
CAD Directions for High Performance Asynchronous Circuits

Ken Stevens1, Shai Rotem1, Steven M. Burns1, Jordi Cortadella2,
Ran Ginosar1;3, Michael Kishinevsky1, and Marly Roncken1

1Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA
2Universitat Politècnica de Catalunya, Barcelona, Spain
3VLSI Systems Research Center, Technion, Haifa, Israel

Abstract

This paper describes a novel methodology for high perfor-
mance asynchronous design based on timed circuits and on
CAD support for their synthesis using Relative Timing. This
methodology was developed for a prototype iA32 instruc-
tion length decoding and steering unit called RAPPID (“Re-
volving Asynchronous PentiumR
Processor Instruction De-
coder”) that was fabricated and tested successfully. Silicon
results show significant advantages - in particular, perfor-
mance of 2.5-4.5 instructions per nS - with manageable risks
using this design technology. RAPPID achieves three times
faster performance and half the latency dissipating only half
the power and requiring a minor area penalty as a compara-
ble 400MHz clocked circuit.

Relative Timing is based on user-defined and automati-
cally extractedrelative timing assumptions between signal
transitions in a circuit and its environment. It supports the
specification, synthesis, and verification of high-performance
asynchronous circuits, such as pulse-mode circuits, that can
be derived from an initial speed-independent specification.
Relative timing presents a “middle-ground”between clocked
and asynchronous circuits, and is a fertile area for CAD de-
velopment. We discuss possible directions for future CAD
development.

1 Introduction

Power, process variations, and increased clock frequency
present formidable challenges today for high-performance
VLSI design, with increasing risk in future process genera-
tions. Self-timing (or asynchronous design1) presents poten-
tial solutions to some of these challenges. In fact, self-timing
is already used in industry in restricted forms.

Asynchronous communication utilizes handshaking to en-
sure functionality. Handshake protocols are orthogonal to

1In this paper we do not distinguish between asynchronous and self-timing, collec-
tively using these names for design methodologies not relying on global clock signals.

implementation media, and have been used or shown to work
in technologies ranging from relays and vacuum tubes, TTL,
MOS, and RSFQ devices and multiple implementation styles.
Therefore, it should be possible to implement self-timed cir-
cuits using any (or most of) future circuit or implementation
technology that brings out advantages in performance.

Timing information can be used to combat the full hand-
shake overhead in area and delay by removing redundant
handshakes and associated logic. Since absolute timing in-
formation is mostly unknown until layout is complete, rela-
tive timing information in the form “eventa occurs before
eventb” is a natural representation of timing that can be
used in the design flow. This idea led us to develop Rela-
tive Timed asynchronous circuits and methods for their au-
tomatic synthesis.

Section 2 presents a brief review of RAPPID microarchi-
tecture and results. More information can be found in [10].
Section 3 describes the Relative Timing concept and auto-
matic logic synthesis of RT asynchronous circuits. More ex-
amples of relative timing circuits used in RAPPID are pre-
sented in [11]; more details on the theory and methods of
synthesis can be found in [4, 6]. Section 5 describes the
status of verification. Finally, future directions for CAD de-
velopment are discussed in Section 6.

2 Motivation: RAPPID design

The RAPPID research project started in 1995 and completed
in 1998. The goal of the project was to demonstrate the abil-
ity to design high-speed asynchronous circuits as a poten-
tial solution for microprocessor design if and when clocked
design becomes too difficult. The RAPPID project aggres-
sively applied asynchronous techniques based on relative tim-
ing to evaluate the risks, compared prospective advantages
against a comparable commercial product – the instruction
length decoding and steering logic of a 400MHz clocked de-
sign, and developed a useful methodology.

2.1 RAPPID results

The RAPPID chip was fabricated on a 0.25µCMOS process
and tested successfully. The design uses static and domino
gates from a standard synchronous library, with a few cus-

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

tom circuits, such as C-elements. The results summarized
in Table 1 show significant advantages of RAPPID – in par-
ticular, performance of 2.5-4.5 instructions/nS – with man-
ageable risks using this design technology. The results were
measured using the same fabrication process, temperature
and voltages for the clocked and asynchronous parts. Sig-
nificant advantages are shown for throughput, latency, and
power, with a slight disadvantage in terms of area. Note
that some significant differences between the designs do not
fully support a direct comparison, and the asynchronous part
could not be used as a direct replacement for the clocked
part. However, these results strongly support the argument
that asynchronous circuits can be designed to be competitive
with high performance clocked circuits, and may even have
significant advantages.

Throughput 3� Latency 2�
Power 2� Area �22%

Testability 95.9%

Table 1: Improvement of RAPPID over 400MHz clocked
circuit

2.2 RAPPID microarchitecture

RAPPID receives 16-byte wide instruction cache lines at its
input, extracts the instructions, and places each instruction
separately in the output buffers. As shown in Figure 1, six-
teen parallel length decoders are employed, whichspecu-
latively compute the length as if a new instruction began
at each byte position. A torus-like distributed tagging and
crossbar switching circuit with 16 columns and 4 rows packs
the bytes into instructions and steers them into four output
buffers. These dimensions are designed to balance the aver-
age computation rates. The architecture is scalable in both
the horizontal (length decoding cycle) and vertical (steering
logic cycle) dimensions, hence the performance can be fur-
ther increased through additional parallelism.

,QSXW),)2 �,)�

&ROXPQ � � � � � � � � � � �� �� �� �� �� ��

%
\
WH

8
Q
LW
�%
8
�

%\WH

&75/

�%&�

%\WH

/DWFK

/HQJWK

'HFRGH

�/'�

'HFRGH DQG 6WHHU 8QLW �'8�

&URVVEDU 6ZLWFK �;%�

7DJ 8QLW �78�

2XWSXW %XIIHU

5
R
Z
�

&URVVEDU 6ZLWFK �;%�

7DJ 8QLW �78�

2XWSXW %XIIHU

5
R
Z
�

&URVVEDU 6ZLWFK �;%�

7DJ 8QLW �78�

2XWSXW %XIIHU

5
R
Z
�

&URVVEDU 6ZLWFK �;%�

7DJ 8QLW �78�

2XWSXW %XIIHU

5
R
Z
�

Figure 1: RAPPID Microarchitecture

RAPPID’s operation consists of independent self-timed
cycles. The major cycles are:

� The length decoding and instruction ready cycle.This
cycle accepts a byte from the Input FIFO, decodes the
instruction length (as all necessary bytes become avail-
able), and generates the Instruction Ready flag based
on the calculated length and the Byte Ready bits from
the Byte Latches of the remaining bytes in the instruc-
tion.

� The steering logic cycle.This cycle aligns instruction
bytes from the Byte Latches and forwards them to the
output buffer over the Crossbar Switch. RAPPID is a
four-issue architecture.

� Tag cycle.This cycle directly forwards the tag to the
start of the next instruction, and also synchronizes and
orders the above two cycles.

Each cycle has its characteristic latency that can be in-
dependently optimized based on performance targets. The
length decoding cycle is optimized for common instructions
[10]. The tag cycle is optimized for common lengths. The
steering logic cycle is matched to the throughput and latency
of the output buffers. We can compose these cycles, using
asynchronous protocols, in a scalable fashion to achieve the
targeted system performance.

These three intertwined cycles demonstrate two advan-
tages of the asynchronous solution:

� Performance is determined by theaveragerather than
worst case. For example, the TAG cycle, being a cen-
tral point of gathering and distributing instructions, is
the performance-critical component in this architecture.
It achieves the average rate of 3.6 GIPS (close to 4.5
GIPS in some of the tests), consuming on average 720M
cache lines per second. Lines with fewer than five in-
structions (average length greater than three bytes) are
consumed faster, whereas lines with shorter instruc-
tions are consumed slower.

� Multiple frequency domainsare naturally intertwined.
RAPPID combines frequency domains operating at ap-
proximately 3.6GHz, 900MHz, and 700MHz. These
correspond to average frequencies of the cycles listed
above.

For a more detailed presentation of RAPPID design we refer
to [10, 11].

3 Relative Timing methodology

One of the goals of the RAPPID project was to study the
suitability of asynchronous design styles and circuit families
for aggressive high-performance circuit design. It became
clear that none of the existing circuit methodologies sufficed:

� Speed-Independent (SI, a.k.a. Quasi-Delay Insensitive)
design styles were not satisfactory for the critical path
of the design due to area/performance overhead [2, 3,
6, 7].

� Extended Burst Mode (XBM) machines, synthesized
by the3D tool, showed improved performance due to
the fundamental-mode timing assumption [14]. How-
ever, restrictions on expressing concurrency limit the
types of protocols that can be implemented using this
style, and further timing assumptions are not allowed.

� Timed circuits synthesis based on metric timing in the
tool ATACS[8] produced circuits with improved per-
formance, but the results were still below our expec-
tations. Timed circuit methodology relies on absolute
timing information - delay times or ranges for all de-
vices and the environment are required for optimiza-
tion. This information is largely unknown at the initial
stages of the design and hence complete characteriza-
tion of environment delays as well as estimation of the
latencies of the circuits to be synthesized seemed awk-
ward. Another drawback was that the state encoding
problem was not solved for Timed circuits.

This brought us to the conclusion that a novel approach,
based onRelative Timing (RT)should be used. This tech-
nique allowed us to use aggressive self-resetting and pulsed
logic for avoiding the full handshake overhead [11] and pro-
duced circuit solutions superior in performance, area, power
and testability. The RAPPID design used aggressive manual
solutions. Later a joint effort in cooperation with Academia
automated the Relative Timing design style [4]. This led to
implementing automatic RT synthesis in the toolpetrify .

Timing assumptions
 User-defined

Netlist

RT-circuit

RT-constraints
backannotation

PN synthesis Logic synthesis

Specification STG

Reachability
analysis

RT-assumption
generation

Timing assumptions
 Automatic

Timing-aware
State encoding

State Graph

Lazy State Graph

Implementation STG Timing constraints
 Required

Figure 2: Design flow for synthesis of Relative timing cir-
cuits.

The design flow for synthesizing relative timing circuits
in Petrify is shown in Figure 2. Relative timing allows
the designer or CAD algorithms to specify theeffectof de-
lays in a circuit and its environment in terms of possible as-
sumptions on relative ordering of events, e.g.a goes high
beforeb goes low. The circuits are then designed using the
assumptions for area and delay optimization. RT circuits can
be optimized with respect to the untimed circuits for two rea-
sons:

� RT assumptions reduce the set of reachable states and
hence increase the number of don’t care states for logic
optimization of all signals.

� It is possible to extend the set of states in which a sig-
nal is enabled without changing the set of reachable
states if other enabled signals are known to be or can
be made faster than the early enabled (a.k.a. lazy) sig-
nal. This additional flexibility adds local don’t cares
that can differ from one signal to another.

A subset of timing assumptions used for optimization is back-
annotated by the tool and become timingconstraints. The
circuits are then designed to meet the relative orderings, or
verified that the restrictions are already part of the delays in
the system.

Most of the timing assumptions used in RAPPID cir-
cuits can beautomatically extractedfrom an initial untimed
speed-independent specification. Only architectural or envi-
ronmental assumptions on the inputs needed to be specified
by the user for the RAPPID circuits we synthesized using
Petrify .

4 Timing evolution in a ring

FIFO
ri

roli

lo

(b)

li+

lo+li-

lo-

ro+ ri+

ri- ro-

ε

(a)

Figure 3: FIFO controller (a) and its specification with a
Signal Transition graph (b).ε stands for a silent transition.

In this section we trace the development of a FIFO cell (spec-
ified in Figure 3), a simplified abstraction of a part of the
RAPPID design. A speed-independent circuit implementing
this specification is shown in Figure 4. Note that gates with
one of the fan-ins coming vertically represent footed (unless
otherwise specified) domino gates. We review a succession
of progressively simpler circuits, enabled through applica-
tion of relative timing.

4.1 Automatic RT assumptions

To illustrate the power of automatic extraction of relative
timing assumptions let us consider the implementation of

�

	
�

	

�

	 �

	

HH
��

li

lo

ro

ri

q b

q

b

q

bq

b
q

q

q

b

q

Figure 4: Speed-independent FIFO cell

x+

li+

lo+li-

lo-

ro+ ri+

ri- ro-

x-

OR

x-

(c)

(b)

x

li

lo ro

ri

(a)

x+

li+

lo+li-

lo-

ro+ ri+

ri- ro-

Figure 5: RT implementation of FIFO controller with fully
automatic timing assumptions: (a) circuit and a schematic
for a footed domino gate with a keeper, (b)STG with OR
causality forx�, and (c) automatically generated timing
constraints sufficient for correctness.

the FIFO controller (Figure 5) obtained without any user-
defined timing assumptions.Petrify generates all neces-
sary assumptions automatically using rules based on a sim-
ple delay model, e.g., “one gate can be made faster than
two”. Five timing constraints (Figure 5.(c)), sufficient for
correct operation of the circuit, are generated automatically.
Note that as a result of timing-aware state encoding, the state
signalx is never in the critical path. Falling transitions onx
are early enabled. The response time of the circuit with re-
gard to the environment is only one domino gate delay.

The constraints “lo+ beforex�” and “ro+ beforex�”
are dependent. Since the implementation ofx is x= lo+ ro,
it is always guaranteed that one of them will hold, whereas
the other must be ensured. Sincelo+ andro+ are enabled si-
multaneously, these constraints will always hold if the delay
of the domino gate plus the delay of the NOR gate is longer
than the delay of the other domino gate. From the rest of
constraints, the most stringent is “x� beforeri+”. It is re-
quired the delay ofx� to be shorter than the delay ofri+

from the environment.

4.2 Assumptions about environment

RT assumptions about two input events cannot be generated
automatically from the circuit specification. They must be
provided by the user or obtained from the analysis of the
environment.

Environment
lo’

li

lo

ri

ro

Right
environmentLeft

Figure 6: RT implementation of FIFO controller with one
user defined assumption.

Assume that we connect the circuit of Figure 5 into a
ring with a single token. The token will always arrive at an
idle cell due to circuit delays if the ring is sufficiently large.
Hence the handshake at the right will always complete be-
fore a new handshake at the left – hence timing assumption
“ ri� beforeli+” is valid. It allows one to derive a more
aggressive RT circuit of Figure 6. Note that an unfooted
domino gate can be used in this circuit. This RT circuit re-
quires two more constraints for correct operation adding up
to three required RT constraints - one defined by the user and
two automatically derived:

ri � beforeli + – user-defined

ro+ beforelo0
� – automatic

lo0
� beforero� – automatic

4.3 Pulse-mode FIFO

RT circuit of Figure 6 can be further optimized to a fully
pulse-mode FIFO cell shown in Figure 7. We first include
models of the left and right environment inside the circuit
and then remove becoming redundant circuitry and hand-
shake signals,lo andri . Relative timing constraints on the
pulse-mode are represented in Figure 7.(b). Arc 1 is imple-
mented as a causal dependency, while arcs 2-4 put relative
timing constraints on cooperation of the circuit and the envi-
ronment [11].

li

ro
1

(b)

2 3 4li ro

(a)

Figure 7: Relative timing pulse-mode FIFO (a) and pulse
handshake protocol constraints (b)

Worst Average Switching Area Stuck-at
Circuit Delay Delay Energy # Trans. Testability
SI 2160pS 1560pS 37.6pJ 39 91%
RT-BM 1020pS 550pS 32.2pJ 40 74%
RT (Fig. 6) 595pS 390pS 18.2pJ 20 100%
Pulse 350pS 350pS 16.2pJ 17 100%

Table 2: Comparison of FIFO implementations. Energy accounts for a complete four-phase cycle. Synchronous testing in
COSMOS required extra test gate for pulse circuit.

4.4 Ring summary

Some consequences of evolving a simple FIFO-like con-
troller from a speed-independent to a pulse-mode circuit are
summarized in Table 2. For a reference we included the re-
sults of the Burst-Mode implementation assuming that the
Fundamental Mode assumptions are satisfied by the envi-
ronment (the second row).The more aggressive timing as-
sumptions tend to increase the performance of the circuits,
reduce the area and power, and generally increase the testa-
bility. Note that the most significant improvements in per-
formance, area and power have all been achieved by the RT
transformations. The additional savings awarded by going to
pulse mode are much less pronounced. Indeed, the ’aggres-
sive’ RT controller from Figure 6 may already be considered
a pulse mode circuit.

5 Veri�cation

Designing RT circuits has two aspects:

1. First the circuit is optimized through timingassump-
tions based on the architecture, environment, and cir-
cuit considerations. This is part of the synthesis flow
discussed in the previous section.

2. The final circuit will have relative timingconstraints
that must hold for the circuit to operate correctly. These
constraints must be shown to be valid in the implemen-
tation.

We see two solutions to timing verification of RT circuits.

1. Dense-time models can be employed where actual de-
vice delays are modeled and the circuit is verified for
correct operation[1, 13].

2. The circuits are verified using unbounded delay mod-
els to extract the RT requirements. Paths are then gen-
erated and verified using simulation or separation anal-
ysis [5, 9].

The application of timed verification using unbounded
verification will be briefly shown through example. Assume
we have a static C-elementc = ab + ac + bc imple-
mented with three AND gates and one OR gate. Errors oc-
cur when the circuit is verified against the specification using
unbounded delays. Assume that the errors are due to timing

faults. They can be avoided by disallowing the erroneous fir-
ing through relative timing in the verifier. The error occurs
when the output from gateab falls before eitheracorbcrise.
By placing a timing constraint thatacandbcwill rise before
ab falls, the circuit verifies correctly.

The RT requirements on the circuit generated by the ver-
ification can be turned into path constraints by finding the
earliest common enabling signal. Observe the RT require-
ment thatbc rises beforeab falls. The common source for
these signal transitions isc+. For this requirement to hold
the pathc+ ! bc+ must occur faster thanc+ ! a� !

ab�. SPICE simulations or separation analysis can be used
to guarantee that this timing requirement on the physical cir-
cuit will hold. This circuit will be valid if the delay in the
environment producing the inputa� is slower thanbc�.

An RT enhanced version of the verifier [12] was used to
check the timing of many of the hand-designed timed cir-
cuits in RAPPID using this method.

6 Future directions

Although significant progress has been reached in automa-
tion for RT asynchronous circuits during the RAPPID project,
in particular in the area of logic design, we believe that more
work should be done. Some of the important directions are
as follows:

� High-level designof asynchronous microarchitectures
including the following directions:

– High-level and RTL specification and simulation.

– High-level transformations of the initial sequen-
tial specification of the problem to the parallel mi-
croarchitecture with speculation.

– Relative-timing based synthesis from a high-level
model. The initial specification is speed-independent
and has full handshake signaling everywhere, while
the implementation takes advantage of explicit and
implied (automatically derived) timing assump-
tions. The tool should include an assistant that
will suggest timing assumptions that can simplify
the circuit. This item is largely covered by the cur-
rent status ofpetrify , but linking to the higher
level models (than Signal Transition Graphs) would
be required for direct compilation from the high-
level specifications.

– Automatic handling of interrupts and preemptions
based on timing assumptions. This is especially
important for parallel architectures with specula-
tion.

� RT logic and transistor-level synthesis. Circuit opti-
mization.

– Automatic propagation of relative timing constraints
to sizing tools and physical design flow. This re-
quires transforming RT constraints in the form of
events into delay constraints for gates, wires and
paths in the circuit.

– A lower-level circuit optimizer that will suggest
timing assumptions for circuit optimization. This
tool will run on a circuit implemented at transistor
level, and will be able to do transistor sizing and
timing analysis. The sizing tool should know how
much race margin to take. Some ”optimization
hints” and margin reporting features are already
implemeneted inATACS[1, 8].

– Automatic transformations to pulse-mode circuits
based on transforming interface protocols (remov-
ing interface handshake signals and substituting
them with timing assumptions).

– Timing-aware logic decomposition and technol-
ogy mapping for RT circuits.

� Verification for relative timing asynchronous circuits,
including the identification and back-annotation of the
timing constraints that should be met. Some of the im-
portant steps for RT verifications were made in [8, 5,
9].

� Testing and DFT.

– Have the synthesis/testing tool flag the transistors
which were added to prevent hazards, which may
have undetectable faults.

– Tools for functional DFT and debug – e.g., a tool
that will flag the loops that should be broken in or-
der to freeze the circuit before the state changes.
This was done manually in RAPPID. Automatic
support for selecting latches that should be scanned
for achieving the required level of testability is de-
sirable.

Acknowledgments

We would like to thank the many people from Intel Corpo-
ration who provided critical help with the RAPPID design,
layout, and silicon. The following people from Academia
contributed to the project. Peter Beerel, Chris Myers, Ken-
neth Yun, Rakefet Kol, Wei-chun Chou, Peter Yeh, John
Perry, Ayoob Dooply, and Rajesh Pendurkar participated in
the design of RAPPID. P. Pal Chaudhury developed the BIST
logic. Henrik Hulgaard participated in timing verification.

Alex Kondratyev, Luciano Lavagno, Alexander Taubin, and
Alex Yakovlev contributed to the developing of the relative
timing synthesis.

References

[1] Wendy Belluomini, Chris J. Myers, and H. Peter Hofstee. Verification
of Delayed-Reset Domino Circuits using ATACS. In1999 Interna-
tional Workshop on Timing Issues in the Specification and Synthesis of
Digital Systems (TAU99), pages 39–44, Monterey, CA, March 1999.
ACM/IEEE.

[2] Kees van Berkel.Handshake Circuits: an Asynchronous Architecture
for VLSI Programming, volume 5 ofInternational Series on Parallel
Computation. Cambridge University Press, 1993.

[3] S. M. Burns. General condition for the decomposition of state holding
elements. InProc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems. IEEE Computer Society Press,
March 1996.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Taubin,
and A. Yakovlev. Lazy transition systems: application to timing opti-
mization of asynchronous circuits. InProceedings of the International
Conference on Computer-Aided Design, pages 324–331, November
1998.

[5] Henrik Hulgaard and Steven M. Burns. Bounded delay timing anal-
ysis of a class of CSP programs.Formal Methods in System Design,
11(3):265–294, October 1997.

[6] M. Kishinevsky, J. Cortadella, and A. Kondratyev. Asynchronous in-
terface specification, analysis and synthesis. InProceedings of the
Design Automation Conference, pages 2–7, June 1998.

[7] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In
J. Straunstrup, editor,Formal Methods for VLSI Design, chapter 6,
pages 237–283. North-Holland, 1990.

[8] Chris J. Myers.Computer-Aided Synthesis and Verification of Gate-
Level Timed Circuits. PhD thesis, Dept. of Elec. Eng., Stanford Uni-
versity, October 1995.

[9] Radu Negulescu and Ad Peeters. Verification of speed-dependences
in single-rail handshake circuits. InProc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages
159–170, 1998.

[10] S. Rotem, K. S. Stevens, R. Ginosar, P. A. Beerel, C. J. Myers, K. Yun,
R. Kol, C. Dike, M. Roncken, and B. Agapiev. RAPPID: An asyn-
chronous instruction length decoder. InProc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems,
April 1999.

[11] K. S. Stevens, S. Rotem, and R. Ginosar. Relative timing. InProc. In-
ternational Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, April 1999.

[12] Kenneth S. Stevens.Practical Verification and Synthesis of Low La-
tency Asynchronous Systems. PhD thesis, University of Calgary, Cal-
gary, Alberta, September 1994.

[13] Frank C. D. Young, Kenneth S. Stevens, and Robert P. Graham. Timed
Logic Conformance and its Application. In1999 International Work-
shop on Timing Issues in the Specification and Synthesis of Digi-
tal Systems (TAU99), pages 95–100, Monterey, CA, March 1999.
ACM/IEEE.

[14] Kenneth Yi Yun. Synthesis of Asynchronous Controllers for Hetero-
geneous Systems. PhD thesis, Stanford University, August 1994.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

