High-Level Synthesis of Asynchronous Systems:
Scheduling and Process Synchronization*

Rosa M. Badia

Jordi Cortadella

Polytechnic University of Catalonia, Dept. of Computer Architecture.
Campus Nord, Modul D4. Gran Capita s/num. Barcelona, E-08071

Abstract

Asynchronous systems are gaining acceplance as
the size and complezity of digital circuits increase.
Concordantly, synthesis tools for asynchronous sys-
tems must be developed to make design process eas-
ter. This paper aims at the definition of basic con-
cepts for scheduling algorithms and control synthe-
sis in high-level synthesis of asynchronous circuits.
Two scheduling strategies are presenied and evaluated.
Ezperiments on different benchmarks show that effi-
cient asynchronous schedules can be obtained. Control
s modelled in a distributed fashion with Local Con-
trollers synchronizing belween them by means of hand-
shaking protocols.

1 Introduction

Asynchronous circuils present properties that meet
the requirements for large, complex systems [1, 2}: no
clock skew, modular interconnectivity, low peak cur-
rents, and performance determined by average pro-
cessing speeds. The design of asynchronous systems
based on self-timed circuits [1] has been more broadly
accepted in the last years. Most work on design au-
tomation for asynchronous systems has been focused
to logic synthesis of sequential machines [3]. Cur-
rently, significant effort 1s being invested in the syn-
thesis of hazard-free circuits from Signal Transition
Graphs [2], initially proposed by Chu [4] to describe
the behavior of asynchronous sequential machines.

Other approaches synthesize asynchronous cir-
cuits from high-level specifications by syntax-directed
translation, according to production rule sets. In [5]
and [6] a similar strategy is used to translate CSP
into delay-insensitive circuits. We cannot consider,
however, these approaches within the category of high-
level synthesis, since no attempt is done to improve the
quality of the circuit (size and performance) by using
optimization techniques like operation scheduling and
hardware allocation [7]. Syntax-directed translation
generates circuits whose size depends linearly on the
size of the input description [5].

The efforts on high-level synthesis [7] have been
mainly focused to synchronous designs. A clear ev-
idence of this tendency is that the proposed schedul-

*Work funded by CYCIT TIC 91-1036 and ACID-WG (Es-
prit 7225)

1066-1409/93 $03.00 © 1993 IEEE

70

ing algorithms [8, 9] are based on the concept of con-
trol step—i.e. time is measured in cycles, and cycle
time is determined by the worst-case delay of all the
operations executed 1n a control step. Only Ku and
De Micheli [10] consider the possibility of having syn-
chronous operations with unbounded delays.

From the point of view of the timing model used
for operation scheduling and control synthesis, asyn-
chronous systems present two significant differences:

e Time is considered as a continuous vartable and ini-
tiation and completion of operations are events that
can occur at any Instant.

o Operations have variable, data-dependent delays.

Therefore, different scheduling strategies must be con-
ceived if an asynchronous timing model is considered.

This paper aims at the definition of basic con-
cepts, data structures, and primitive functions for
asynchronous scheduling algorithms and control syn-
thesis.

The paper is organized as follows. Section 2 de-
scribes the architecture model considered for the asyn-
chronous execution of operations. Section 3 presents
an overview of a high-level synthesis system. Sec-
tion 4 defines the basic data structures and functions
proposed for scheduling algorithms and presents two
algorithms for operation scheduling. Section 5 de-
scribes the connection between module binding and
process synchronization and how control can be syn-
thesized. Conclusions and future work are presented
in section 6.

2 Asynchronous Architecture Model
A high-level synthesis system requires a target ar-
chitecture model for the mapping of high-level objects
(operations, variables, data transfers) into hardware
modules (ALUs, registers, multiplexors). This section
presents a short summary of the architecture model
proposed in [11] (only details referring to operation
scheduling and control synthesis will be described).

2.1 Data-Path

The data-path is composed of self-timed blocks
(ALUs, registers, multiplexors, etc) synchronized by
means of a handshaking protocol implemented with
two signals: request and completion [1]. Registers

are implemented as latches (the request signal indi-
cates when latching must be initiated). Each hardware
module is considered a process which executes opera-
tions and synchronizes with other processes when data
transfers are required.

2.2 Distributed Control

[E D e

4
e R\ e Data-Path s
4 Local Block -~
Le Global
Signals
Lc P
Hg H

—Tocal Register "‘,'
Global *~Signals .-
Signals ~ Ttttteeeseeaceeeesest

Figure 1: Local Controllers organization

Control is completely distributed in such a way
that for each data-path block (or a group of data-
path blocks) there is a local controller (LC). A local
controller has two types of handshaking signals (see
figure 1):

o Local signals: request and completion signals for the
synchronization with the data-path block being con-
trolled and other signals such as the operation code
for ALUs or the selection code for multiplexors.

e Global signals for the synchronization associated
with data transfers between blocks.

The granularity of the control distribution may vary
for the sake of the circuit performance. Hereafter and
without loss of generality, we will consider that an LC
exists for each computation block (or register) and its
input multiplexors.

The execution of an operation has the following
steps:

1 Input data are read from registers.

2 Multiplexors transfer input data to their corre-
sponding functional unit input.

3 Operation is executed in a functional unit.
4 Multiplexors transfer output data to a register
5 Output data is latched into a register.

3 High-Level Synthesis: an Overview
The system input is a behavior description of the
circuit described by a Control Data Flow Graph
(CDFG). The first step performed is Scheduling and
Allocation (figure 2). Allocation selects the number
and type of hardware modules that will compose the
data-path. In operation scheduling, operations are
distributed through the time space and are assigned to
a type of functional unit. The output is a Scheduled
Data Flow Graph (SDFG), which is a modification of
the previous CDFG containing information related to

71

scheduling and allocation. In Resource Binding oper-
ations are bound to hardware modules. The output
is a Bound Data Flow Graph (BDFG) where each op-
eration has been bound to an FU instance and each
variable to a register. After binding the set of opera-
tions that will be executed in each process is totally
defined and the behavior of the local controllers can
be derived as it is explained in section 5.

4 Scheduling

We will represent the scheduling problem with
a data flow graph (DFG), G(V, E), where vertices
and edges denote operations and dependencies respec-
tively. For each vertex v € V we will use the following
terminology:

Vo ! executed operation
start and completion time
(after being scheduled)

Us, Ve ¢

vyt functional unit type that executes v,
pred(v) = {u] (u,v) € E}
suce(v) = {u| (v,u) € E}

For now on, the following assumptions will be consid-
ered (which are close to reality):

e Since control is evenly distributed all over the cir-
cuit, it is assumed that delays introduced by the
LCs are constant.

e Latching delays are equal and constant.

Thus, synchronization and latching delays can be in-
cluded in the delay of each operation.

The library of functional units (FUs) available for
a given technology is represented by the Delay Matriz
6 (see figure 4). Each element é;, indicates the de-
lay for the execution of operation o by the FU type
f (65,0 = oo indicates that o is not implemented by
f). We will denote by FU(o) the set of FU types
implementing o. In the environment of asynchronous
systems, where execution delays are data-dependent,
the Delay Matriz § represents average delays. Thus,
scheduling times obtained by using é must be consid-
ered as estimated average processing delays!.

A resource vector, R =< |fi|,|f2], .-, |fn] >, rep-
resents a set of resources available for allocation, where
| fi| indicates the number of instances of the FU type
fi (Ifi] > 0). Given a resource vector R, we define the

average delay for operation o, §,, as:

> 1filbso

o= fi€EFU(0)

Y
f,€FU(0)
5, is a pre-scheduling estimation of the expected
execution delay for operation o, assuming that any

YA Worst-Case Delay Matriz would be also required to cal-
culate worst-case processing delays if timing constraints were
imposed in the DFG. Dealing with timing constraints is out of
the scope of this paper.

SDFG

CDFG—> Scheduling
Allocation

Resource
Binding

/ Control Generation

—BDFG
\ Data—path

Figure 2: High-level synthesis steps

vertex v can be equiprobabilistically assigned to any
f € FU(v,).

Finding an asynchronous schedule means defining a
partial ordering of the vertices and allocating each
operation to a type of FU so that the total estimnated
processing delay is minimized.

4.1 Data Structures

FRT (adder) . E

L
t Hle nt;us
N
X

i

@ (b)

Figure 3: (a) Frame Reservation Table; (b) Event List;
(¢) Partially-scheduled DFG

A Frame Reservation Table (F RT}) is a data struc-
ture bound to a type of FU f and reports the num-
ber of active instances of type f at each time instant.
FRTy is updated each time a new operation is sched-
uled and bound to an FU of type f. The number of
active instances can never be greater than |f|.

FRTy can be represented as an Event List (ELy).
EL; is formed by a list of pairs < time;, nfus; > or-
dered by time, where nfus; indicates the number of
available (non-active) FUs of type f from time; to
time; 1. Figures 3.a and 3.b depict the FRT}; and
ELj corresponding to the scheduled operations shown
in 3.c.

Two functions have been defined for managing the
Event List [12):
e start_time = find_free_interval

(EL, min_start_time, delay)
This function seeks in the event list EL for
the first time interval of duration delay with

start_time > min_start_time such that it has at
least one free FU.

e reserve_interval (EL, start_time, delay)

This function reserves a time interval of duration
delay starting at start_time.

4.2 Event-List-Based Scheduling

Two algorithms for operation scheduling in asyn-
chronous systems are presented in this section:
ELS (Event-List Scheduling) and ELLAS (Event-List
Look-Ahead Scheduling). Both algorithms select ver-
tices to be scheduled according to a priority function.

72

They differ in the calculation of the priority function:
in the former the priority of each vertex is calculated
at the beginning of the algorithm, while in the latter
it is dynamically evaluated as a result of a look-ahead
scheduling function.

During the execution of a scheduling algorithm the
set of nodes of the DFG can be partitioned into three
sets: the Ready Set (RS), the Scheduled Set (SS), and
the Non-Scheduled Set (NSS). SS contains all the ver-
tices already scheduled. A vertex v belongs to RS if it
has not been scheduled yet and for each u € pred(v),
u € SS. The rest of vertices belong to NSS. The
scheduling algorithm is next described.

ELS (G(V,E), 6, R) {
for each f in the library do initialize.eventlist (ELy, |f]);
calculate_pathlengths_to_end (G, §, R);
RS = source_vertices(G); NSS =V — RS; §§=0;
while RS # 0 {
v = max-priority vertex(RS);

minstart = max uc;
u€pred(v)

for each f € FU(vo) do {
min.start; = find free_interval (ELy, minstart, 85v,)
completion; = min.starty + 65,3

}

fmin = f such that

(completion; = min
fFEFU(vo)
reserveinterval (ELy . ,minstarty . .67 . 0,);
Ve = minstarty . ve = completionfm.,n; vp = Fmin

§5 = S5U {v}; fireable = {v € NSS | Vu € pred(v),u € §5};
RS = (RS — {v}) Ufireable; NSS = NSS — fireable;

completion;);

Similarly to list scheduling[9], this algorithm cal-
culates, first, a priority for each vertex of the DFG.
Then vertices in RS are scheduled in order according
to their priority. The priority of each vertex v, vy, is
calculated as the path length to the end of the DFG,
assuming that each vertex v is executed in é,, time.
The calculation of v, can be done recurrently from
sink to source vertices as follows:

v = Jmax o+ b,

First, all the event lists are initialized with their
corresponding number of resources (|f|), and the pri-
ority (path length to end) of each vertex is calculated.
The main loop of the algorithm selects, first, the ver-
tex v with maximum priority in the Ready Set. Then,
it calculates the completion time achievable by each
FU that can execute v,, and selects that FU, fyin,
that yields the minimum value. Finally, v is sched-
uled and bound to fiin.

Information about utilization of resources is kept
in the event lists, and managed by functions

find.free_interval and reserve_interval. When
an operation can be executed by more than one type of
FU, ELS tends to bind vertices with more priority to
faster FUs. The time complexity of ELS is O(nlogn).

As mentioned before, FLLAS dynamically calcu-
lates each vertex’s priority by using a look-ahead
scheduling function. The time complexity of ELLAS
is O(n3logn) [12].

4.3 Results

Functional “ delay H
Unit |+ - T<T=* |
ALU(Q) 50 | 50 | 50 | oo
adder(®) 35 1 00 | oo | o0
mult(Q) oo { 0o | oo | 85

Figure 4: Delay Matrix used for the benchmarks.

In this section, the scheduling algorithms previously
presented are evaluated. Two benchmarks have been
chosen to present the results of the experiments: the
Differential Equation Solver [8] and the Fifth-order
Wave Digital Filter [13]. The library used for both
benchmarks is represented by the Delay Matriz de-
picted in figure 4.

[B5 [ELLAS)

Resources | Schedule {[Schedule [CPU
Diff. PR B O 270 ns 270 ns 0.015 s
Eq. R B O 305 ns 305 ns 0.015s

RB O 545 ns 545 ns 0.01s
Elliptic | @ @ ©O 740 ns 705 ns 0.12s
Filter RV B © 705 ns 690 ns 0.12 s

VIR P OO 720 ns 700 ns 0.12s

Table 1: Results for the Differential Equation Solver
and for the Elliptic Filter with CPU times in a DEC-
system 5100 (all CPU times for the ELS are 0.01sec.)

estimated
scheduling
time

Figure 5: Schedule for the Diff. Eq. Solver (0 x&O);

Table 4.3 presents the results obtained for the two
benchmarks considering different resource contraints.
For the Differential Equation ELS and ELLAS give
the same results. CPU times are similar due to the

450
485
LRI 1

545

570
585

620 .
5
) 7051
estimat,
:.cheduling'
time
Figure 6: Schedule for the Elliptic Filter obtained by
ELLAS (® @ §O0)

small size of the problem. Figure 5 depicts the result-
ing schedule for one of the experiments. For the El-
liptic Filter ELLAS is superior to ELS in most cases,
at the cost of higher CPU times (but still moderate).
Figure 6 shows the schedule obtained with ELLAS for
one of the experiments. It is worth to emphasize the
skill for binding critical operations to fast FUs and
non-critical operations to slow FUs when they can be
concurrently executed.

5 Binding and Process Synchroniza-
tion

Module binding is performed after scheduling and
allocation in order to bind operations to hardware
module instances. The criteria used for binding aims
at the reduction of the connectivity of the circuit so
that routing area and communication delays are min-
imized. In that respect, binding algorithms already
proposed for synchronous circuits can also be used for
asynchronous circuits (if they do not use control-step-
based approaches) [14].

Once binding 1s performed, the sequence of oper-
ations to be executed in each process is completely
defined. Each data transfer between two operations
corresponds to a synchronization between processes
when the operations are bound to different hardware
modules. In figure 7 each arrow corresponds to a syn-
chronization between processes for the scheduling ex-
ample of figure 5.a.

Each data transfer between a computational block
and a register requires an explicit synchronization be-
tween the processes corresponding to each of the in-

MULT1 MULT2

ALU

estimated
completion
time

Figure 7: Synchronizations between processes (some
register assignments have been replicated to increase
the readability of the diagram)

volved hardware modules. Synchronizations are re-
quired to assure the sequenciality imposed by data
dependencies, as asynchronous systems do not have a
global clock that indicates the completion of opera-
tions. After the ordering of data transfers and syn-
chronizations has been determined, the behavior of
each local controller is derived by defining the tran-
sitions of the handshake signals. Signal Transition
Graphs (STGs) [4] are used as behavioral description
for local controllers. From STGs, a hazard-free circuit
can be synthesized for each controller. For more de-
tails, we refer the reader to [11], where an approach for
the synthesis of distributed asynchronous controllers
from high-level descriptions is proposed.

6 Conclusions and future work

As the design of asynchronous circuits is gaining ac-
ceptance, tools for high-level synthesis aré more nec-
essary. This paper has presented the first approach,
to the knowledge of the authors, to scheduling for the
high-level synthesis of asynchronous circuits. For an
asynchronous timing model, in which no control steps
exist, scheduling means defining a partial ordering of
the execution of the operations. Basic data structures
and primitive functions for the management of initi-
ation and complelion operation events have been de-
fined. Two algorithms, ELS (O(nlogn) — time) and
ELLAS &0(1l3log n) — time) have been proposed and
evaluated.

Further research is required in this emerging area.
Among the issues not considered in this paper, we
mention some of the most significant: scheduling
across basic blocks, pipelined functional units, and

4

scheduling under timing constraints. On the other
hand, further research is also required in the area
of distributed control synthesis for asynchronous sys-
tems.

References

[1] C.L. Seitz, Introduction to VLSI Systems, Chapter 7,
Mead and Conway (Eds.), Addison Wesley, 1981.

[2] T.H. Meng, Synchronization Design for Digital Sys-

tems, Kluwer Academic Publishers, 1991.

G. Mago, “Realization Methods for Asynchronous Se-

quential Circuits,” IEEE Trans. on Computers, Vol.

C-20, No. 3, pp. 290-297, March 1971.

T.A. Chu, Synthesis of Self-timed VLSI Circuits from

Graph-theoretic Specifications, Ph.D. thesis, MIT, June

1987.

A.J. Martin, “Compiling Communicating Processes

into Delay-insensitive VLSI Circuits,” Distributed

Computing, Vol. 1 (4), Springer-Verlag, pp. 226-234,

1986.

K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and

F. Schalij, “The VLSI-programming language Tangram

and its translation into handshake circuits,” Proc. Eu-

ropean Conference on design Automation, pp. 384-389,

Feb. 1991.

M.C. McFarland, A.C. Parker, and R. Camposano,

“Tutorial on High-Level Synthesis,” Proc. 25th

ACM/IEEE Design Automation Conference, pp. 330-

336, June 1988.

P.G. Paulin and J.P. Knight, “Force-Directed Schedul-

ing in Automatic Data Path Synthesis,” Proc. 24th

ACM/IEEE Design Automation Conference, pp. 195-

202, June 1987.

S. Davidson, D. Landskov, B. D. Shriver, and P. W.

Mallet, “Some experiments in local microcode com-

paction for horizontal machines,” IEEE Trans. on

Computers, vol. C-30, July 1981.

[10] D. Ku and G. De Micheli, “Relative Scheduling Under
Timing Constraints: Algorithms for High-Level Syn-
thesis of Digital Circuits,” IEEE Trans. on Computer-
Aided Design, Vol. 11, No. 6, pp. 696-718, June 1992.

[11] J. Cortadella and R.M. Badia, “An Asynchronous Ar-
chitecture Model for Behavioral Synthesis,” Proc. Fu-
ropean Conference on Design Automation, pp. 307-311,
March 1992.

[12] R.M. Badia and J. Cortadella, “High-Level Syn-
thesis of Asynchronous Digital Circuits: Scheduling
Strategies,” UPC/DAC Report no. RR-92/6, Novem-
ber 1992.

[13] P. Dewilde, E. Deprettere, and R. Nouta, “Parallel
and Pipelined VLSI Implementation of Signal Process-
ing Algorithms,” in VLSI and Modern Signal Process-
ing, ed. T. Kailath, pp. 258-264, 1985.

[14] C.J. Tseng and D.P. Siewiorek, “Automated Synthe-
sis of Data Paths on Digital Systems,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, vol. CAD-5, no. 3, pp. 379-395, July 1986.

(3]

[4]

(5]

(6]

(7]

(8]

(9]

