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ABSTRACT

A protocol for latency-insensitive design with early evalua-
tion is presented. The protocol is based on a symmetric view
of the system in which tokens carrying information move in
the forward direction and anti-tokens canceling information
move in the backward direction. An implementation of the
protocol and an example illustrate the flow for converting a
regular synchronous design into an elastic circuit with early
evaluation.

Categories and Subject Descriptors: B.5.2 [Register-
transfer-level implementation]: Design Aids.
General Terms: Design, Theory, Verification.
Keywords: Elastic designs, protocols, synthesis.

1. INTRODUCTION
Synchronous elastic (or latency insensitive) systems have

been suggested by a few research groups as a form of dis-
cretized asynchronous systems (see, e.g., [3,5,6]). Such sys-
tems are “elastic” in the sense that they can tolerate changes
in the latencies of their components.

Conventional synchronous elastic systems are based on
strict evaluation: the computation is initiated only when all
input data are available. However this requirement is not al-
ways necessary. As an example, let us consider a multiplexer
with the following behavior: z = if s then a else b.
Early evaluation can be applied if, for instance, s and a are
available and the value of s is true. In that case, the result
z = a can be produced and the value of b can be discarded
when it arrives at the multiplexer.

In early evaluation, care must be taken in preventing the
spurious enabling of functional units when the non-required

inputs arrive later than the completion of the computation.
A possible technique is the use of negative tokens, also called
anti-tokens. Each time an early evaluation occurs, an anti-
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token is generated at every non-required input in such a way
that when it meets the positive token they annihilate.

The idea of anti-tokens was used in [8,11], extending Petri
nets for handling OR causality and nodes with arbitrary
guard functions. [7] used a similar technique for performance
estimation of systems with early evaluation. Early evalua-
tion [10] and anti-tokens [1, 2] have also been used in asyn-
chronous circuits.

This paper presents a behavioral model for synchronous
elastic systems with early evaluation, called a dual marked

graph. An implementation with a symmetry between the
logic to handle tokens and anti-tokens is proposed. The pa-
per concludes with an example illustrating the elasticization
flow, the performance analysis of early evaluation, and sys-
tem performance vs. controller area trade-offs.

2. MODEL FOR EARLY EVALUATION
This section presents a concurrent model for systems with

early evaluation. We assume the reader to be familiar with
the basic Petri net theory and refer to [9] for an excellent
survey. The notation used in this paper is next presented.

A marked graph (MG) is a triple G = (N, A, M0), where
N is a set of nodes, A is a set of arcs and M0 : A → N is a
marking that assigns an initial number of tokens to each arc.
Given a node n, the notation •n and n• is used to denote the
set of incoming and outgoing arcs of n, respectively. Given
a subset φ ⊆ A, the total number of tokens of the arcs in φ

at a given marking M is denoted by M(φ).
Without loss of generality, we model elastic systems with

strongly connected MGs (SCMG). For open systems inter-
acting with an environment, it is possible to incorporate an
abstraction of the environment into the model by a transi-
tion that connects the outputs with the inputs. We next
review a few properties of SCMGs [9]:

Token preservation. Let φ be a cycle of an SCMG. For
every reachable marking M , M(φ) = M0(φ).

Liveness. An SCMG is live if every cycle, φ, is marked
positively at M0, i.e., M(φ) > 0.

Repetitive behavior. A firing sequence σ from a marking
M leads to the same marking iff every node from N fires
the same number of times in σ.

2.1 Dual marked graphs
We extend the class of MGs by allowing negative markings

and early enabling. We call this class dual marked graphs

(DMG). In DMGs, a marking M is a mapping M : A → Z.
A subset of nodes E ∈ N is declared to be early-enabling
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Figure 1: Dual marked graph: (a) initial marking,
(b) reachable marking with anti-tokens.

(denoted with thicker bars). Given a marking M and a
node n, the enabling rules for DMGs are defined as follows:
Positive (P) enabling: M(a) > 0 for every a ∈ •n. This
is the conventional enabling condition.
Negative (N) enabling: M(a) < 0 for every a ∈ n•, i.e.
all the successor arcs have negative tokens.
Early (E) enabling, for n ∈ E: M(•n) > 0 and M(a) ≤ 0
for some a ∈ •n, i.e. only some predecessor arcs have tokens.

E-enabling is only defined for early-enabling nodes. It
models computations that can start without having all the
incoming data available. E-enabling is usually associated
with an external guard that depends on data values, e.g.
a select signal of a multiplexer or a zero flag for an input
operand of a multiplier.

Regardless of the enabling condition, the firing rule for
DMGs is the same rule used for MGs. When an N-enabled
node fires, it propagates the anti-tokens from the successor
to the predecessor arcs. We call this phenomenon token

counterflow. When an E-enabled node fires, it generates

anti-tokens in the predecessor arcs that had no tokens.
Example. Fig. 1 depicts a DMG with one early-enabling
node n1 and three simple cycles: C1 = {n1, n2, n4, n7},
C2 = {n1, n3, n5, n7} and C3 = {n1, n3, n6, n8}. Every cy-
cle has a token in the initial marking. Figure 1(b) depicts
a reachable marking, with the symbol ⊖ representing anti-
tokens. This marking can be reached from the initial one in
Fig. 1(a) by firing nodes n2 (P-enabling), n1 (E-enabling)
and n7 (N-enabling). The firing preserves the sum of tokens
at each cycle, considering positive and negative tokens.
Algebraic properties. Given that DMGs have the same
firing rule as MGs, some fundamental properties also hold:
token preservation, liveness and repetitive behavior.

All these properties are essential to guarantee a correct
behavior in elastic systems with early evaluation.

3. ELASTICITY WITH ANTI-TOKENS
The implementation of elasticity with anti-tokens is based

on the formal model of DMGs presented in Sect. 2 and the
implementation of the SELF elastic protocol presented in [5].
More details can be found in [4].

In DMGs there are two flows, one for tokens and another
for anti-tokens. A DMG can be split into two dual MGs, one
for each flow. When a token and an anti-token are held in
dual arcs, they must cancel each other.

The scheme of a linear pipeline is depicted in Fig. 2. The
symbols V +, S+, V − and S− denote the valid and stop

signals for the positive and negative flows. Note that the
V − signal has the semantics of a Kill for the positive to-
kens. The controllers are built based on the ordinary EHB
depicted in Fig. 7(b) of [5] (also Fig. 3 of [4]). The negative
component (bottom) is symmetric to the positive compo-
nent (top). The dark gates are the only addendum to the
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Figure 2: Linear pipeline with dual EHBs.

controllers and they play the role of the mutual cancellation
of tokens and anti-tokens when they meet.

The abutment of elastic controllers with dual flow can eas-
ily lead to netlists with combinational cycles if controllers
are not properly designed. For this reason, the gates can-
celling tokens are placed at the boundaries of the EHB con-
trollers, before the V and S signals are stored in their cor-
responding latches, as shown in Fig. 2.

The protocol for elastic communication implies certain in-
variants in the state of a channel. In particular:

V − ∧ S+ and V + ∧ S− (1)

The first invariant indicates that it is not possible to kill a
token and to stop it at the same time. The second invariant
has a dual semantics for anti-tokens.

3.1 Join and fork controllers
The most difficult part of the implementation of elasticity

is the correct synchronization of multiple flows by the join

and fork structures (see Fig. 3(a) and 3(b)). The shadowed
boxes of the join controller correspond to the basic join and
fork controllers shown in Fig. 8 of [5] (also Fig. 4 of [4]).
A join of tokens has a dual fork for anti-tokens, and vice-
versa. The gates with label I are included to preserve the
invariants specified by the expressions in (1). Finally, the
gate B prevents a new transfer to occur before all the pending
anti-tokens stored in the flip-flops FF have been propagated.
Note that Figs. 3(a) and 3(b) are perfectly symmetric.

3.2 Join controller with early evaluation
The most important controller in this work is the one

that generates anti-tokens. It is the join with early evalua-

tion, depicted in Fig. 3(c). The design is similar to the join
controller in Fig.3(a), with two important differences:

• The gates with label G generate the anti-tokens. For every

channel, they implement the equation V +

in
∧ V +

out ∧ S+
out

that feeds the OR gate producing the anti-tokens at V −

in
.

This equation is asserted when there is a transfer at the
output channel without data at the input channel.

• The shadowed block with label EE implements the early
evaluation function using the V +

in
signals and some data

coming from the data-path. This function substitutes the
conjunction of V +

in
in the conventional join and may be

asserted even though not all V +

in
signals are true.

Example. A join controller for a 2-input multiplexer would
have three input channels: s, a, and b. The first chan-
nel would be associated with the select signal. Since every
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Figure 3: Dual elastic controllers: (a) Join, (b) Fork and (c) Join with early evaluation.

channel is elastic, it would also carry the V and S signals
of the elastic protocol. The enabling function (block EE)
could be EE = V +

s ∧ ((s ∧ V +
a ) ∨ (s ∧ V +

b
)). The signal s

corresponds to the data value of the channel with the same
name. Note that V +

s must always be true for the enabling
of the module. An early enabling is produced, for example
when V +

s = V +
a = 1 and s = 1. In this case, if V +

b
= 0, an

anti-token will be produced in the channel b.

3.3 Advanced features and verification
The elasticity with anti-tokens can be enhanced with some

advanced features. In particular, the propagation of anti-
tokens can be stopped (passive anti-tokens), thus saving area
and energy to handle early evaluation. The controllers can
also be modified to handle variable-latency units.

All the controllers presented in this paper have been veri-
fied using model checking. More details about these features
and the verification strategy can be found in [4].

4. EXAMPLE
We will use the example in Fig. 4(a) to illustrate early

evaluation. The system has five functional units: S, I, F ,
M and W . Registers are represented by shadowed boxes.
Units F and W have three pipe-stages (not explicitly shown
in the figure), while units S and I are not pipelined. Unit
M is composed of two variable-latency multi-cycle units M1

and M2, delivering the result into a register. Unit S sends
data to units I, F and M in parallel. Additionally, it sends
control data (e.g. the opcode) to the register C. Unit W is
a multiplexer that selects only one of the results according
to the opcode. The selection probabilities are 0.6, 0.3 and
0.1 for I, F and M , respectively.

The elastic conversion of this example (an automated pro-
cess) proceeds in the following steps: (1) All registers in the
data-path are transformed into pairs of master-slave latches
with independent enable signals, and (2) the elastic control
layer (see Fig. 4(b)) that generates the enable signals for
the latches of the datapath is built using the components
presented in [5] and Sect. 3 as follows:

• For every register in the datapath, an EB controller (com-
position of two EHBs) is included in the control layer.

• For every block, a controller with a join (J) or early join

(EJ) at the inputs and a fork (F) at the outputs is built.
The join or fork components are omitted if the block has
only one input or one output, respectively. In the example
we chose to use an early join for module W to exploit the
early evaluation of W ’s multiplexer. The operations are
encoded with two control signals, s1 and s2, as follows: 00

for I, 01 for F and 1- for M , thus resulting in the following
early-enabling function for W :

EE = V
+

c ∧ ((s1 ∧ s2 ∧ V
+

I
) ∨ (s1 ∧ s2 ∧ V

+

F
) ∨ (s1 ∧ V

+

M
)).

The control signals s1 and s2 are bundled with the valid
signal V +

c from register C.
• A variable-latency controller (VL) is included for each

variable-latency unit (M1 and M2). Both of them have
a three-wire (go, done, ack) interface with the data-path.

• The connection of the controllers with the
{V +, S+, V −, S−} interfaces is done according to
the connectivity of the corresponding units in the dat-
apath. Solid arcs represent pairs of {V +, S+} wires in
the positive sub-channels, while dotted arcs going in the
opposite direction represent pairs of {V −, S−} wires in
the negative sub-channels. Some of the channels (e.g.
W → S), do not have a negative part, since both V −

and S− signals are constant 0. This simplification is
performed by simple logic synthesis techniques.

• In this example we assume that the environment has only
{V +, S+} interface and does not attempt to kill any tokens
inside the system.

4.1 Synthesis and simulation
A complete framework for elastic systems has been de-

signed. It can generate models for simulation, verification
and logic synthesis.

The Verilog simulation model incorporates statements to
randomly generate the values of the control signals according
to the probability distributions defined by the user. Simi-
larly, it also generates random delays for the variable-latency
units. In the example, we define a latency for M1 of 2 and
10 cycles with probabilities 0.8 and 0.2, respectively. The
delay for M2 is defined as 1 or 2 cycles with probability 0.5
each. Initially all three EBs at the output of W have valid
data, represented by the tokens at the registers. The other
EBs have bubbles (invalid data).

Table 1 summarizes the results of 10K-cycle simulations
and logic synthesis using SIS for five different configurations.
The second column shows the throughput of the system
measured as the number of transfers per cycle at the in-
terfaces with the environment.

The throughput of a channel is computed as the sum
of positive transfers (V + ∧ S+ ∧ V −), negative transfers

(V − ∧ S− ∧ V +) and kill cycles (V + ∧ V −) and is the same

for all system channels. This is a direct consequence of the
repetitive behavior of SCDMGs. The next five columns show
the throughput of positive transfers (+), negative transfers
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Figure 4: Example: (a) datapath, (b) elastic control.

Th(F2 → F3) Th(F3 → W ) Th(S → M1) Th(M1 → M2) Th(M2 → W ) Area
Configuration Th + ± + − + ± + − + − lit lat ff
Active anti-tokens 0.400 0.205 0.195 0.132 0.268 0.328 0.071 0.328 0.071 0.204 0.195 253 56 9
No buffer (S → W ) 0.343 0.116 0.227 0.106 0.237 0.285 0.058 0.285 0.058 0.228 0.115 241 52 9
Passive (F3 → W ) 0.387 0.387 0.000 0.387 0.000 0.318 0.069 0.318 0.069 0.280 0.107 213 44 9
Passive (M2 → W ) 0.280 0.143 0.137 0.095 0.185 0.280 0.000 0.280 0.000 0.280 0.000 234 52 9
No early evaluation 0.277 0.277 0.000 0.277 0.000 0.277 0.000 0.277 0.000 0.277 0.000 176 40 6

Table 1: Throughput for different configurations of the example in Fig. 4.

(−) and kills (±) for five selected channels. The absent
columns (e.g. ± in channel F3 → W ) indicate that all val-
ues are 0. The last column shows the number of literals,
transparent latches and flip-flops after logic synthesis.

The first configuration (active anti-tokens) corresponds to
the one in Fig. 4(b): channel F3 → W transfers anti-tokens
26.8% of the cycles, whereas channel F2 → F3 kills tokens
19.5% of the cycles and has no anti-token transfers. The
difference 26.8% − 19.5% = 7.3% is the fraction of tokens
that are killed on the internal channel between the two EHBs
at the output of F3.

The second line corresponds to a configuration that has
no buffer on the channel S → W . Interestingly, this de-
grades the throughput from 0.4 to 0.343 since long opera-
tions in the pipeline prevent S from producing new values
for channel S → W . This phenomenon occurs when there is
a large mismatch among the latencies of different branches
in a pipeline. The buffer C mitigates this phenomenon.

The third and fourth lines report results with passive anti-
tokens on one of the channels. This reduces the complexity
of the control since some of the logic can be eliminated at
the cost of some degradation in performance.

The numbers for S → M1 and M1 → M2 are exactly
the same, except for the fact that all negative tokens are
transferred in the latter and killed in the former. This is
because tokens are only killed at the boundaries with latches
(see Fig. 2) and there are no latches between M1 and M2.

The last line reports a base-line performance for the lazy
version of the control, in which the early join (EJ) is replaced
by a regular join (J). In this case, no anti-tokens are held.

This experiment illustrates the potential impact of early
evaluation in throughput and control complexity. It also
shows that the area overhead of the control layer is small
for wide (e.g. 32 or 64-bits) datapaths.

5. CONCLUSIONS
This paper describes a particular implementation of early

evaluation, but many variations are possible. For example,
it would be possible to extend the approach to store mul-
tiple anti-tokens at every controller. This might improve

performance in some cases, but we found little experimental
motivation for this feature. The propagation of anti-tokens
creates a distributed memory within the system and elimi-
nates the need for storing them within early join nodes.

The mechanism for anti-token counter-flow can also be
used for handling exceptions inside elastic pipelines. For
example, flushing a pipeline on branch mispredictions can
be done by injecting anti-tokens.

This paper has focused on the performance aspects of the
early evaluation. The power reduction aspect due to dis-
abling non-required activity in the data-path is an equally
important side effect of the anti-token counterflow.
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