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Abstract

This paper presents a novel technique for synthesis of speed-in-
dependent circuits. It is based on partial order representation of
the state graph called STG-unfolding segment. The new method
uses approximation technique to speed up the synthesis process.
The method is illustrated on the basic implementation architecture.
Experimental results demonstrating its efficiency are presented and
discussed.

Introduction

The problem of synthesis of speed-independent circuits from their
Signal Transition Graph (STG) specifications has been approached
by many researchers. Several tools exist today, such as SIS [10],
Assassin [12], Forcage [3] and Petrify [2], which are capable of
synthesising circuits of moderate size. All but Forcage use some
form of State Graph (SG) representation to obtain truth tables of
the implementation logic. Petrify uses Binary Decision Diagrams
(BDDs) to represent SG symbolically and can thus synthesise cir-
cuits from larger descriptions. Forcage, on the other hand, uses
Change Diagrams (partial order model) to derive an implementa-
tion but is restricted to specifications without choice.

Construction of SG hits available computational limits due to
state explosion. A structural method in [6] can implement STGs
avoiding exhaustive state exploration. It uses concurrency relation
between transitions of the STG to obtain an initial approximation
of the implementation. If this approximation does not satisfy cor-
rectness criteria, then iterative refinement is performed using State
Machine (SM) decompositions. Although powerful, this method it
is restricted to SM-decomposable specifications.

The main goal of this work is to develop a method for imple-
menting STGs that cannot be synthesised by the above techniques
due to the large size of their SG. A way to achieve this goal will
be analogous to the one in [6] — it will draw upon relations at the
event-based, rather than state-based, description level. This method
will, however, be free from the limitations of [6].

The solution to this problem is found in the use of a partial or-
der approach, already known to have given positive results in STG
verification. It is based on an implicit representation of SG in the
form of a finite STG-unfolding segment [9]. It was shown [9] that
such a segment can often be built for those examples where the
construction of SG fails. While the segment is being constructed
it is also verified for correctness. Thus, after the verification stage
is completed, an implementation can be derived from an already
built STG-unfolding segment. Two approaches are possible within
the new synthesis method: exact and approximate. The former ob-
tains an implementation equivalent to that derived from the SG. At
the end of the synthesis procedure this approach produces an im-
plementation by recovering binary states from the segment (similar
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to the approach of [5]). Although it benefits from the unfolding
methodology which restricts the set of states needed to examine for
each signal, the exact approach may suffer from exponential explo-
sion of states. To battle the complexity, the latter approach uses
concurrency relation to initially approximate and then to refine an
approximated implementation. The structural method of [6] works
on the STG level, assuming that two transitions are concurrent if
they can ever fire simultaneously. Loose approximation may re-
quire several computationally costly refinement iterations. On the
contrary, our method works with a partial run of the STG speci-
fied behaviour. Thus it is possible to pin-point when exactly any
two transitions become concurrent. This local information gives a
more accurate initial approximation and a more precise refinement.
Therefore the implementations can be obtained faster and be better
optimised.

The aim of this paper is to suggest and illustrate synthesis of
speed-independent circuits from the STG-unfolding segment built
for their specifications. The method is illustrated on the atomic
complex gate per signal architecture and is compared with the ex-
isting approaches.

Synthesis of Speed-Independent circuits

General synthesis approach We assume that the reader
is familiar with the basics of the Petri net theory [7). A marked
Petri net (PN) is a tuple N = (P, T, F,mq) where P and T are
non-empty sets of places and transitions, respectively, F' is a flow
relation and my is an initial marking. A Signal (Transition) Graph
(8TG) [8, 1lis atuple G = (N, A, L) (labelled PN) where N is
a marked PN, Aisasetof signalsand L : T' = {+,-} x A
is a labelling function. STGs are a special case of labelled PNs,
used for low level descriptions of asynchronous circuits. The set
of transition labels represents changes of signals: +a; (for up) and
—a; (for down). Notation *qa; indicates a transition labelled with a
change of a; regardless of the direction of this change.

Conventionally, to obtain an implementation for an STG G a
corresponding SG is built. The SG S, also called State Transi-
tion Diagram (STD), is derived by constructing the reachability
graph (representing all reachable markings) of the underlying PN
and then assigning binary codes v; to each vertex s. The binary
codes must be assigned consistently, i.e. :

e every arc is labelled with exactly one signal transition, and

o for each pair of states s; and s> connected with an arc la-
belled with #a; the following is true:

- U1[’i]=08ndl}2[’i]= 1if s=+
- Ul[i]= 1andU2[i]=0 if *=—

Once a consistent state assignment was performed, truth tables are
obtained for each output signal and an implementation is produced.
The process of obtaining a truth table depends on the implementa-
tion architecture chosen (for this particular signal).

Correctness criteria for synthesis of speed-independent circuits
can be divided into general correctness criteria and architecture
specific correctness criteria. The former are behavioural properties
of an STG, which characterise an STG to be implementable. In
addition to the consistent state assignment, they also include:

e Boundedness, which guarantees that the behaviour specified
by an STG can be implemented into a finite size circuit;



¢ Semi-modularity (also called “output signal persistency”),
which implies that excited output signals cannot be disabled
by some input signal change and thus cause a hazard.

The latter group of properties is usually checked during the ac-
tual logic synthesis process. These are generally referred to as cod-
ing conflicts and indicate that although the STG is implementable
“in principle”, some binary state may be associated with different
markings which makes them indistinguishable at the circuit level.
The Complete State Coding (CSC) condition introduced in [1] re-
quires any two states with equal binary codes to have the same set
of excited output signals. It was shown in [1] that STGs satisfying
CSC property are implementable as speed-independent circuits.

An implementation is obtained by building a cover function.
A boolean function with a variable corresponding to each signal
is said to be covering a state s; if it evaluates to TRUE when the
variables have the values equal to the elements of binary code v;
assigned to s;. A function C covering a set of states is called a
cover function (or simply cover) for this set of states {s;}; each

term of the cover is called cube. .
A cover is not required to be exact, i.e. to cover only the states

in {s:}. It could be obtained explicitly from their binary codes.
However, if a cover is obtained somehow differently (e.g. using
an oracle), it may cover some other states. For example, a method
described in [6] use structural information to obtain covers. Such
cover is called approximated cover, and needs to be checked for
correctness. There are different requirements for correctness of
covers according to the implementation architecture chosen.

The following three architecture types are normally considered:

o Atomic complex gate per signal implementation;
e Atomic complex gate per excitation function implementation;
o Atomic complex gate per excitation region implementation.

The first architecture can be considered as a basic type. The
other two aim at reducing the size of customised complex gates.
In these architectures it is assumed that the output signal is im-
plemented using a memory element. The Set and Reset excitation
functions for this memory element are implemented as atomic com-
plex gates (the former) or a network of atomic complex gates (the
latter). Depending on which memory element is used, the imple-
mentations are divided into i) Standard C-element implementation,
which uses Muller C-element as the memory element, and ii) RS-
latch implementation, where an RS-latch is used.

To demonstrate the novel technique we chose the atomic com-
plex gate per signal architecture. Our method, however, can be
easily adapted to the other architectures.

Atomic complex gate per signal implementation This
is a basic architecture for speed-independent circuits studied in [1].
The circuit is implemented as a network of atomic gates. Each
gate uniquely implements one output signal. Its boolean func-
tion can be represented as Sum-Of-Products (SOP) or Sum-Of-
Functions(SOF). An example of such gate is shown in Figure 1(b).
Each gate is allowed to be sequential (latch), i.e. contain an internal
feedback with a zero delay. The delay between its internal “AND-
ing” and “ORing” parts is also assumed to be negligible. The gate
depiction is used to denote the implemented boolean function as
the actual implementation is resolved on the transistor level.

Two sets of the reachable states are distinguished in the SG, on-
set On(a;) and off-set Off(a;), which include all states in which
the value of the output signal a; is implied to be TRUE and FALSE,
respectively. The remaining (unreachable) subset of combinations
of the boolean values of signals forms the Don’t care set (DC-set).

The implementation is derived by building the on-set'. Each
state can be represented by a term which has |A| variables, each
corresponding to one and only one signal a;. The term becomes
TRUE only when the values of the variables are equal to those in
the binary code assigned to the state. The cover C for implementa-

tion is obtained from the terms included into the on-set. The DC-sct
can be used for optimising the size of C. This is done in standard

minimisation tools, such as Espresso [10].

Here and further, for simplicity, it is assumed that the on-set is constructed. Usu-
ally, the simplest from the on- and off-sets is chosen for implementation.
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Figure 1: An example of an STG and a corresponding SG.

The synthesis for this architecture is illustrated in Figure 1(c)
for an STG shown in the Figure 1(a). Suppose that signal b is to
be implemented. The on-set of b is found as: On(b) = {(p2,ps),
(p3,ps), (p2,ps,ps), (s, pe, ps), (P7,ps), (ps)}. The cover func-
tion C(b) is obtained as: C(b) = abc+abe+abc+abc+abe+abe =
a + c. The DC-set in example in Figure 1(c) is empty so no further
minimisation can be done. .

Obtaining exact covers usually means that all states in the on-
or off-set must be known. An approximation algorithm produces
approximated covers of the on- and off-sets. Therefore, in this im-
plementation architecture, covers of on- and off-sets must satisfy
the following condition:

Definition 1 Two coversC,(a;) and Coy¢(a:) are said to be cor-
rect iff C5,,(ai) and Cop(as) cover On(a;) and Off(ai) respec-
tively and C,,(ai) - Copp(a;) C DC-set. m

If the covers do not satisfy the above condition, then the ap-
proximation is too loose and needs to be refined. If, on the other
hand, the covers are exact but still intersect outside the DC-set, then
this STG has CSC problem. In this case it should be corrected by
changing the specification, e.g. by inserting additional signals.

Slices in STG-unfolding segment

STG-unfolding segment Analysis of STGs using STG-
unfolding segment was studied elsewhere [9]. An STG-unfolding
segment is a tuple G' = (T", P', F', L") where T, P’ and F’ are
sets of transitions, places and the flow relation, respectively, and
L' is a labelling function which labels each element of G’ as an
instance of elements of G. G’ is a partial order obtained from an
STG G by the process of its unfolding which starts from the initial
marking. The unfolding process uses the structural properties of
the constructed partial order to determine the relations of conflict,
concurrencyand precedence between instances. These relations are
used to decide where to instantiate the next element. The following
key notions were introduced in [4]:

o The min-set of transitions needed to fire ¢, including ¢, is
called local configuration of t' and is denoted as [¢'].

o A set of place instances reached by firing all transitions in
['] is called postser of [¢'] and is denoted as ['] e. Mapping
a postset onto places of the original STG is called final state
of [t'] and gives a marking of the original STG.

¢ Any non-conflicting and transitively closed set of transitions
of T is called configuration C. The postset of a configura-
tion, denoted as C'e, is found from the postsets of transitions
comprising it.



The unfolding algorithm examines only states reached through fir-
ing of an instance t' excited by a minimal set of causes. It is based
on the fact that no new information about the behaviour of the sys-
tem can be obtained once the states started repeating. Thus the
algorithm constructs no new instances after any instance ¢, whose
firing reaches an already examined state. Transition instance ¢ is
called a cutoff transition of the unfolding.

In contrast to PN-unfolding [4], the STG-unfolding takes into
account signal interpretation of PN transitions and keeps track of
the binary codes reached by transition firing. However, it still ex-
amines only a subset of all reachable states and thus is more effi-
cient than SG analysis for a vast number of examples.

Each instance t' of STG-unfolding segment is assigned with
a binary code €,/ Which is reached by firing transitions in [t'].
Similar to its postset, the binary code corresponding to a config-
uration C' is calculated from £,y of transitions comprising it. It
was shown in [9] that all states of the SG are represented in the
STG-unfolding segment as postsets of some configuration. For
each instance t' labelled with signal transition xa; a set of tran-
sitions next(t') is defined as a set of instances labelled with *a;
reachable from ¢’ without any intermediate transitions of a;. Set
first(a;) is a set of transitions of a; first reached from the begin-
ning of the segment. A special transition, called initial transition,
is introduced in the unfolding to represent the initial state of the
STG. This transition, denoted as L, has a postset which maps onto
the initial marking mo and has an assigned binary code {1 equal
to the initial binary state vo of the STG.

It was demonstrated in [9] that an STG-unfolding segment can
only be constructed for an STG specification satisfying bounded-
ness and consistent state assignment criteria. The last general cor-
rectness criterion, semi-modularity, can be checked on the STG-
unfolding segment in linear time.

Cuts To represent a state of SG we define a cut. A cut of STG-
unfolding segment is a maximal set of concurrent places p’ € P’.
Bach cut ¢ of an STG-unfolding segment thus represents some
reachable marking of the original STG. A sequence relation is de-
fined between two cuts ¢y % ¢ if Vp; € c2,3p) € 1 : pj < pi.
For each instance t' the following four types of cuts are found.

o A minimal excitation cut c7**"(t'), which represents a state
at which ¢’ becomes first enabled.

o A minimal stable cut <™

is reached by firing of ¢

("), which represents a state which

max

o A maximal excitation cut ¢7'** (t'), which represents a state
from which, in a correct STG no advancement can be made
unless t’ is fired.

o A maximal stable cut c7*** ('), which represents a state which

is reached after firing of ¢’ from which firing of any transi-
tion leads to a state enabling the next change of the signal a;
labelting ¢'.

Each instance of the STG-unfolding segment uniquely identifies
" (*a}) and ¢T*" (xal) and the sets of c7***
Thus each instance identifies states bounding the subset of the on-
set (or off-set) of @; which is found for this particular instance.

Slices To represent a (connected) set of states we introduce a
notion of a slice of the STG-unfolding segment. A slice of STG-
unfolding segment is a set of cuts § = (™", ™7} defined with
a min-cut of the slice, c™", and a set of max-cuts, C™**, such that
Vei € S the following is true: ¢™™ < ¢; and 3% € C™*7
@i % ¢]"*”. No two cuts in the set of max-cuts are sequential.

In other words, a slice is defined between one min-cut and a set
of max-cuts. Every cut in between the min-cut and a max-cut is
encapsulated in the slice S. Furthermore, for any two cuts ¢; and
¢, encapsulated by S, if c; < c;, then all cuts between ¢; and ¢;
are also encapsulatedby S. Since each cut represents some state in

(*a}) and ¢ (*al).
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Figure 2: An example of an STG-unfolding segment and illustra-
tion of slices and cuts.

the SG, for any two states s; and s; represented as sequential cuts
in a slice, all states on any path from s; to s; are also represented
as cuts encapsulated into S. The number of cuts in the set of max-
cuts corresponds to the number of configurations (non-conflicting
runs of the STG) which include configuration producing the min-
cut. The elements of the STG-unfolding segment, i.e. places and
transitions, bounded by instances in min-cut and max-cuts are said
to belong to the slice.

A slice represents a subset of reachable states found in the SG
for any STG bounded by the cuts defining it. As discussed ear-
fier, the synthesis of speed-independent circuits is based on finding
subsets of reachable states. Therefore, slices of the STG-unfolding
segment can be used to identify and represent these subsets.

Cuts and slices are illustrated in Figure 2. Considera cut ¢ =
(p%,ps) in Figure 2(a). This cut is a minimal excitation cut for the
transition —¢’ and is a minimal stable cut for 4-b'. Another cut,
¢ = (ph,ps,ps) is a maximal stable cut for transition instance
+a’. At the same time this is a maximal excitation cut for the
instance +b". This example also illustrates the relations between
cuts. Intuitively, if a transition #a; causes *a}, then the minimal
stable cut of *a! is the minimal excitation cut of xa; and vice versa.

Stice S1 = ({p1), {(p",ps)}) (Figure 2(b)) encapsulates cut
¢ = (p}). Another slice 8> is defined between a min-cut (p3, p3)
and a set of max-cuts {(p5, ps, pg )} and includes all cuts between
them. It is also possible to define a slice between (p3,p3) and
{(p5,p5), (P2, pe,pt)}. In this case the slice will include all cuts
but one enabling —a’. This slice, therefore, represents all states at
which signal a is stable at “1”.

Each cut is produced by some configuration of the STG-un-
folding segment. Hence, the binary codes of the SG states repre-
sented by cuts encapsulated in a particular slice can be recovered
by examining its cuts.

Synthesis from STG-unfolding segment

Obtaining exact covers First, consider the problem of syn-
thesis from the STG-unfolding segment G' by finding exact covers
for the on-(off-)set. To implement an output signal of an STG as an
atomic gate, its on-set® is required. Since its SG is represented as
an STG-unfolding segment, the problem is to find a set of slices in
this segment which represents all states in the on-set, i.e. an on-set
partitioning of G’ for a;.

To define each slice we need to identify a min-cut and a set of
max-cuts. From all instances in the STG-unfolding segment only
instances of +a; may change the value of corresponding element
in the binary codes. Furthermore, for each instance +a! its min-
imal excitation cut ¢J**"(+a!) represents the first state at which
+a; becomes excited. Any cut at which +-a; is excited or stable at
“1”" must be sequential to cI**"(+a!). A special case is the initial

20ff-set if an off-set implementation was chosen. In this case instances of —a;
should be considered.
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Figure 3: Illustration of synthesis from the STG-unfolding seg-
ment.

transition L of G’. If in the initial state of the STG the correspond-
ing bit of binary code was “17, then the set first(a;) will consist
of the down instance —~a;. In this case, the minimal stable cut of

1 is the first cut from wh1ch this slice can be defined. Thus the set
of minimal cuts, which is used to define a set of slices, is taken as

a set of minimal excitation cuts of instances +a/ and the minimal
stable cut of L, if the signal a; is at “1” in the initial state. Thus a
set of transitions, called entry transitions, is identified on the STG-
unfolding segment which includes all instances of +a; and may
include L if a; is at “1” in the initial state.

For complete definition of each slice we need to determine a set
of max-cuts for each slice. The minimal excitation cut of any in-
stance —a, represents the first state at which —a; becomes excited.
This cut belongs to the off-set.

For each instance +a’ the slice must be bounded by a set of cuts
which can be reached from min-cut without exciting —a;. The slice
is bounded by the maximal excitation cuts of immediate predeces-
sors of next(+a,), i.e. cuts at which an immediate predecessor of
a transition from next(+'a;) is the only transition to fire. This is
the furthest state to which advancement of the system can be made
from +a! without enabling —a;. In the case of initial transition the
set of max-cuts for the first slice is chosen using first(a;).

Due to the unfolding algorithm, a particular configuration may
contain no instances of —a;. This may happen if the configuration
contains a cutoff transition, or simply leads to a deadlock. In this
case the cut reached by such configuration bounds the slice.

Consider synthesising signal b from an example in Figure 1.
The on-set partitioning of the segment is shown in Figure 3. There
are two instances +b’ and +b” and one instance —b’. Thus there
are o slices Sb, (+5) = ((ph), {(p}, pk)}) and S5, (+5") =
((p5,p%), {(p5.pé, ps)}) representing states from the on-set and
one slice Sogs = {(ps), {(pY)}). Once the slices are defined,
the set of states represented by these slices is found: On*(b) =
{100,101, 110, 111} and On?(b) = {001, 011}. The on-set cover
is obtained from slices as Con = On'(b) U On®(b) = {100, 101,
110, 111, 001, 011} which after standard boolean transformation
gives Con, = {1—~, ——~1} = a+c. If the off-set implementation
were chosen, then the cover would be Cogs = {010, 000} = ac.

Deriving cover approximation from STG-unfolding
segment The synthesis procedure described in the previous Sub-
section suffers from one drawback. If many concurrent transitions
belong to a slice, then obtaining the binary codes for all cuts will
suffer from exponential explosion of states. To battle this an ap-
proximation method is suggested.

Two types of nodes can be identified in the on-set of signal a;:
.those which have +a; excited and those at which a; is stable at
“17. The former is traditionally called excitation region (ER) and
the latter quescient region (QR) of +a;. A set of states at which
a particular place p; is marked is called a marked region (MR) of
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Figure 4: Ilustration of cover approximation and refinement.

this place. It was pointed out in [6] that a cover for any set of
states can be found as an intersection of covers for places which
are marked at each state. Thus a set of states at which a particular

transitjon is excited can be found as an intersection of MRs of its
preceding places. However, at the unfolding level the instances

of transitions are known The minimal excitation cut c7*™(*a!)

for each instance *a. indicates where this instance becomes first
enabled.
Any state reachable from ¢**" (xaj ), preserving the excitation

of *a;, can only be reached by firing transitions which are concur-
rent to a. If a signal transition instance *a; is concurrent to *a;,
then the value of its corresponding element in the binary code may
take values of both “0” and “1”. A cover approximation C(a;) is
found from the binary code ¢ assigned to the cut m(*a’ ). Lit-
erals corresponding to signals whose instances belong to S.(*a!)
and are concurrent to *a! are substituted by “~ (don’t care). Ap-
proximation reduces the number of literals in cover C3(a;) and in-
creases the number of combinations covered by CZ(a:). However,
such approximation guarantees that no marking at which xa/, is ex-
cited was lost. Furthermore, for a CSC-compliant STG, €} (a’)
will only cover those reachable states where *a; is excited.

For example, consider calculation of C; (+d’) for the instance
+d' in Figure 4(a). The binary code corresponding to its minimal
excitation cut ¢2*"(+d') = (p3, p3, ps) is found from the binary
code of its local configuration [+d'] as ¢ = {1000000} (the order
of signals is abcde fg). There are four signals {b, c,e, f} whose
instances belong to the slice and are concurrent to +d’. Thus the
ER cover approximation for +d’ will be C*(+d') = {1 — -0 —
-0} = adg.

The rest of the states in the on-set which are represented as
cuts encapsulated by Sy, (*a;) can be approximated by taking
cover approximations for MRs of places belonging to 8¢, (xas)
and sequential to the entry transition of the slice.

For each place p} its MR approximation cover Cy.(p;) is ob-
tained from the binary code £ A assigned to its preceding tran-

sition. Similar to ER approximation, any marking at which p; is
marked can only be reached by firing transitions concurrent to p;.
Thus literals corresponding to signals whose instances belong to
Son (*a}) and are concurrent to p; are replaced by “~”

An MR cover approx1mat10n for a particular place p; w111 cover
all states at which p} is marked with any other concurrent place
p;. Thus only mutually non-concurrent subset of places belong-
ing to ¢y, (xa;) can be considered. A set of such places is called
approximation set P,. Furthermore, an MR cover approximation
must not cover markings enabling instances ¢; € next(*a;). Thus,
the MR cover approximation for any such place p; is found as
Clpl) =3 C;‘; (pi) where € :';c (p]) is a cover approximation found
for p; with a set of concurrent signal instances excluding an in-
stance t;, immediately preceding ¢;. To reduce the size of MR
cover approximations, it is also convenient to choose P} so that
it includes one input place from each instance in next(*a;). The



cover approximation for each slice S On(+a§) representing the
states from the on-set of signal a; is therefore calculated as:

Con(al) =Ci(+al) + Y Conrlpl), pi € Pi

where C(+a!) may be empty if the entry transition of S iy, (+a!)
is the initial transition of the segment.

Consider approximation of the on-set cover for signal +a’ shown
in Figure 4(b). The slice representing states from the on-set is found
asSon(+a’) = ((p1), {(P7, P58, P5): (Ps, P8, P10 ), (P, P5, Plo)})-
To approx1mate states represented by this slice an approximation
set is chosen as P, = {p4,p7,p10} The initial values for MR
cover approximations for place pj and p} are found using ¢ of their
predecessors +-a’ and +d' respectively. Both places have the same
set of concurrent instances of other signals. Their MR cover ap-
proximations are found as Ch,,.(p}) = {1 — —0 — —0} = adg and
C;‘m(p7) {1 — —1— —0} = adg. Place p},, on the other hand,
is an input to —a' € next(+a ) Therefore its MR cover approxi-
mation is found as C(pw) = C} (plo) + Co(plo) = {1 — ~1—
01}u{l——10-1} = adfg+adég‘ There is only one state in the
ER of +4a’ which is covered by a cover C*(-+a’) = {0000000} =
abede fg. The cover approximation representing the on-set of a is
found as €%, (a) = abedefg + adg + adg + adfg + adeg.

Cover refinement Due to the approximated nature of the cov-
ers, an on-set cover found from the STG-unfolding segment may
implement an incorrect function. Indeed, if a output signal is imple-

mented using an on-set cover approximation which covers a state -

belonging to the off-set, then the output will change to “1” where
it is suppose to be “0”. Thus cover approximations obtained using
the algorithm described before need to be checked. To check cover
correctness both on- and off-set cover approximations are required.

Suppose that both approximated covers for the on- and off-set
of a; were obtained. Suppose also that their intersection is non-
empty. The covers’ intersection may only belong to the DC-set.
However, to find the DC-set all codes in both on-set and off-set
must be known. Therefore, to ensure the covers implement the
logic functions correctly we check a stronger condition: approxi-
mated covers for on- and off-set are said to be correct if their in-
tersection is empty. The approximation produces semi-optimised
covers. Exact covers have their intersection empty by construc-
tion. Therefore, if the covers’ intersection is non-empty, then they
need to be refined until their intersection becomes empty, possibly
restoring the exact covers. Thus the use of a stronger condition
only affects the quality of optimisation rather than correctness of
covers. If after complete refinement on- and off-set covers still
intersect, then this STG has a C8C problem and cannot be imple-
mented without changes to the specification. Correct refined covers
can be optimised using any known minimisation technique.

The pseudo-code of the algorithm for deriving covers for on-
and offsets is shown in Figure 5. The initial on- and off-set cover
approximations are found as described in the previous Subsection.
If the approximated covers’ intersection is not empty, then these
covers are refined. Only concurrency relation was used for finding
approximated covers. Other relations between transitions concur-
rent to *a’ were ignored. The general idea behind refinement is
that using these relations some of the information about the cover
is restored. Covers are refined until “they are good enough”, i.e.
covers’ intersection becomes empty.

The on- and off-set covers’ intersection may become non-empty
due to approximation of MR cover for some places in the approxi-
mation set. These MR cover approximations may intersect with the
ER cover approximations of some instances of the opposite signal
transition. In this case only cover approximations for these places
(but not all in the approximation set) and the instance of opposite
signal transition need to be refined. The set of signals Sig which
cause the intersection is also known. These are exactly those sig-

nals whose value is undefined in one of the cubes B € C*. Thus
we need to consider a problem of refining a cover approximation

for an element =’ of STG-unfolding segment with S1g.
To restore some of the relations a refining set P, is constructed
from non-concurrent places belonging to the slice Sy, (*a) such
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for each implementable signal a; do

Find sets of on- and off-slices SJOn and Sk

' Off
; J
for each slice S Oon do

Find approximation set P,

cp = C(t) + [ Ch

O pl) pl E Pl]
for each slice S’E) 7t do

end do

Find approximation set P),

Coyp = CH(E) + [ZC
end do
/* initial approximations found */
while Cb Off # 0 then do

for each C},,.(p}) and C* (L) : C}..(p}) - C*(tL) # 0 do
Find the set of offending signals Sig
Choose offending signal aj from Sig

Find refining set P}, for pj w.rt. a;

(p)) : pleP’]

Crew(p) = Crr (p1) - [ (71) : 7, € FY]
Find refining set P for t, wrt. a;
c;ew(t, =C* (te) [ZC (Pk : pit € P,i]
end do
end do

end do

Figure 5: Algorithm for deriving on- and off-set cover approxima-
tions from STG-unfolding segment

that Vpj, € Py : 3'|[p},. Furthermore, the set is chosen so that for at
least one signal a; from Sig for each its instance t;, € 8y, (+a?)
one of the successors of ¢}, is in P/. Thus each refining step will
refine at least one signal from Sig. A refined cover Cr,.., (') is
obtained from the old approximation as: Cre,(z') = C*(z') -

[Z Crv(ph)] i € P Cover Civy (pj) is a restricted MR cover
for p;, where only those literals are set to “~” whose instances t;]|p},
belong to ), (*a!) and are successors of =,

Informally, at each step the refinement procedure restores the
marking component of reachable states represented by the slice.
It finds a set of places which can be marked together with each al-
ready partially restored marking. The cover function is then changed
reflecting the fact that partially restored markings now include found
places. Thus in the end, when the procedure terminates, the covers
correspond to fully restored markings and cover only states with
these marking components.

Since each step refines the value of at least one variable and
the set of signals is finite, the refinement procedure will terminate
in finite number of steps producing an exact cover for the states
represented the slice S gy, (*a; ).

Consider a fragment of STG-unfolding segment shown in Fig-
ure 4(c). Suppose that on-set cover approximation C*On, found

with approximation set P, = {p}, ph, pt, ps }, intersects with C E)ff

for some signal. Suppose also that a cube B = dé which is an MR
cover approximation of place p; causes this non-empty intersec-
tion. The set of offending signals is found as Sig = {a,b,c}.
Let a be the signal chosen for refinement. Its only instance which
should be used in refinement is —a’. A refinement set is chosen
as P} = {p},p4,p7,pt}. Consider calculation of the restricted
MR cover approximation for p5. The only instances which can be
used in approximation is +e’ as other concurrent instances, +a’
and +d’, precede pi. Thus Crr.(ps) = {1001~} (the order of
signals is abcde). Similar, MR cover approximations are found for
other places in P/. The refined cover approximation is thus found
as: c;w(p5) {——~10}A[{1001-}U{1101~}U{1111-}U
{0111—}] = aéde + bede.

The resulting cover is an exact cover of MR for place p;. Note
that 1f simply MR cover approximation C},,.(p5) = bZ were chosen
for p5, then refinement would not refine a.
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Figure 6: Experimental results for Muller pipeline.

Experimental results

The method suggested in this paper was implemented on the basis
of the unfolding tool “PUNT”. Experiments are divided into two
major series.

The goal of the first series was to demonstrate the quality of
the proposed method. Results of the synthesis procedure, tested
on a set of benchmarks, are shown in Table 1. The table presents
time breakdown (in seconds) for synthesis a speed-independent cir-
cuit from its STG specification in the atomic complex gate per
signal architecture (“PUNT ACG”). Column “UnfTim” shows the
time taken to construct the STG-unfolding segment; column “Tot-
Tim” shows the total time taken to synthesise a particular circuit
(including Espresso optimisation). For comparison, same set of
benchmarks was synthesised using two known tools Petrify and
SIS. Their timings are grouped in the column “Other tools”. Literal
count (columns “LitCnt”) was used as a measure of the quality of
the new synthesis method. The literal count shows the total num-
ber of literals in the obtained covers of final implementations. The
number of signals (column “Sigs”), influencing the complexity of
the specification and its behavioural representation, is also given
for each specification.

As it can be observed, the synthesis technique based on the
STG-unfolding segment produces implementations comparable to
those produced by other tools. The timing results show that our
technique compares favourably to Petrify. It is also comparable
with SIS on the benchmarks with low count of signals and it be-
comes increasingly better with the growth of the signal count. These
results show that for small sized benchmarks, the overheads of con-
structing the STG-unfolding segment and traversing it may out-
weigh the time spent on constructing a small reachability graph
with an efficient implementation. Using a stronger correctness con-
dition for approximated covers may produce a slightly worse im-
plementation due to the fact that the DC-set is partitioned.

The second series of experiments shows the feasibility of the
new method on a set of scalable examples such as Muller pipeline.
Experimental results are shown in Figure 6. As can be observed,
existing tools soon choke on the size of the specification either run-
ning out of memory or taking prohibitively long time. The literal
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count for all three tools was the same. Both SIS and Petrify exhibit
doubly exponential growth of time taken. The first dependency is
due to the state space explosion, the second is due to the exponen-
tial complexity of the exact synthesis process used in both tools. In
addition, we synthesised a Counterflow pipeline specification [11]
which has 34 signals. From the existing tools, only Petrify was able
to synthesise it taking more than 24 hours. At the same time PUNT
was able to synthesise it in under 2 hours thus giving an order of
gmgnitude gain in speed. This is shown on the graph as a circled
ot.

Conclusions

In this paper we presented a new method for synthesis of speed in-
dependent circuits. Qur approach is based on the STG-unfolding
segment. It uses the segment as a model from which an implemen-
tation is obtained. As the size of the STG-unfolding segment is
often smaller than the size of the SG, it is possible to synthesise
specifications of larger sizes. In addition, due to the smaller size of
the semantic model, the implementation can be achieved faster on
a number of moderate sized examples. We demonstrated applica-
bility of our method on an existing set of benchmarks.

Future development of this method can be directed into explor-
ing heuristics for the refinement procedure, which is the core of
our method. In addition, this method can be adapted to the other
implementation architectures. In this case, the approximation will
be used to obtain the excitation functions for memory elements
by finding the slices corresponding to the required regions of the
SG. Furthermore, the method can be enhanced by accommodating
checks for weaker correctness conditions for approximated covers.
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