An Asynchronous Architecture Model for Behavioral Synthesis

Jordi Cortadella

Rosa M. Badia

Dept. of Computer Architecture. Polytechnic University of Catalonia.
Gran Capitd, s/n. Modul D4. 08034 - Barcelona
e-mail: jordic@ac.upc.es

Abstract

In this paper, an asynchronous architecture model for
behavioral synthesis is presented. The basis of the model
lies in a distributed control structure consisting of
multiple communicating processes. Data processing is
performed by self-timed modules. Signal transition graphs
(STGs) are used to specify the behavior of the control
processes. By using existing synthesis procedures for
STGs, circuits based on the presented architecture model
are proved to be realizable and hazard-free.

1. Introduction

Behavioral synthesis aims at the automatic generation
of structural descriptions from behavioral descriptions [1].
Every synthesis system has a target architecture model
where to map high-level objects (i.e. operations, data
structures) into hardware objects (i.e. adders, registers,
control units).

Until now, only synchronous architectures have been
proposed for behavioral synthesis systems. However, their
performance is highly reduced, as systems become larger,
by the margins required for clock skew and worst-case
delay times in the duration of the control step.
Asynchronous systems completely avoid these problems.

The effort in the area of asynchronous systems has been
mainly focused on the automatic synthesis of
asynchronous finite state machines [2]{3]. In [4] and [5]
STGs are used to describe the behavior and synthesize
control circuits. The contributions presented in [6] and [7]
aim at the generation of delay-insensitive circuits from
high-level specifications by syntax-directed translation
according to production rule sets. To our knowledge, the
only asynchronous architecture model proposed for
behavioral synthesis has been presented in [8), in which
the synthesis system compiles ISPS descriptions into a
bus-based asynchronous architecture.

In this paper, we present an asynchronous architecture

Work supported by the Ministry of Education of Spain (CICYT TIC89-0300
and TIC91-1036)

0-8186-2645-3/92 $3.00 © 1992 IEEE

307

as a target model for behavioral synthesis (section 2). The
work is mainly focused on the generation of the distributed
control (section 3), based on the specification of an STG
for each control process (section 4). Finally, the feasibility
of the control circuits is studied by analyzing their unique
state coding and hazard-freeness (section S). Further details
of the proposed architecture model can be found in [9].

2. Asynchronous architecture model

The data-path of our model is based on the utilization of
self-timed blocks with two binary handshake signals:
request (input) and completion (output). Both signals
follow a four-phase handshake protocol for each operation
performed by the block [10].

Three types of blocks are distinguished: computation
blocks (adders, multipliers, ALUs, etc), multiplexors, and
registers. Registers are implemented as latches and the
request signal acts as a load signal. A latching
completion detection mechanism similar to the one used
in [6] has been considered. In the case of multiplexors,
only the validity of the selected input data is required for a
correct operation when the request signal goes high [5].

2.1. Distributed control

A centralized control unit would neglect some of the
attractiveness of asynchronous systems. Global signals
introduce delays that reduce the potential parallelism
inherent to asynchronous systems. On the other hand, the
number of states of the control unit grows exponentially
with the number of control signals [4].

For our architecture, we propose a decentralized
approach that lies in implementing the overall control as a
set of communicating control processes (CPs), one for
each data-path block. Each CP communicates locally with
the block under its control through the request (r) and
completion (c) signals and additional control signals
required by the block (i.e. operation code for an ALU,
selection signal for a multiplexor).

CPs communicate to each other through pairs of
signals complying a four-phase handshake protocol. Each

¢ =a+b— ab—ab’
(a)

S1:
S2:
S3:
S4:
SS:
S6:
S7:
S8:

Rl «ina (a)
R2 «inb (b)
R3«R1+R2
R4<—R1*R2
R1«<R3-R4
R3«R4*R2
R4«<R1-R3
ce out (R4)

®

Data dependencics
Structural dependencies

©

Figure 1. (a) Behavioral description

(b) RTL description
(c) Scheduled Data Flow Graph

pair of signals corresponds to one of the inputs or outputs
of the controlled block. For each input to a data-path
block, its corresponding CP has a valid input signal (vi)
and a consumed input signal (ci). The former indicates to
the CP when the input data is valid. The latter is generated
by the CP indicating that the data-path block no longer
requires the input data. Reciprocally, two handshake
signals exist for each output data: valid output (vo) and
consumed output (co).

3. Architecture synthesis

For the synthesis of an asynchronous architecture, we
will assume that scheduling and module binding have
already been performed, and a structural description of the
data-path has been generated. The essential contribution of
this work is the synthesis of the CP for each data-path
block. The synthesis procedure receives a scheduled data
flow graph (SDFG) as input and generates the signal
transition graph (STG) of each CP.

An SDFG is a data flow graph with the information
required for data-path and control synthesis: dependencies,
module binding, and scheduling order of the RTL
sentences. Figure 1 shows the example used along the pa-
per to illustrate the synthesis of CPs. Scheduling and
module binding have been performed by using two compu-
tation blocks: an adder/subtracter (add) and a multiplier
(mul). Input and output data blocks (ina, inb, and out) are
considered as computation blocks from the point of view
of control generation. The dashed arcs introduced in the
SDFG indicate structural dependencies and force the
scheduling order of all the RTL sentences using the same

308

computation block or register. The execution model
assumes for each sentence that operands are always read
from a register and the result stored into a register.

3.1. Definitions

An RTL sentence of the type Ri = Rj op Rk uses
registers Rj and Rk and defines register Ri.

For each computation block B, its sentence list SL(B)
is defined as an ordered list of all the RTL sentences
executed by the computation block, according to the
scheduling order specified in the SDFG. Its output set
OS(B) is defined as the set of registers defined by sentences
belonging to SL(B).

Similarly for registers, SL(Ri) is defined as an ordered
list of all the RTL sentences that define Ri and OS(Ri) as
the set of computation block operands that use Ri (B will
denote the k-th operand of block B).

Here we have some examples from Figure 1:

SL (add) = (83.55,57); OS (add) = {R3,R1,R4}

SL (R4) = (54,S7); OS (R4) = {addp,muly,outy}

For each register Ri and sentence § € SL(RIi),
use (Ri, S) is defined as the set of computation block
operands that use the value in Ri defined by sentence S.
The calculation of use is similar to the calculation of use-
def chains required for code optimization in compilers [11].

In the example, R3 is defined by sentences S3 and S6,
but each definition has a different set of uses:

use(R3,S3)={add, } (R3 is used by add; in S5)

use(R3,S6)={addy} (R3 is used by addz in S7)

Given a register Ri and a computation block operand
By, first_use (Ri, By) is defined as the set of sentences
that use Ri as the k-th operand of block B for the first
time after each definition. Similarly, last_use (Ri, By) is
defined for the last use of Ri as the k-th operand of B.

In the example, R1 is defined by S1 and S5. After each
definition, the first use of R1 by operand add; is produced
in 83 and S7 (first_use(R1,add})={$3,S7}, in this case
first_use and last_use coincide). Here we have some more
examples:

first_use(R2,mulp) = {S4}; last_use(R2,mulp) = (S6)

first_use (R3,add;) = {S5}); last_use(R3,add;) = (S5}

first_use (R3,addp) = {S7}; last_use(R3,addp) = {S7}

3.2. Interconnectivity between control
processes

Input/output signals of a CP fall into two categories:

+ Local signals to its own block: request and
completion signals (<r, c>), and control signals
required by the block.

+ Synchronization signals from/to other CPs: pairs of
valid and consumed data signals.

Each CP has as many pairs of <vi, ci> signals as input
data items are received by the block controlled by the CP.
It also has as many pairs of <vo, co> signals as blocks
receive the output data of its controlled block.

Figure 2 depicts the external interface of the CPs
controlling the computation block add and its input
multiplexors.

to/from reg's CPs

v
‘nn’@

2t
0
o~/

e
i
“H o
~
&
~t

Pair of <valid, consumed>
K TOITITITIY 3

<R1> <R3> <Ré> R4
toffrom reg's input mux CPs

Figure 2. CPs for block add and its input muxes.

R1 R3

4. Control synthesis

Control is synthesized by defining the STG [4]
corresponding to each CP of the architecture. It is not in
the scope of this paper the synthesis of asynchronous
circuits from STGs. The reader is referred to existing
approaches [41[5]1{12] that can be used to synthesize the
CPs from their STGs.

An STG is structured as a sequence of S-STGs
(sentence-STG), each one corresponding to one of the
sentences belonging to the sentence list of the controlled
block (for multiplexors, the sentence list corresponds to
that of the block at their output). Every S-STG defines the
transitions required for its corresponding sentence.

4.1. S-STG for a computation block

The sequence of transitions in the S-STG for a
computation block are the following (figure 3.a):

« The CP waits for the inputs and operation code! to be
valid (vi+ and oc<—op).

« Computation is initiated and completed (r+ — c+).

+ vog; is activated to denote that the input to the
destination register Ri is valid.

* cogs+ indicates the completion of the storage into Ri
the computation block must now be reset for another
operation).

« The last part completes the handshake for each pair of
signals of the CP: <r, ¢>, <vi, ¢i>, and <vOg;, COR;>-

The operation code (oc) is a vector of signals (ocy,...,0¢). Transitions must
be generated only for those signals that must change their value. This is
denoted by the transition oceop. The same applies for signal sel in the
multiplexors (transition sel—@RKk).

309

4.2, S-STG for a register

The sequence of transitions of the S-STG corresponding
to sentence S and register Ri is depicted in figure 3.b:

« The register waits for its input to be valid (vi+).

« Latching cannot be initiated until all the operands
(j1,..,jm) using the previous value in the register need
not it any longer (co-). Then latching is initiated and
completed (r+ — c+).

» A four-phase handshake is performed for each of the
operands (il,..,ik) that belong to use (Ri, §): vo+ —
co+ — vo- — co-. When none of the computation
block operands requires the register’s value any
longer, the storage of the next value can be initiated.

« In parallel with the previous step, the register is reset
(r- — c-) for a new latching operation (the register
output value remains unchanged when the load signal
(r) is low). Furthermore, input data handshake is
completed when data stability at the latch input is not
longer required (ci+ — vi- — ci-).

4.3. S-STG for a computation block input
multiplexor

Input multiplexors to computation blocks keep track of
the lifetime (first and last use) of each register value.
Figure 3.c depicts the S-STG for the multiplexor CP
corresponding to one of the operands of block B (Bj) when
using register Rk in sentence S. The sequence of
transitions in the graph are the following:

» The CP waits for the selected input and for the
selection signals (sel) to be valid (virx+ and
sel—@Rk). Transition vig,+ must occur only when
the block operand uses Rk’s value for the first time
since its last definition (S € first_use(Rk,Bj)).

» Selection is initiated and completed (r+ — c+).

« vo is activated to denote that the input to the
computation block is valid.

« co+ indicates that the computation block does not
require the input data any longer (it occurs after the
output data of the computation block being stored
into a register).

« The last part of the S-STG completes the handshake
for signals <r, ¢>, and <vo, co>. In case this were
the last use of Rk’s value (S € last_use(Rk,B;)) the
handshake would be also completed for signals
<vigy, Cige> to indicate the register’s CP that the
value will not be used any longer by operand B;.

Voik+

Copt ci+‘/é- céi1+ c*ik*

r Vi)Ri' CJ‘# jln+ "i‘ v {1‘ {k

¢ cop;- ‘iil' an‘ ci- O OOy
@ Cir cip ®)

I
only if Se J
first_use (Rk, B;)

last occurrence

preceding S-STG

‘G last occurrence Ppr

of cig,- ina of cly- ina

preceding S-STG
Vig+

~Na

o3

c+
Jo omyifse o
' last_use (Rk, Bi) ‘/K
c
I- vo- cig+
Eod
- le-
:
B
@

Figure 3. S-STGs for the execution of sentence S (Ri = Rj op Rk).
(a) computation block B (with n inputs) (b) Ri. (c) input mux to B; (reading Rk). (d)input mux to Ri.

4.4. S-STG for a register input multiplexor

The sequence of transitions of the S-STG corresponding
to a sentence that uses computation block B is depicted in
Figure 3.d:

» The CP waits for the selected input (vig+) and for the
selection signals (sel< @B) to be valid (the
computation block’s CP only activates vig when the
produced data must be stored into the register).

+ Selection is initiated and completed (r+ — c+).

« vo is activated to denote that the input to the register
is valid.

« co+ indicates the latching completion.

+ The last part of the S-STG completes the handshake
for signals <r, ¢>, <vig, cig>, and <vo, co>.

5. USC and hazard-freeness

Every STG has an underlying state graph (SG) that can
be deterministically derived [4]. Each state of the SG
corresponds to one of the possible markings of the edges
of the STG. In order to realize a circuit from a SG, a
unique coding for all the states is required. In [4] the state
is defined by using the signals of the STG as state
variables.

If an SG has the Unique State Coding property (USC),
then a hazard-free asynchronous circuit can be synthesized
[12]. The existence of the Unique State Coding property is
based on the following theorem [4][12]:

Theorem: An STG S has the USC property if and
only if S is live and no complementary set of transitions
is feasible in S.

The reader is referred to [9], where a study on the

liveness and feasability of complementary sets of
transitions is presented. The STGs generated by the
proposed model are also proved to be realizable.

6. An example

Here we present an example of the synthesis of STGs
from an SDFG. It corresponds to the generation of S—
STGs for the execution of sentence S5 in the example of
figure 1. Figure 4 depicts the S-STGs for the following
blocks: add, R1, input multiplexor for add2, and the input
multiplexor for R1.

Some assumptions have been considered for the control
signals of the data-path. The control signal for block add
(oc) must have the value O for addition and 1 for
subtraction. The input multiplexor for operand addp
receives two selection signals (sely selg) which must have
the values “00”, “01”, and “10” to select registers R2, R3,
and R4 respectively. The input multiplexor for R1
receives one selection signal (sel) which must have the
values “0” and “1” to select the output of blocks ina and
add respectively.

For block add (figure 4.a), the previous S-STG
corresponds to sentence S3. The operation code must
change from "0" (addition in S3) to "1" (subtraction in
S5). This can only happen after the output value for S3
has been stored into R3 (coga+).

In figure 4.b (R1), the previous sentence that defined
R1 was S1. Before starting to latch the new value, the CP
must wait for the previous uses of R1 to finish (add; and
mul}p). The new value is only used by mul;
(use (R1,S5)).

Figure 4.c shows the S-STG for the input multiplexor

to add2: Transition viggs+ should be preceded by the last
occurrence of Cigrq-. Since this is the first use of R4 by
add?, Reset+ must be used [9] (this also happens for all
the transitions that have no preceding transitions).
<sely,selg> must change from "00" (selecting R2 in S3)
to "10" (selecting R4). Thus, only the transition sel1+
must be generated (similarly for sel+ in figure 4.d). Since
this is the first and last use of R4's value by addy, the full
handshake for <vig4, Cirs> must be generated.

7. Conclusions

An asynchronous architectural model for behavioral
synthesis has been presented. The architecture is seen as a
set of communicating processes, each one consisting of a
data-processing part and a control process. Self-timed
modules are use for data-processing, while control is
distributed all over the control processes.

A synthesis procedure for the control has been
proposed, based on the generation of an STG for each
process. Hazard-free circuits are obtainable by using the
existing approaches to synthesize STGs.

Open research areas are still left open to make faster and
smaller circuits based on the proposed architecture model.
Here we direct the attention to some of them: increasing
parallelism in STGs, using two-phase handshake, deadlock
detection, partitioning data-flow graphs into loosely-
coupled data-processing sections, considering control
dependencies, etc. Behavioral synthesis for asynchronous
circuits is still an immature area that requires much more
research work. New approaches for operation scheduling,
module binding, control synthesis, etc, must be conceived.
This paper is an effort in that direction.

LA
}

V0R1+

COR1+

r-‘m‘ci+ v{ vt -
R S

¢ COpy Yr er ci- Oudd 1
(a) Cil' Ci2- (b)

References

{11 R. Camposano and W. Wolf. High-Level VLSI
Synthesis. Kluwer Academic Publishers, 1991.

[2] R.E. Miller. Switching Theory, vol. 2. Wiley and Sons,
1965.

[3] S.H. Unger. Asynchronous Sequential Switching
Circuits. Wiley Interscience, 1969.

{4] T.A. Chu, Synthesis of Self-timed VLSI Circuits from
Graph-theoretic Specifications. PhD thesis, MIT, June
1987.

[5] T. Meng, R.W. Brodersen, and D.G. Messerschmitt.
Automatic Synthesis of Asynchronous Circuits from
High-Level Specifications. JEEE Transactions on CAD
of ICs and Systems, Vol. 8 (11), Nov. 1989, pp. 1185-
1205.

[6] A.J. Martin. Compiling Communicating Processes into
Delay-insensitive VLSI Circuits. Distributed
Computing, Vol. 1 (4), Springer-Verlag, pp. 226-234,
1986.

[7] Kees van Berkel et al. The VLSI-programming language
Tangram and its translation into handshake circuits.
Proc. of the European Conference on Design
Automation, pp. 384-389, Feb. 1991.

[81 M. Hirayama. A Silicon Compiler System Based on
Asynchronous Architecture. JEEE Transactions on CAD
of ICs and Systems, YVol. 6 (3), May 1987, pp. 297-304.

[9] . Cortadella and R.M. Badia. High-Level Synthesis of
Asynchronous Systems. Research Report UPC/DAC RR-
91/19, Oct. 1991.

[10] C.L. Seitz. Introduction to VLSI Systems. Chapter 7,
Mead and Conway (Eds.), Addison Wesley, 1981.

[11] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley,
Reading MA, 1986.

[12] L. Lavagno, K. Keutzer, and A. Sangiovanni-
Vincentelli. Algorithms for synthesis of hazard-free
asynchronous circuits. Proc. of the 28th Design
Automation Conference, June 1991, pp. 302-308.

4
vo+
4
co+
I- vO- ci R4t
A S
§ R4-
. .
© Cra @ Clad-

Figure 4. S5-STGs (R1 = R3 - R4)
(a) Block add. (b) register R1. (c) Input mux to add, (reading R4). (d) input mux to R1

