implemented by a gate that realizes
a logic function fx. The logic function is defined for each
binary vector v ∈ {0, 1}n as follows:

fx(v) =

1 if ∃M : λ(M) = v ∧ (some x+ enabled in M

∨ (λ(M)x = 1 ∧ no x− enabled in M))
0 if ∃M : λ(M) = v ∧ (some x− enabled in M

∨ (λ(M)x = 0 ∧ no x+ enabled in M))
− if 6 ∃M : λ(M) = v

In case the CSC property does not hold, the previous def-
inition is ambiguous, since a binary vector could be found
for which there are two different markings that would make
fx equal to 0 and 1 simultaneously.

3. ILP FOR CHECKING STATE ENCOD-
ING

In this section it is shown how to formulate an ILP problem
in order to verify if a given specification is correctly encoded.
The techniques presented provide a significant speed-up to
the ones presented recently ([12, 11]).

3.1 ILP for USC Checking
A USC conflict appears in the SG of a system when there

are two reachable markings M1,M2 such that M2 is reach-
able from M1 by firing a complementary sequence z, i.e.
M0

x→ M1
z→ M2. Using the marking equation, a sufficient

condition for USC can be obtained:

Theorem 3.1. Let S = 〈〈P, T ,F ,M0〉,Σ,Λ〉 be a consis-
tent STG. S has USC if the following ILP problem is infea-
sible:

ILP model for USC checking:

Reachability conditions:
M1 = M0 + Nx
M2 = M1 + Nz

M1,M2, x, z ≥ 0, x, z ∈ Z |T |

code change(Σ, z) = 0
M1 6= M2

(2)

820

Proof. If no solution exists for (2) then no possible com-
plementary sequence exists between any pair of reachable
markings M1,M2 ∈ [M0〉 such that M1 6= M2.

In fact the constraint M1 6= M2 is not linear, but it can be
replaced by testing instead if at least one place has different
amount of tokens in M1 and M2. Therefore the initial non-
linear problem can be transformed to |P | linear problems.
However, if the system is k-bounded, any reachable marking
can be encoded with a |P | k-ary vector. This allows us to
express the inequality between M1 and M2 as the inequality
of two k-ary numbers [12].

3.2 ILP for CSC Checking
A CSC conflict exists when there exist two reachable mark-

ings M1,M2 such that M2 is reachable from M1 though a
complementary sequence z and the set of non-input signals
enabled in M1 is different from the one in M2. Note that
the definition of CSC allows to check individually for each
non-input signal a whether a has a CSC violation. When
every non-input signal fulfills the CSC conditions, the en-
tire system has CSC. The check of CSC for each non-input
signal can be performed in the following way: let ai∗ be a
transition of signal a. Then, a CSC conflict exists if: (i) M2

is reachable from M1 by firing a complementary sequence,
(ii) M1 and M2 have the same code, (iii) ai∗ is enabled in
M1 and (iv) for every transition aj∗ of signal a, aj∗ is not
enabled in M2. If the net is 1-bounded (also called safe),
the enabledness of a transition x at a marking M can be
characterized by the sum of tokens of the places in •x at M :
x is enabled at M if and only if the sum of tokens of the
places in •x is equal to the number of places in •x.

Now we can present a sufficient condition for CSC for each
non-input signal a:

Theorem 3.2. Let S = 〈〈P, T ,F ,M0〉,Σ,Λ〉 be a consis-
tent safe STG and non-input signal a ∈ Σ. S has CSC for a
if the following problem is infeasible for each transition ai∗:

ILP model for CSC checking:

(i) Reachability conditions (same as in (2))

(ii) code change(Σ, z) = 0
(iii)

∑
p∈ •ai∗M1(p) = |•ai ∗ |

(iv) ∀aj∗ :
∑
p∈ •aj∗M2(p) < |•aj ∗ |

(3)

Proof. If (3) has no solutions, no complementary se-
quence exists between any pair of reachable markings M1

and M2, with only M1 enabling signal a.

Note that the constraint M1 6= M2 is not needed in (3).

4. ILP FOR SYNTHESIS
In this section a new design flow for the synthesis of asyn-

chronous circuits is presented. The major gains with respect
to previous methods are:

• The synthesis of a speed-independent circuit imple-
menting non-input signals is always guaranteed.

• The use of structural methods allows to deal with very
large specifications.

Initial STG

Encoded STG

Encoding for USC

Reduced STG

Greedy removal of signals

CSC support for a1 CSC support for an

 Projection for a1 Projection for an

 Synthesis Synthesis

 Circuit for a1 Circuit for an

Figure 2: Synthesis of asynchronous circuits.

• Optimization techniques can be applied in some stages
of the process.

The synthesis flow is depicted in Figure 2. Given a con-
sistent STG, structural methods to ensure USC are applied
(see [3]). These methods produce an over-encoding of the
STG that conservatively ensure the USC property. Since
many of these signals may be unnecessary to guarantee ei-
ther USC or even CSC, they are iteratively removed using
greedy heuristics until no more signals can be removed with-
out violating the USC/CSC property. This greedy process
makes use of the ILP methods presented in Section 3. The
reduced STG is next projected onto different sets of signals
to implement each individual output signal.

In this section we propose a novel method to calculate the
subset of signals onto which the STG must be projected to
implement each signal. The support of the next-state func-
tion of each signal will be a subset of this support. Since the
cardinality of the support is usually small (3-5 signals and in
very rare cases is more than 10), state-based algorithms can
be used for synthesis after the projection (e.g. petrify [5]).

4.1 Computing a Support for Synthesis
The problem faced in this section is the following: given an

STG S = 〈〈P, T ,F ,M0〉,Σ,Λ〉 and a non-input signal a ∈ Σ,
can we compute a subset Σ′ of Σ such that it is enough
for implementing fa? Two conditions must be satisfied by
Σ′ [4]:

1. Trig(a) ⊆ Σ′.

2. SΣ′ must have CSC for signal a.

Let such Σ′ be called a CSC support of signal a in S:

Definition 4.1 (CSC Support). Let S be an STG with
set of events Σ, and a non-input signal a ∈ Σ. A set Σ′ ⊆ Σ
is a CSC support of a in S if SΣ′ has no CSC conflicts for
signal a and Trig(a) ⊆ Σ′.

For example, a possible CSC support for signal d from
the STG shown in Figure 3(c) is {ldtack, csc}. Figure 3(d)
shows the projection induced by this CSC support. The
rest of this section is devoted to explain how to compute
efficiently a CSC support for a given signal a.

The computation of a CSC support can be performed iter-
atively: starting from an initial assignment, ILP techniques
can be used to guide the search. Imagine we have an initial
set of signals Σ′ ⊆ Σ, candidate to be the CSC support of a

821

given signal a. A way of determining whether Σ′ is a CSC
support for signal a is by solving the following ILP problem:

ILP model for checking CSC support:

(i), (iii) and (iv) from (3)

code change(Σ′, z) = 0
(4)

If (4) is infeasible, then Σ′ is enough for implementing
a. Otherwise the set Σ′ must be augmented from signals
in Σ \ Σ′ until (4) is infeasible. Moreover if (4) is feasible,
adding a balanced signal b from Σ \ Σ′ will not turn the
problem infeasible because z is still balanced for Σ′ ∪ {b}.
On the contrary, adding an unbalanced signal will assign a
different code to markings M1 and M2 of (4). Therefore, the
unbalanced signals in z will be the candidates to be added
to Σ′. The algorithm for finding a CSC support set for a
non-input signal a is the following:

Algorithm for the calculation of CSC support:

CSC Support (STG S, Signal a) returns CSC support
of a

Σ′ := Trig(a) ∪ {a}
while (4) is infeasible do

Let b be an unbalanced signal in z

Σ′ := Σ′ ∪ {b}
endwhile

return Σ′

Implementation note
In order to avoid, as much as possible, unnecessary inclu-
sions of signals in the CSC support of a signal, we add an
objective function to the problem (4). Assume E0 and E1

are the set of signals in Σ with initial value 0 and 1, respec-
tively. We want to search for solutions of (4) such that the
number of unbalanced signals is minimal. The minimization
of the objective function

min [code change(E0, z)− code change(E1, z)]

avoids any vector z as a solution if there is another vector z′

such that a signal with initial value 0 (1) is not balanced in
code change(E0, z) (code change(E1, z)) but is balanced in
code change(E0, z

′) (code change(E1, z
′)). Therefore, this

function reduces the number of unbalanced signals and, thus,
less choices are possible when the model is feasible and a new
unbalanced signal must be added to Σ′.

4.2 Projection into the CSC Support
Assume that for a non-input signal a its CSC support set

CSC(a) has been computed by Algorithm CSC Support. The
next step is to derive the projection of the STG S into CSC(a)
(SCSC(a)

). The projection is computed by the transforma-

tions described in [3]. It is assumed that the projections
preserve trace equivalence on the set of traces with respect
to the signals in CSC(a) (i.e.L(S)|CSC(a) = L(SCSC(a))).

Although SCSC(a)
and S are different STGs, next theorem

shows that projection preserves CSC:

Theorem 4.1. Let S be an STG with CSC for the non-
input signal a, and SCSC(a)

be the projection preserving

trace equivalence with S on the set CSC(a). Then SCSC(a)

has CSC.

Proof. By contradiction. Let us assume there are two

reachable markings s′1, s
′
2 in SCSC(a) such that s′0

σ′1→ s′1,

s′0
σ′2→ s′2, λ(s′1) = λ(s′2) and only s′1 enables some transition

ai∗ of signal a. Let s1, s2, σ1, σ2 such that s0
σ1→ s1, s0

σ2→ s2,
σ1|CSC(a)

= σ′1 and σ2|CSC(a)
= σ′2. Finally, let Trig(ai∗)

denote the set of triggering transitions of ai∗. Two cases
arise:
λ(s1) = λ(s2): then given that we have CSC for signal a

in S either both s1 and s2 enable a or none of them enables
a. If both enable a then given that the set of trigger transi-

tions of ai∗ are in the CSC support of a and s2
ai∗→ implies

that Trig(ai∗) ⊆ σ′2. But then if every trigger transition is
fired in σ′2, there is a state s reachable by firing some pre-
fix of σ′2 at s′0 which enables ai∗. If s 6= s′2 we have that
ai∗ ∈ σ′2, and therefore ai∗ ∈ σ2 because σ′2 ⊆ σ2. At this

point, the fact that s2
ai∗→ implies that σ2 = δai ∗ γ, with

Trig(ai∗) ⊆ γ. We can iterate this process again with γ,

and using the finiteness of σ2 we can conclude that s′2
ai∗→ ,

contradicting the assumption that ai∗ is only enabled in s′1.
If neither s1 nor s2 enables a then the trace σ′1ai∗ belongs
to L(SCSC(a)

) but does not belong to L(S)|CSC(a)
, contra-

dicting the assumption L(S)|CSC(a) = L(SCSC(a)).
λ(s1) 6= λ(s2): if both s1 and s2 enable a or none of them

enables a, then the same reasoning of the previous case can
be applied. If only one of them enables a, then CSC(a) is not
a valid CSC support because some signal from Σ \ CSC(a)
which makes λ(s1) 6= λ(s2) hold is not added to CSC(a) in
order to make λ(s′1) and λ(s′2) different.

5. AN EXAMPLE: VME BUS
This section presents an example illustrating the theory

presented in previous sections. The STG of Figure 3(a) will
be used. It is representing a device controlling data trans-
fers between a VME bus and a device. The STG has a USC
conflict: it can be detected in the ILP (2) by the assign-
ment {dsr+, lds+, ldtack+} to vector x and the assignment
{d+, dtack+, dsr−, d−, dtack−, dsr+} to vector z. The con-
flict is depicted in the state graph of the system (two dif-
ferent states labeled as 10101), shown in Figure 3(b). This
conflict is also a CSC conflict, because the output signals
d and lds are both enabled in only one of the conflicting
states.

The STG of Figure 3(c) is obtained after solving the con-
flict, where the new internal signal csc has been inserted for
solving the conflict. From this STG, Algorithm CSC Support
has been invoked for signal d. The resulting CSC support
for d is {ldtack, csc}, which induces the projection shown in
Figure 3(d). From the projection, the logic equation imple-
menting d is d = ldtack · csc, depicted in Figure 3(e). It
is worth mentioning that the implementation for every non-
input signal of the example is identical to the one obtained
by using petrify. This also happens with other examples that
we have synthesized with both approaches.

822

lds+

d+

dtack+ lds−

dsr−

d−

dtack−

dsr+ ldtack+ ldtack−

(a)

dsr+

dsr+

dsr+

dtack+ dsr−

d−

dtack−

dtack−

dtack−

ldtack− ldtack− ldtack−

lds−lds−lds−ldtack+

d+

lds+

10000

10001

10111 11111 01111

01101

01100

01000
00000

00101

0010010100

10101
10101

(b)

lds+

d+

dtack+ lds−

dsr−

dtack−

dsr+ ldtack+ ldtack−

csc+

d−

csc−

(c)

ldtack−

csc+

d−

csc−

d+

ldtack+

(d)

ldtack

csc
d

(e)

Figure 3: (a) STG, (b) State graph (<dsr,dtack,ldtack,d,lds>), (c) STG with CSC, (d) Projection for signal d,
(e) Circuit implementing d.

x22+

x21+ x(m−1)1+

x(m−1)2+

x(m−1)n+x2n+

x21− x(m−1)1−

x2n− x(m−1)n−

x12+

x11+

x1n+

x11−

x1n−

xm1+

xm2+

xmn+

xm1−

xmn−

Figure 4: Art(m,n).

6. EXPERIMENTAL RESULTS
The method presented in this paper has been implemented

in moebius, a tool for the synthesis of speed-independent cir-
cuits. The experiments have been performed on a PentiumTM

4/2.53 Ghz and 512M RAM.
Several parametrizable examples have been used to com-

pare with other existing approaches and to evaluate the im-
pact of the size of the specification on the efficiency of the
method. The following examples have been used:

• PpWk(m,n) and PpArb(m,n): examples modeling m
pipelines weakly synchronized. In addition PpArb(m,n)
also includes arbitration. Every benchmark in this
set has CSC conflicts. These examples were obtained
from [12].

• PpWkCsc(m,n) and PpArbCsc(m,n): a modifica-
tion of the previous benchmarks to fulfill the CSC prop-
erty.

• TangramCsc(m,n): examples obtained by translat-
ing a synthetic Tangram program into a netlist of hand-
shake components, shown in Fig. 5. Each handshake

| | | | | || |

;

M M M

a b c d e f g h i j k l

a d g j b e h k c f i l

x y z

Figure 5: Netlist of handshake components from a
Tangram program.

component is specified as a Petri net and the final
controller is obtained as the composition of all Petri
nets. The symbols “;”, “||” and “M” represent se-
quencers, parallelizers and mixers, respectively. Each
n-way component is implemented as a tree of 2-way
components. This is a parametrizable benchmark that
represents a typical controller obtained from the direct
translation of languages like Tangram [1] or Balsa [9].

• Art(m,n): examples modeling a different way of syn-
chronizing m pipelines. The STG is depicted in Fig-
ure 4. Every benchmark in this set has CSC conflicts.

• ArtCsc(m,n): transformation of the corresponding
benchmark by means of the insertion of a new set of
signals in order to fulfill the CSC property [3]. The
nets in this class of benchmarks are extremely large
compared to the corresponding benchmarks (for in-
stance, Art(30, 9) has 636 places while ArtCsc(30, 9)

823

benchmark |P | |T | |Σ| CLP SAT ILP

PPWK(2,9) 71 38 19 0.09 0.04 0.15

PPWK(2,12) 95 50 25 0.42 0.37 0.20

PPWK(3,6) 70 38 19 0.12 0.04 0.11

PPWK(3,9) 106 56 28 10.89 0.10 0.25

PPWK(3,12) 142 74 37 933.37 0.04 0.35

PPWKCSC(2,9) 72 38 19 3.14 0.18 0.16

PPWKCSC(2,12) 96 50 25 246.26 1.02 0.31

PPWKCSC(3,6) 72 38 19 2.97 0.04 0.19

PPWKCSC(3,9) 108 56 28 2075.48 0.31 0.41

PPWKCSC(3,12) 144 74 37 time 1.41 0.80

PPARB(2,9) 86 48 23 0.01 0.02 0.05

PPARB(2,12) 110 60 29 0.00 0.05 0.11

PPARB(3,6) 92 54 25 0.00 0.06 0.12

PPARB(3,9) 128 72 34 0.01 0.08 0.08

PPARB(3,12) 164 90 43 0.00 0.33 0.19

PPARBCSC(2,9) 88 48 23 40.89 0.61 0.28

PPARBCSC(2,12) 112 60 29 1021.51 16.24 0.45

PPARBCSC(3,6) 95 54 25 61.30 0.56 0.34

PPARBCSC(3,9) 131 72 34 time 1.52 0.69

PPARBCSC(3,12) 167 90 43 time 16.39 1.30

TANGRAMCSC(3,2) 142 92 38 0.01 0.01 1.08

TANGRAMCSC(4,3) 321 202 83 0.06 0.04 9.00

ART(10,9) 216 198 99 0.00 0.42 0.06

ART(20,9) 436 398 199 5.00 10.35 0.24

ART(30,9) 656 598 299 38.02 81.82 0.56

ART(40,9) 876 798 399 138.04 264.57 0.92

ART(50,9) 1096 998 499 377.00 630.41 1.46

ARTCSC(10,9) 752 630 315 time 14 m 3 m

ARTCSC(20,9) 1532 1270 635 time mem 27 m

ARTCSC(30,9) 2312 1910 955 time mem 1.5 h

ARTCSC(40,9) 3092 2550 1275 time mem 3.5 h

ARTCSC(50,9) 3872 3190 1595 time mem 7 h

Table 1: CSC detection for well-structured STGs.

has 2312) implying an exponential growth of the un-
derlying state space. Therefore the check of CSC/USC
for this benchmarks is a hard task.

The experiments for CSC/USC detection are presented in
Tables 1 and 2. Each table reports the CPU time of each
approach in seconds. We use ‘time’ and ‘mem’ to indicate
that the algorithm did not complete in less than 10 hours
or produced memory overflow, respectively. The tools for
comparing the experimental results are:

• CLP: the approach presented in [12] for the verification
of USC/CSC. It uses non-linear integer programming
methods and the unfolding of the net.

• SAT: the approach presented in [11] for the verification
of CSC2. It uses a satisfiability solver and the unfolding
of the net.

• ILP: the approach presented in this paper.

From the results one can conclude, as it was expected,
that checking USC is simpler than checking CSC, given the
different nature of the two problems. Moreover, when some
encoding conflict exists, the ILP solver can find it in short
time. This is explained by the fact that proving the absence

2Checking for USC is not implemented in SAT

benchmark |P | |T | |Σ| CLP ILP

PPWK(3,9) 106 56 28 10.53 0.03

PPWK(3,12) 142 74 37 876.63 0.05

PPWKCSC(3,9) 108 56 28 2002.29 0.67

PPWKCSC(3,12) 144 74 37 time 1.17

PPARB(3,9) 128 72 34 0.01 0.06

PPARB(3,12) 164 90 43 0.00 0.08

PPARBCSC(3,9) 131 72 34 time 1.05

PPARBCSC(3,12) 167 90 43 time 1.69

TANGRAMCSC(3,2) 142 92 38 0.01 1.07

TANGRAMCSC(4,3) 321 202 83 0.06 6.52

ART(40,9) 876 798 399 146.02 1.26

ART(50,9) 1096 998 499 328.04 1.95

ARTCSC(40,9) 3092 2550 1275 time 14 m

ARTCSC(50,9) 3872 3190 1575 time 23 m

Table 2: USC detection for well-structured STGs.

of encoding conflicts requires an exhaustive exploration of
the branch-and-bound tree visited by ILP solvers. The su-
periority of ILP with respect to CLP and SAT is evident.

Table 3 shows experiments on synthesis to check the qual-
ity of the generated circuits. The column ’Lit’ reports the
number of literals, in factored form, of the netlist. The re-
sults are compared with the circuits obtained by petrify [5],
a state-based synthesis tool, on the same controllers. From
the reported CPU time, the time needed for computing a
support and for projection was negligible when compared to
the time needed for deriving logic equations.

TheTangramCsc(4, 3) example, shown in Figure 5, illus-
trates the suitability of our approach for the synthesis of
specifications generated from a HDL. According to [1], the
cost of implementing the handshake components is the fol-
lowing3:

Component C-elements 2-input gates literals
2-way sequencer (;) 1 2 9
2-way parallelizer (||) 3 4 23
2-way mixer (M) 2 1 12

The circuit in Fig. 5 has 3 sequencers, 8 parallelizers and
9 mixers: 319 literals. This would be the cost obtained by a
syntax-directed translation. The cost obtained by logic syn-
thesis methods is significantly smaller. Table 3 also shows
that the quality of the circuits obtained by the ILP-based
technique is comparable to that of the circuits obtained by
petrify.

7. CONCLUSIONS
As asynchronous design matures, the role of high-level and

logic synthesis becomes more relevant. As the complexity in-
creases, the level of abstraction at which behavior is specified
also increases. Therefore, the behavioral structures gener-
ated by high-level synthesis tools tend to be well-structured.

Logic synthesis from event-based models can take advan-
tage of structured specifications by using algebraic tech-
niques, such as the one presented in this paper. Though
in some cases, these techniques can be conservative, they
can always be used as a pre-process to more sophisticated
methods that provide more accuracy at the expense of more
computational cost. We foresee to see new efforts in this di-
rection as asynchronous circuits have more widespread use.

3A C-element is assumed to cost 5 literals: c = ab+c(a+b).

824

benchmark states |P | |T | |Σ| Lit. CPU

Pfy ILP Pfy ILP

PPWKCSC(2,6) 8192 47 26 19 57 57 5 1

PPWKCSC(2,9) 524.288 71 38 19 87 87 49 2

PPWKCSC(3,9) 2.7× 107 106 56 28 – 130 mem 3

PPWKCSC(3,12) 2.2× 1011 142 74 37 – 117 time 3

PPARBCSC(2,6) 61440 62 36 17 77 77 21 83

PPARBCSC(2,9) 3.9× 106 110 60 29 107 107 185 59

PPARBCSC(3,9) 3.3× 109 131 72 34 163 165 10336 289

PPARBCSC(3,12) 1.7× 1012 167 90 43 – 210 time 608

TANGRAMCSC(3,2) 426 142 92 38 97 103 56 146

TANGRAMCSC(4,3) 9258 321 202 83 – 247 mem 2 h

Table 3: Support computation, projection and synthesis compared to state-based approach.

Acknowledgments
This research was supported by the SEGRAVIS (Syntactic
and Semantic Integration of Visual Modeling Techniques)
contract HPRN-CT-2002-00275 and the Ministry of Science
and Technology of Spain, contract TIC2001-2476-C03-02.

8. REFERENCES
[1] Kees van Berkel. Handshake Circuits: an

Asynchronous Architecture for VLSI Programming,
volume 5 of International Series on Parallel
Computation. Cambridge University Press, 1993.

[2] G. Berthelot. Checking Properties of Nets Using
Transformations. In G. Rozenberg, editor, Advances in
Petri Nets 1985, volume 222 of Lecture Notes in
Computer Science, pages 19–40. Springer-Verlag, 1986.

[3] J. Carmona, J. Cortadella, and E. Pastor. A
structural encoding technique for the synthesis of
asynchronous circuits. Fundamenta Informaticae,
50(2):135–154, March 2002.

[4] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits
from Graph-Theoretic Specifications. PhD thesis, MIT
Laboratory for Computer Science, June 1987.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. Logic Synthesis of
Asynchronous Controllers and Interfaces.
Springer-Verlag, 2002.

[6] Al Davis and Steven M. Nowick. An introduction to
asynchronous circuit design. In A. Kent and J. G.
Williams, editors, The Encyclopedia of Computer
Science and Technology, volume 38. Marcel Dekker,
New York, February 1998.

[7] J. Desel and J. Esparza. Reachability in cyclic
extended free-choice systems. TCS 114, Elsevier
Science Publishers B.V., 1993.

[8] J. Desel and J. Esparza. Free-choice Petri Nets,
volume 40 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1995.

[9] Doug Edwards and Andrew Bardsley. Balsa: An
asynchronous hardware synthesis language. The
Computer Journal, 45(1):12–18, 2002.

[10] Robert M. Fuhrer. Sequential optimization of
asynchronous and synchronous finite-state machines.
PhD thesis, Columbia University, NY, 1999.

[11] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting
state coding conflicts in STG unfoldings using SAT. In

Int. Conf. on Application of Concurrency to System
Design, June 2003.

[12] Victor Khomenko, Maciej Koutny, and Alex Yakovlev.
Detecting state coding conflicts in stgs using integer
programming. In Proc. Design, Automation and Test
in Europe (DATE), pages 338–345, 2002.

[13] Kenneth McMillan. Using unfoldings to avoid the state
explosion problem in the verification of asynchronous
circuits. In G. v. Bochman and D. K. Probst, editors,
Proc. International Workshop on Computer Aided
Verification, volume 663 of Lecture Notes in Computer
Science, pages 164–177. Springer-Verlag, 1992.

[14] Stephan Melzer and Javier Esparza. Checking system
properties via integer programming. In European
Symposium on Programming, pages 250–264, 1996.

[15] David E. Muller and W. S. Bartky. A theory of
asynchronous circuits. In Proceedings of an
International Symposium on the Theory of Switching,
pages 204–243. Harvard University Press, April 1959.

[16] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig.
Structural methods for the synthesis of
speed-independent circuits. IEEE Transactions on
Computer-Aided Design, 17(11):1108–1129, November
1998.

[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical
report, U.C. Berkeley, May 1992.

[18] Manuel Silva, Enrique Teruel, and José Manuel
Colom. Linear algebraic and linear programming
techniques for the analysis of place/transition net
systems. Lecture Notes in Computer Science: Lectures
on Petri Nets I: Basic Models, 1491:309–373, 1998.

[19] Peter Vanbekbergen. Synthesis of Asynchronous
Control Circuits from Graph-Theoretic Specifications.
PhD thesis, Catholic University of Leuven, 1993.

[20] Chantal Ykman-Couvreur, Bill Lin, and Hugo
de Man. Assassin: A synthesis system for
asynchronous control circuits. Technical report,
IMEC, September 1994. User and Tutorial manual.

825

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

