Microprocessing and Microprogramming 38 (1993) 429-436

North-Holland

429

Resource-Constrained Pipelining Based on Loop Transformations

F. Sanchez and J. Cortadella™

“Polytechnic University of Clatalonia, Dep. of Computer Architecture,
Campus Nord, Modul D6, Gran Capita s/n, Barcelona-E08071, Spain

E-mail: fermin@ac.upc.es and jordic@ac.upc.es

In this paper a novel techuigne for resource-constrained loop pipelining is presented. RCLP is based on
several dependence graph operations: loop unrolling, operation retiming, resource-constrained scheduling, and
span reduction. All these operations are focused to find a minimnm length schedule able to be executed with a
limited number of resources and thus maximizing resource utilization. The results obtained show that RCLP is
superior to the existing software-pipelining-based approaches. This technigne has also been evaluated with 300
randomly generated loop depedence graphs. In all cases a time-optimal schednle has been found.

1. Introduction

In order to exploit the parallelism inside the
loops, different. software pipelining techniques [1]
have been developed. Technigues to achieve soft-
ware pipelining fall into three broad classes: loop
Jolding[2] techniques, loop winding[3] techniques
and loop unrolling[4] technignes.

Loop winding techniques optimize loops by in-
troducing partial overlaps between the execution
times of successive loop iterations. attempting to
lind an execution window. This window usually
contains one loop body, with operations belong-
ing to different. iterations of the loop. Functional
pipelining techniques [5] are a special case of loop
winding techniques. These techniques allow a
new iteration 7 to start hefore the execution of
the iteration i — | have been completed

Loop folding techniques are based on retiming
loop operations [6] in order to find an optimal
schedule containing operations helonging to dif-
ferent. iterations. Modulo Seheduling techniques
[7] are a particular case of loop folding techniques.
They use the resource and recurrence constraints
to determine a tight lower bound on Initiation
Interval and delay operations in order to resolve
resource conflicts.

Loop unrolling techniques are based on un-
rolling the loop and compacting operations un-
til an execution pattern is found. In general, the
loop is unrolled and compacted until a repeated
pattern is found.

*This work was supported by CYCYT TIC-91-1036

In this paper we present RCLP, a new tech-
nique based on loop unrolling and retiming. It
can be considered a loop folding technique, in
which the new loop body is composed of several
loop iterations. RC'LP exploits parallelism inside
and across loop iterations under resource con-
straints, attempting to find a schedule with maxi-
mum resources efficiency and minimum span. Al-
though resource-constrained scheduling is an NP-
hard problem [8], the results obtained show that a
time-optimal solution can be found in most cases.

The paper is organized as follows. Section 2
contains the basic definitions used in the paper.
Section 3 describes loop transformations and
the loop pipelining algorithm without resonrce
constraints. Section 4 describes the resource-
constrained loop pipelining algorithm. Section 5
presents the results and compares them with the
results obtained by other methods. Finally, sec-
tion 6 concludes the paper.

2. Basic Definitions

2.1. Representation of a loop

Our scope will be limited to single nested DO-
like loops whose body is a basic block, i.e. neither
containing other conditional nor loop statements
in the loop hody. We will also assume any funec-
tional unit (resource) can execute any operation
in one cycle.

In DO-like loops, the number of executed itera-
tions is known before the execution of the loop. If
the loop executes K times, iteration i will denote
the i-th execution of the loop body. It will he

430 F. Sanchez, J. Cortadella

assumed, without. loss of generality, that 7 ranges
between 0 and N — 1. If v is an operation of the
loop, u; will denote the execution of operation u
at the i-th iteration. Data dependences between
operations of a loop fall into two categories: Local
dependences between operations from the same
iteration (u; and v;) and lobal or Loop-carried
dependences hetween operations from different
iterations (u; and vj, i < j).

A loop will be represented by a triplet called
m-graph, @ =< (/, A\, 8 >, where G/(V, E), the de-
pendence graph, is a directed graph and A (inder)
and & (distance) ave two mappings A : V — N
and 6 : B — N. Each vertex » € V represents an
operation of the loop body. The number of op-
erations of the loop will be denoted by Ir. Each
edge ¢ = (u,v) € F represents a depedence be-
tween operations u and v.

In general, an edge (u,v) represents a
dependence between operations wipay) and
Viga(m)4+a(u,0)s Where £ € A Gralically, it will be

. Mu.a)
depicted as uy)y — vx)-

We denote as milial w-graph a w-graph
=< (A, 8> in which Yu € V, A(u) = 0.

Definition 2.1 : Equivalent m-graphs
=< G No> and ' =< (. N, 8 >, are lwo
equivalent. w-graphs (vepresent the same loop)

if Y(u,v) € E
A(0) = A(u) + 6(u,v) = N(r) = AN (u)+ 8 (uw,v)(1)

Definition 2.1 states that a dependence can he
represented by different mappings, A and 4. as
far as equation 1 is fullilled. This is the key fea-
ture used in our proposal. which searches for the
appropriate mappings A and & that allow sched-
ule operations to achieve a maximum pipelining
degree.

Definition 2.2 : (7, (Schaeduling Graph)
The scheduling graph of a m-graph is a graph,
Gx(V, Ex), in which E, = {¢e € E | §(e) = 0}.

(/5 contains all local dependences of w. Given
a m-graph 7 =< (/, A.d >, we will define a local
path p in G as a path in (/. The length of a
path p is the number of vertices traversed by p.
and can be caleulated as I(p) = [p| + 1.

We will denote as a mazimal local path (MI.1)
a local path not included in any other local path.
The longest. of the MLPs is called critical path.
If a local path is maximal then there is a ver-
tex u such that for all (z,u) € E,é(x,u) > 0.
Otherwise the path would not be maximal. Ver-
tex u will be called the head vertex of the path.
Likewise, the vertex v such that for all (»,2) €
E,8(v,2) > 0 is called the tail vertex of the path.

Since dependences induce a partial ordering on
the execution of operations, a loop schedule is
an assignment. from the loop body aperations to
execution cycles so that dependences are fulfilled.

Definition 2.3 : S(7) (Schedule of 7)
A schedule of a w-graph 7 is a mapping
S Vo= N that fulfils V(u,v) € Ex, S(u) < S(r).

Definition 2.4 : [Ty (Initiation interval of
a Schedule)
The initiation interval of a schedule S(7) is

Hg(x) = l':xen‘;(..%'(u) - :‘n€l‘l’l S(u) + 1

IT denotes the interval between the initiation of
two consecutive iterations in the schedule. [T also
denotes the munber of eycles of the schedule.

Definition 2.5 : 7T, (Execution Time of 7)
The execution time of a m-graph, Ty, is the
length of the critical path in its scheduling graph.

Given a m-graph, Ty defines the minimum nuni-
ber of cycles required to execute the loop hady
represented by w. Ty also indicates the minimum
number of cycles between the initiation of consec-
utive iterations for any schedule of 7. Therefore,
for any schedule S(7), Hg(x) > Tx.

2.2. Minimum initiation interval and Par-
allelism of a loop

A loop can be represented by different and
equivalent. m-graphs. While Ty is a property of
each m-graph, the minimum iniliation inlerval
and the parallclisin are properties of the loop it-
self, and not of its representation. For this rea-
son, the terms minimum initialion interval of a
loop and minimum initiation interval of a w-graph
will be indistinetly used, and denoted by M/, as

Resource-constrained loop pipelining 431

well as parallelism of a m-graph and parallelism
of a loop, denoted by Pr. The parallelism of a
w-graph is the average number of operations exe-
cutable in a cycle when the loop is executed with
its minimum initiation interval.

We will show the minimum initialion interval
can be computed by considering only the initial
w-graph of the loop.

A loap with no recurrences (also called wvec-
tor loop) has MII; = 0. Finding a time-optimal
schedule for a veetor loop is an easy task [9], and
lias no interest to the scope of this paper. Recur-
rences delimit the degree of parallelism achievable
for a loop (loop with recurrences are called recur-
rent loops). Our interest is focused on pipelining
of recurrent. loops.

Let us call R the set of edges that form a recur-
rence and |R| the number of elements in R. Let
us define oy as

= Z S(u,v)

(uv)el

For any operation u such that (v.v) € R, w;
mnst be scheduled at least | R| eyeles before wigsp,.

Lot us call Lg (latency of a recurrence) the
minimnm number of cycles hetween the execu-
tion of u; and w4, (initiation of consecutive iter-
ations) imposed by recurrence . Then Lg = %1

Figure 1(a) depicts a loop with one recurrence
It and Lz = 2, thus indicating that an iteration
can be initiated every two cyeles. An equivalent
a-graph and its corresponding schedule are shown
in Figures 1(b) and I(c). In general it will be
neccessary to include a prolog and an epilog for
the correct. execution of the loop[9)].

Definition 2.6 : MIl; (Mininmun initiation
interval of)
The minimum initiation interval of 7 s

i C— iax L

MIT, 'l}"(_:,‘z R

Theovem 2.1 If © and 7 are equivalent w-
qraphs, then MIly = MIlz. Proof: see [9].
Theovem 2.2 Ty > M. Proof: see [9].

MII, can he found in polynowmial time by using
Karp's algorithm [10] to calculate the weight of
the mintmum mean-weight eyele in o graph.

(a)

(A9
‘ 1
By
@ (c)

Prolog loop body

Aoi Bol Ari By JAiBis| . JAkaBi
Co| Do: G| | D; iCina 2Cx1| Dk

-

time

Figure 1. Scheduling of an R-loop

Deofinition 2.7 : P, (Parallelism of)
The parallelism of a w-graph is Px = m’-h—

Definition 2.8 : Py, (Parallelism of S(7))
The Parallelism of a Schedule is the average

number of imstructions per cycle issued by the

schedule: Pgiyy = 1
schedule S(r) -n—::

Definition 2.9 : Sran(w) (Span of 7)
The span of a w-graph is defined as

S = max —mi
PAN(T) 1'2161‘5/\(01) :‘ly‘l)z\(u)+l

3. Loop pipelining without resource con-
straints

3.1. m-graph Transformations
3.1.1. m-graph unrolling

We are interested in finding a w-graph in which
Ty = MII,. This is only possible when MII; is an
integer, since Ty denotes a number of cyeles. In
general, a w-graph representing multiple instances
of the loop body will be required to force MII; to
be an integer value. It will be called a mulliple-
instanced w-graph (M-graph).

An M-graph can be obtained by unrolling m
times the original mgraph. The M-graph is
another mitial w-graph @™ in which each oper-
ation and each dependence have been replicated
m times.

For each vertex A representing operations A;
in m, ¥ has m vertices (A%, A',..., A7), so
that each .\ represents all the operations A; such

432 F. Sanchez, J. Contadella

that i modm = j. Likewise, for each depen-
d 3 :
dence A — B in m, there will he m dependences
s { P . .
A WM gl dymodm . am Figure 2 shows an

example of w-graph unrolling.

Figure 2. w-graph wnrolling

7w and 7™ represent. the same loop. However

the body of the loop represented by 7™ will he
executed only ;!,‘7 times (minus some constant that.
depends on the prolog and epilog).

Theovem 3.1 MIlewm = mMIl,. Proof:See [4].

An M-graph with integer Trm = MIIym can he
obtained as follows:

I. Let 7 be the original m-graph, with

Mil, = &

2. Caleulate m = m (to generate the

smallest M-graph with integer MII)

3. Generate 7™ = wnroll (w.m). The mini-
mum initiation interval will be
Milim = —*—

ged(a,b)

3.1.2. Shifting local dependences
This section proposes shifl_local, a transforma-
tion to decrease the execution time Ty of a #-

graph nntil MIT,.

"b
>()

-1
-1

Figure 3. Shift Local Transformation

The function Shift_local transforms a local de-
pendence e = (u,v) into a global dependence by
performing the following steps:

o N(u):=Au)+1
o Y(u,z) € E, §(u,z) := b(u,2) + 1
e V(z,u) € E, §(z,u) :=8(x,u) — |

However, shift_local may create new local
dependences?. Figure 3 illustrates how the trans-
formation operates. Shift_Local always generates
an equivalent m-graph [9].

3.2. Finding a w-graph with T, = MII,

In order to find a w-graph such that Ty = MII,,
the length of the critical path must be equal to
MII; (see definition 2.5). Thus, if Ty > MII,
then 7 must be transformed to reduce T5.

Given a m-graph =, the following algoritlin
finds a m-graph ' with Ty = MII,:

function find_min_z-graph (7);

o R Y 5
M= i
7' = unroll(w, m);

while 3 MLP pin 2’ with [(p) > MII, do
e := head_edge(p);
7' = shiftlocal (7', ¢)

endwhile;

return(w’);

end:

Find_min_w-graph always halts and can be ex-
ecuted in O(E)-time [9).

Figure 4 shows an example of finding a 7-graph
with minimum execution time by creating first an
M-graph with integer MIT and then reducing the
critical path on the scheduling graph.

4. Resonrce-Constrained Loop Pipelining

4.1. Basic Definitions

In this section we propose a method that at-
tempts optimal loop pipelining with resource con-
straints. We will denote by SN (7) and Ign ., a
schednle and the initiation interval of a sched-
ule constrained to the use of N resources (R(-
schedule).

2[n order to guarantee the generation of a legal m-graph
(Ve € E,\(¢) > 0) we always apply the transformation
to a dependence e = (u,v) such that u is the head vertex
of an MLP. An equivalent transformation can be easily
derived for the tail vertex of an MLP.

Resource-constrained loop pipelining 433

(c) (d)

Figure 4. Finding a m-graph with minimum Tom .
() Initial m-graph = (MIIl; = 3/2). (b) M-graph
72 (MIlzz = 3,Ty2 = 4). (¢) Transformed n-
graph 72 (T = 3). (d) Sehedule,

Deofinition 4.1 Ugn () (Resouree Utilization
of SN (7))
The Resource Utilization of an RC-schedule s
i s [= Ix . Fes
defined as Ugn) = m llsnix) € (0,1]

l/sn(xy = | denotes the case in which all the
resources are fully used during the execution of
the loop. In order to evaluate the merit of an
RC-schedule we deline the Mazomwm Ulilization
of Resources, which is an upper bonnd of the re-
source utilization ol any RC-schedule for a given
number of resources.

Definition 4.2 /N, (7) (Maximum Utiliza-
tion of Resources)

The Maximum Utilization of Resources of any
RC-schedule for a given m-graph is

1‘ .
'N — _/V‘. lfN > T’[
,'mur(") - { l lfN S ’px
Definition 4.3 Pgw(r) (Parallelismm of SN (7))
The Parallelism of an RC-schedule can be de-

ined as Py = le— = Nlf¢n
Jined SMEmS Tl SN(x)

4.2. Finding an RC-schedule with maxi-
mum Utilization of Resources
4.2.1. Graphic Representation of (IT,m)
The pairs (IT,m) can be represented in a dia-
gram as shown in Figure 5(a). A pair (I, m) rep-
resents the fact that m iterations are executed in
IT cycles. Therefore, given a loop represented by
7 and a number of resonurces N, each pair (IT,m)
represents a potential schedule in which resource
utilization can be also denoted by /(I1,1n). Thus,

(I, m) = 1/’\'/—',7

m U (II.m) =l
U 28
6 (ITun) = =
4 =
3
b il

35 49 14 1|4

UTlm) 1 1 36 51 5 15
In RSV ST 5 10
m 3 6 5 7] 2 4

(h)

Figure 5. (a) Graphic representation of pairs
[I(IT,m), with N = 3 and I = 7. (b) Generation
of pairs (II.m) in decreasing order of [/(II,m)

Our goal is to find an RC-schedule with max-
imum resource utilization (Ugn(zmy = [N (7).
RCLP explores pairs (I,m) in decreasing order
of U(IT, m) until a schedule with Mgy gm) = ITis
found. Since the space (II,m) is not finite it. can-
not. be fully explored. For this reason, we restrict.
the maxinmum number of cycles (IT,4-) of any
schedule.

4.2.2. Generation of pairs (I1,m)

The resource utilization of any RCl-schedule of
7" in IT cycles can be represented by the fraction
5 = 2e [y order to generate all the possible

values for (IT.mn) in decreasing order of (7(I1,m),

434 F. Sanchez, J. Cortadella

we use the recurrent definition of Farey’s # se-
ries [11] and the solutions of the resulting linear
diophantine equation NIl —yml; =0

Figure 5(b) shows an example of the generated
pairs for the diagram of Figure 5(a).

4.2.3. m-graph Transformations and
Resource-Constrained Scheduling

The algorithm to find an RC-schedule with
maximum utilization of resources explores the
pairs (IT,m) until a schedule SV (™) such that
[gn(zmy = ITis found. For each pair (1T, m) such
that (7(I1,m) < UN_ _(7), 7" is built and itera-
tively transformed by using shift_local. After each
transformation the m-graph is scheduled in order
to check whether ITgnzm) = [T or not.

A Tunction is defined to heuristically evalnate
the goodness of a m-graph for scheduling, and pro-
vide a criterion to quit the search when a schedule
with length IT has not been found. The two main
parameters considered by the function betier are
the length of the eritical path and the number of
local dependences in the grapli. The algorithim to
find a RC-schedule is next sketelied:

function find_schedule (m N .II,m):boolcan:

7' = unrroll(m,mn); {builds 7™}
xit =l
Repeat

sch:=scheduling(#", N);
if (ITg(ze Ny = 1) return(true);
selected:=select edge(a” | ¢);
{sclects head edge or tail edge}
if (selected) then
mark_edge(7”.¢):
7 = shifl local(n”, €);
if better(n”, 7') then

ri=a
unmarkedges(7');
endif

endif
Until not(selecled) ;
rotwrn (false)i{schedule not fonnd}
end

Among all the existing scheduling algorithms

YThe Farey series [y,] contains in inereasing order of
magnitude all the fractions with denominator lower than
or equal to Nl

we have chosen List Scheduling [12] for its effi-
ciency and low time complexity. However, the
proposed approach does not preclude the nse of
other scheduling algorithms.

INITIAL T-GRAPH

Compute of
initial I and m

Y

Transformations of 7T and
schedule generation SN(TT™)

Generate next value

for [T and m
IoN, =l
NO SNI™ T
YES
found SN(TT™)
Span reduction
SCHEDULE OUTPUT

Figure 6. General view of RCLP

4.2.4. Span reduction

Once an R(-schedule has heen found we try to
reduce the span while mantaining ITgn zny = II.
A reduction in the span results in:

o A reduction in the size of the prolog and the
epilog.

e A reduction in the number of registers
needed to store temporarily results across
iteratfons.

The idea of the algorithm is as follows: First,
the maximum value for A(u) is computed by ex-
ploring all nodes of the graph. Then, this value is
iteratively deereased until a graph with mininnnn
span is found (SPAN = m). The graph is trans-
formed (by means of shift_local) and scheduled at
each step by looking for a schedule of IT cycles.
The final schedule is the last found schedule in
which ITgn(zmy = II.

Figure 6 shows in a flow diagram the steps
followed by the method.

Resource-constrained loop pipelining 435

5. Results and comparison with other
methods

1,Cy Fs Nl l(ll T\:" :alllh_/lll(A.l ';u(j'u-ln KoMyA,
13, Ps QsRsKlg aiNply ¥4 ‘o Ho Nty
I{:(i:.l: ‘,', ‘7 i P, Qu Ry K1 DBy l’.,()(.R.,BldlL;

SPAN =5 SPAN =2 SPAN =2
N=7 N=7 N=6
(h) (c) (d)

Figure 7. Comparison between dilferent methods
(a) An example of m-graph (b) Sehedule obtained
by using perfect. pipelining (¢) Schedule obtained
by using the algorithm described in [3] (d) Sched-
ule obtained by using RCLP

In order to compare the proposed technique
with other methods we will nse the example used
by Cytron [13] and shown in Figure 7(a). Fig-
ures 7(b) and 7(c) depict the schedule obtained
by Perfect. Pipelining [14] and the technique pro-
posed in [15] respectively.

None of these techniques has been devised for
resonrce-constrained scheduling and, therefore,
the mininunn number of required resources is
given. [I14] obtains a schedule with maximum
parallelism degree. [15] obtains a schedule with
the same resource utilization and the same paral-
lelism as [14] with smaller span. Both techniques
use seven resources (N = 7). We obtain a sched-
ule that requires only six resources (N = 6), while
mantaining the same parallelisim and span as [15],
thus improving resource utilization.

In summary, RCLP optimizes iniliation inler-
val, resource utilization and span (thus reducing
size of the prolog and the epilog).

We have tested our approach with 300 ran-
domly generated loops, attempting to find RC-
Schedules with a different number of resources. In
all cases we have always obtained RC-Schedules
with maximum resource utilization.

Figure 8 depicts some illustrative examples of
these randomly generated loops and some RC-
Schedules with different number of resources.

6. Conclusions and future work

We have presented a novel techinique for
resotirce-constrained loop pipelining. The
method is based on transforming the dependence
graph of the loop into another one where the loop
has been unrolled and the operations have been
retimed. The method optimizes initiation inter-
val, span and resource utilization of the schedule.

Experiments done with a large number of ran-
domly generated loops and benchmarks proposed
in the literature show this technique is superior to
the current existing ones and time-optimal sched-
ules can be obtained in most cases.

As future work. extensions to multi-cyle oper-
ations and pipelined functional units are forseen.

Acknowledgments
We wounld like to thank Mare Noy for his helpful
comments about Farey’s series.

REFERENCES

I. Lam.M. ™A Systolic Array Optimizing Com-
piler™ PhD lhesis, Carnegie Mellon Univ,
1987.

2. Goosens, (i., Vandewalle, J. and De Man,
H. “Loop Optimization in Register-Transfer
Scheduling for DSP systems”. [EEE Design
Aul. Conf., 1989, pp. 826-831.

3. Girezye, E.F. “"Loop Winding- A data flow
approach to Functional Pipelining” Proceed-
imngs of the IPEE [SCAS, May 1987, pp. 382-
385.

4. Aiken, A. and Nicolan, A. "Perfect. Pipelin-
ing: A new Loop Parallelization Technique®.
Proc of the 1988 Furopean Symp. on Pro-
gramming March 1988. Springer Verlag Lee-
ture Notes in Compuler Science

436

r

P=06

‘mmt (Fe-(a)

F. Sanchez, J. Cortadella

A, By Co Ep Ly MiP
A-,D‘,)E? L°N A
Bl lHulo L, 00

US(K'“.N)=32 / 35

By Dol Usi"w=1 B Col Usix" =1 N=7
o Di| N=2 ACDIEH] Nss Kk ,MzN O} P| m=2; SPAN=3

B g‘" m=2; SPAN=2 m=1; SPAN=2 221 ey
|) i ————] BJBI Bz FO GoTo B —————) A Bo CO EO LO M P‘

Al E| Us™n=5/6 [AuCoDyEq Fl H, U™ =6 /7 82 ([?l E, lG L(,N 5(,8(, Ug(xm ny=4 /5

l 0 l 1 =

AoCoD)| N=3 Cll) F, Gzl-i I, N=7 D1 H, K . i
1Eo | m=1; SPAN=2 Aacq D, E, H, L m=3: SPAN=4 |F, Go 1, m=2; SPAN=3
(@) (b) (c)

Figure 8. Three randomly generated loops and some RC-Schedules
Park, N. and Parker, A.(", “Sehwa: A sofi- matics, 23, 1978 : pp. 309-311.

9.

9.

10.

ware package for synthesis of pipelines from
behavioral specifications™. [EEE Trans. on
Compulter-Aided design. March 1988, pp. 356-
370.

Leiserson, CLE. and Saxe, J.I.
synchronous circuitry™
pp. H-35.

Ran, B.R. and Glaeser, ('.D. “Some schedul-
ing techniques and an easily scheddulable hor-
izontal architecture for high performance sci-
enlific computing™. roc. of the fourteenth
Aunual Work. on Microprog., Oct. 1981, pp.
183-198

Garey, M. R. and Johnson, D.S. "A Guide
to the theory of NP-Completeness”. W. I1.
Freeman and Company, 1979,

Sinchez, F. and Cortadella, J. "RCLP:
A novel approach for Resource-Constrained
Loop Pipelining”. Technical Report, CEPRA,
num. 93/06. May, 1993.

Karp, R. " A characterization of the minimnm
cycle mean in a digraph™. Discrete Mathe-

”Retiming
. Algorithmica, 6, 1991,

14.

3. Cytron, R.

. Cheng-Tsung

. Schroeder, M. R. ”Number theory in Seience

Communication™. S‘prin.gf'r- Verlag,1990.
Davidson, S. et al. ”Some experiments in lo-
cal microcode compaction for horizontal ma-
chines". IEEE Trans. Compul., July 1981,
pPp.460-477.
"Compiler-Time Scheduling and
Optimization for Asynchronous Machines”.
Ph. D. thesis, Univ. of Hlinois al rbana-
Champaign. 1984.
Aiken, A. and Nicolau, A. "Optimal loop par-
allelization™. Proc. of the 1988 ACM SIC-
PLAN Conf. on Prog. Lang. Des. and hap.,
1988, pp. 308-317.
Hwang, Yu-Chin [lsu
Youn-Long Lin. ”Scheduling for
tional Pipelining and Loop Winding”.
ACM/IEEE Design Automalion
encelune 1991, pp. 764-769.

and
Fune-
20th
('unﬁ‘ -

“Microprocessing
and

Microprogramming

VOLUME 38, NUMBERS 1-5 ISSN 0165-6074
SEPTEMBER 1993 } % _862

il AT

S i Tk

