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Abstract

The problem of optimal software synthesis for concurrent pro-
cesses to be implemented on a single processor is addressed.
The approach calls for the representation of the concurrent pro-
cesses with Petri nets that give a theoretical foundation for
the scheduling algorithm that sequentializes the concurrent pro-
cesses and for the code generation step. The approach max-
imizes the amount of static scheduling to reduce the need of
context switch and operating system intervention. Experimen-
tal results show the potential of our method to reduce software
design time and errors.

1 Introduction

We address the problem of optimal software synthesis for a set of
concurrently communicating sequential processes to be executed
on a single processor.

This concurrent specification mechanism permits the under-
lying implementation architecture (number of processors, schedul-
ing policy, implementation of communication, HW/SW parti-
tioning, etc.) to be varied for a given functional specification,
thus requiring a much reduced re-design effort with respect to
more traditional methods in which the tasks for each processor
are explicitly specified since the beginning [5].

The synthesis process proposed in this paper consists of
defining a set of tasks form the functional processes and gener-
ating a schedule for this set of tasks where the static component
is maximized. Once the tasks have been generated, the actual
compilation can be carried out with optimizations driven by the
architecture of the processor used for the implementation.

The scheduling problem has been the subject of significant
research, especially for specifications modeled by variations of
Dataflow networks, such as Static (or Synchronous) and Boolean
Dataflow (SDF and BDF) [3, 4]. SDF specifications can be
statically scheduled with a variety of cost functions, for single
and multiple processors, but make the limiting assumption that
there is no data-dependent control construct. Although this as-
sumption may be acceptable for some applications, it is increas-
ingly difficult to satisfy in modern embedded systems. BDF,
on the other hand, can model such constructs, but the prob-
lem of determining the existence and deriving a finite-memory
schedule for BDF in general is undecidable [4]. Approaches that
use variations of control-data flow graphs, proposed mainly in
the context of high-level synthesis for hardware design [6, 2],
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also allow both control and data operations in functional spec-
ifications. However, they cannot explicitly model the commu-
nication semantics often used in embedded systems, such as
multi-rate data communication, and thus are applicable only to
a limited class of applications for software design. The same
limitation applies to the software synthesis techniques proposed
in [7] and [12], which can be applied only to closed systems with
single-rate communication. The work of [9] is related to ours,
especially in the underlying Petri net model, but cannot handle
multiple reads/writes from/to the same channel by a given pro-
cess, nor synchronization-dependent control on multiple ports.
Finally, the authors of [10] also use a Petri net-like representa-
tion and can handle data-dependent control, but they require
the designer to explicitly specify bounds on the maximum size of
each communication channel, while we can handle user-specified
bounds as well as determine the size of unbounded channels.

The paper is organized as follows: in Section 2, we give an
overview of our approach with an example. In Section 3, the
Petri net model is presented and Section 4 describes the schedul-
ing algorithm and the code generation process. In Section 5, the
implementation of the overall approach and some experimental
results are offered.

2 Overview

We consider a system to be specified as a set of concurrent pro-
cesses. A set of input and output ports are defined for each
process, and point-to-point communication between processes
occurs through uni-directional channels between ports. Multi-
rate communication is supported, i.e. the number of objects
read or written by a process at any given time may be an arbi-
trary constant. The system communicates with the environment
through input and output ports for which no channel is defined.
Such primary input ports can belong to one of two classes, which
we call controllable and uncontroliable. Controllable ports are
under the system’s control, i.e. reading data from them can
be performed at any time. Uncontrollable ports are under the
environment’s control and the system must be ready to receive
objects from them and react accordingly by performing oper-
ations. Without loss of generality, we will assume all primary
input ports to be uncontrollable, since controllable ports do not
impose any constraint on the system’s operations.

We restrict our attention to processes described as sequential
programs and whose implementation is mapped as software to
be executed on a programmable processor. The sequential pro-
gram for each process is specified in a language called FlowC,
which is based on C and extended in order to specify communi-
cation operations.

A task is generated for each uncontrollable input port, which
performs the operations required to react to an event of that
port. The code of the tasks will then be compiled and optimized
for a particular architecture. Thus it is important to generate
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PROCESS GetDala (InPort IN, InPort COEF,OutPort OUT) {
OutPort DATA) { float ¢.d; int j;
tloat sample,sum; int i; c=l; j=0;
while (1) { while (1) {
sum =0; SELECT (DATA, COEF) {
for (i=0; i<N; i++) { DATA case DATA:
READ (IN,sample, 1); READ (DATA4,1);

if(j==N){

j=0: d = d*c; WRITE (OUT.d,1);

} } else j++;

WRITE (DATA, sum/N, 1); break;

1) case COEF: READ(COEF ¢, 1); break;
h

sum += sample;
WRITE (DATA, sample,1);

Figure 1: System specification

them so that the compileg' can take full advantages of its op-
timization power to realize high quality implementation. Our
approach can be considered as an architectural-independent pre-
process step that globally analyzes all possible execution flows
over the processes. It generates large blocks of code in which
several processes may be interacting according to the particular
reaction to one input port. It thus provides a better starting
point for architectural-dependent optimizations, such as paral-
lelization for VLIW processors, than the original specification.

Finally, all the tasks share the same memory space, thus
minimizing context switching costs. Given that the execution
of each task is driven by the occurrence of environment events,
the intervention of the operating system is drastically reduced.

Synthesis. Our algorithm generates a sequential program for
each task. All the possible execution flows of the tasks are rep-
resented by a schedule that has the property that the tasks can
be executed with finite memory for arbitrary input streams, un-
der the assumption that the system is fast enough to serve all
environmental events. A schedule obtained by first finding op-
erations specified in various concurrent processes that need to
be executed when the ports receive inputs from the environ-
ment, and sequentializing them, while ensuring their execution
with finite memory for the communication channels. The re-
sulting schedule, if found, determines an upper bound on the
quantity of objects stored at a time for each channel during the
execution. If an upper bound for a channel is given in the spec-
ification, one that guarantees the execution within the bound is
sought. The specification may contain data-dependent control
constructs, such as if-then-else or for loops, and thus a total
order of these operations cannot be determined in general until
run-time, when values of data at the constructs become known.
Therefore, the operations are sequentialized to reduce run-time
overhead maximally, with which only resolutions of the control
constructs are made at run-time.

‘We use a class of Petri nets as the underlying model, since it
can represent data-dependent control and concurrency explicitly
in the structure of a net. The specification is translated into a
single Petri net, and a schedule is computed as a directed graph
annotated with objects of the Petri net. It is then transformed
into tasks by traversing the graph to annotate software code.

An example. Figure 1 depicts the specification of a concurrent
system with two processes, two input ports (IN and COEF) and
one output port (OUT). The processes communicate to each other
through the channel DATA.

The process Get Data reads data from the environment and
sends it to the channel DATA. Moreover, after having sent N
samples (N is a constant), it also inserts their average value
in the same channel. The process Filter extracts the average
values inserted by Get _Data, multiplies them by a coefficient and
sends them to the environment through the port OUT.

Tin () {

READ(IN,sample,1);

sum += sample; i++;

DATA = sample; d = DATA;

if (j==N) {

j=0; d=d*c; WRITE(OUT,d,1);

} else j++;
LO: if (i<N) return;

DATA = sum/N; d = DATA;
Tcoef () if (j==N) {

READ(COEF,¢,1); j=0; d=d*¢; WRITE(OUT,d,1);
} } else j++;
sum=0; i=0; goto LO;

nit () {
sum:=0; i=0;
e=1; j=0;

Figure 2: Event-driven tasks after code generation.

This example also illustrates the main extensions of C lan-
guage to support communication. The operations to communi-
cate through ports have syntax READ DATA (port, data, nitems)
and WRITE_DATA (port, data, nitems). The parameter nitems
indicates the number of objects involved in the communication.
This allows to support multi-rating, although the example uses
only 1-object read/write operations. Operations with ports have
blocking semantics. A read blocks when the number of items in
the channel is smaller than nitems. Similarly, a write blocks
when the number of items in the channel would exceed some
pre-defined bound after writing.

The SELECT statement supports synchronization-dependent
control, which specifies control depending on the availability of
objects on input ports. In the example, the SELECT statement
in Filter non-deterministically selects one of the ports with
available objects. In case none of them has available objects,
the process blocks until some is available. The SELECT state-
ment is also extended to output ports (for the availability of
space to store data) and to multi-rating (for the availability of
more than one object). SELECT is a crucial statement to model
reactive systems with several input ports, where the system is
often waiting for the occurrence of events at any of the ports
and reacts by non-deterministically choosing one of them.

Figure 2 shows the synthesized software after applying the
method proposed in this paper. The task Init is executed for
the initialization of the system. After that, the tasks Tin and
Tcoef are scheduled upon the occurrence of an event at the ports
IN and COEF respectively. The intervention of the operating sys-
tem is negligible if, for example, an interrupt-based mechanism
is used to wake up the tasks. All variables are global and shared
by all tasks. Given that all possible execution flows of the tasks
are known at compile time, a global inter-task data-flow analysis
can be performed. The resulting code is much more adequate
for the types of optimizations performed by compilers. For ex-
ample, the variable DATA, that holds the objects sent through
the channel, can be eliminated by simple optimizations such as
copy propagation and dead-code elimination [1].

3 From specification to Petri net

In this section the translation from the specification of the sys-
tem into a Petri is described. First of all, some basic notions on
Petri nets are presented.

3.1 Petri Nets

A Petri net is defined by a tuple (P, T, F, My), where P and T
are sets of places and transitions respectively. F is a function
from (P x T) U (T x P) to non-negative integers. A marking
M is another function from P to non-negative integers, where
M{[p] denotes the number of tokens at p in M. My is the initial
marking. A Petri net can be represented by a directed bipartite
graph, where an edge [u,v] exists if F(u,v) is positive, which
is called the weight of the edge. A transition ¢ is enabled at a
marking M, if M[p] > F(p,t) for all p of P. In this case, one
may fire the transition at the marking, which yields a marking
M' given by M'[p] = M[p] — F(p,t) + F(t,p) for each p of P.
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READ(IN,sample, 1);
sum += sample;

WRITE(DATA sample,|)

WRITE(OUT.4,1)

Figure 3: Petri net obtained from the specification of Figure 1.
Places and transitions are represented by circles and rectangles re-
spectively, where associated code is shown for each transition.

In the sequel, M L M’ denotes the fact that a transition ¢ is
enabled at a marking M and M’ is obtained by firing ¢t at M.
A transition ¢ is said to be a source, if F(p,t) = 0 for all p of P.

A marking M’ is said to be reachable from M if there is a
sequence of transitions fireable from M that leads to M'. The
set of markings reachable from the initial marking is denoted by
R(Mp). The reachability tree of a Petri net is a tree in which
each node is labeled with a marking of R(Mj), the root node
is labeled with Mo, and each edge [v,v'] represents a transition

t with M %5 M’', where M and M’ are the labels of v and v’
Each path starting at the root of the reachability tree represents
a sequence of transitions fireable from M.

A key notion we use in Petri nets for defining schedules is
equal conflict sets. A pair of transitions ¢; and ¢; is said to be
in equal conflict, if F(p,t;) = F(p,t;) for all p of P. These
transitions are in conflict in the sense that t; is enabled at a
given marking if and only if ¢; is enabled, i.e. if the firing of one
transition disables ¢;, it also disables ¢;. The equal conflict is an
equivalence relation defined on the set of transitions, and each
equivalence class is called equal conflict set (ECS). Note that
the set of source transitions is an ECS, and we denote it by Ey .
By definition, if one transition of an ECS is enabled at a given
marking, all the other transitions of the ECS are also enabled.
Thus, we may say that this ECS is enabled at the marking.

A place p is said to be a choice place if it has more than one
successor transition. A choice place is Equal Choice (a general-
ization of free choice [8]) if all the successor transitions are in
the same ECS.

3.2 Translation into Petri net

The network of processes is transformed into a single Petri net,
which is built in two steps: compilation and linking.

In compilation, a specification in FlowC is translated into
a set of Petri nets, one for each process, that communicate
through ports represented by places. Each transition is anno-
tated with a fragment of C code. Processes are sequential and,
therefore, their corresponding Petri nets have no concurrency.

The compilation process attempts to generate the most com-
pact Petri net that preserves the observable behavior at the level
of ports. Thus, a while statement can be represented by only
one transition if no port operations are executed in its body.
On the other hand, the same statement will be represented by
several transitions if some port operation is present in its body.

Conditions at control flow statements are represented by
Equal Choice places with the corresponding annotated boolean
expression and two outgoing arcs labeled True and False. The
successor transitions constitute an ECS.

If we ignore the places associated to the ports, the Petri net
of one process obtained by the compilation strategy mentioned
above has exactly one place marked at each reachable marking.

When places associated to ports are also considered, new choice
places may arise. This occurs when the same process reads
data from the same port in different statements, thus the place
representing the port is a choice.

Linking combines Petri nets generated in compilation into
one, by merging each pair of places for ports connected by a
channel. If a bound is defined for a channel, it is represented
as attribute for the merged place. For an input (output) port
connected to the environment, a source (sink) transition is con-
nected to the place for the port, where the weight of the arc
denotes a specified rate of the port. Controllable input ports
need not to be modeled with an explicit place and source tran-
sition.

Figure 3 depicts the Petri net obtained from the specification
of Figure 1.

4 Software Synthesis

In this section, the two basic parts of our software synthesis
approach are presented: scheduling and code generation. We
first present a formal definition of a schedule.

4.1 Definition of Schedules

A schedule for a given Petri net is a directed graph. A node v
is associated with a marking denoted by M(v), and an edge e
is associated with a transition denoted by T'(e). The graph has
five properties. First, there exists exactly one node associated
with the initial marking. Second, for each node v, the set of
transitions associated with the edges out of v is an ECS enabled
at M(v). If this ECS is the set of source transitions, v is called

await node. Third, for each edge [v,w], M(v) Tyl M(w)

holds. Fourth, each node has at least one path to an await
node. Fifth, each await node is on at least one cycle.
Intuitively, scheduling can be deemed as a game between a
scheduler and the environment. Starting from the node associ-
ated with the initial marking, the scheduler traverses the sched-
ule, firing transitions of the visited edges. When it reaches an
await node, it ceases the traversal, waiting for the environment
to fire a source transition. The scheduler resumes the traversal,
as soon as the firing occurs. If it comes to a node with the
out-degree greater than 1, one of the out-going edges is taken,
and the traversal continues by firing the associated transition.
At such a node, the ECS defined by the out-going edges has
more than one element. The FlowC compiler introduces such
an ECS to model a data-dependent control construct such as
if-then-else, where each resolution of the control is modeled
by a single transition. As the resolution of the control is de-
termined not by the scheduler but by values of the data at the
construct, a schedule must be made so that no matter which
out-going edge is chosen at the node, the traversal can be con-
tinued. Furthermore, the fourth and fifth properties guarantee
that at any moment of the traversal, there is a path to an await
node that is on a cycle. This ensures that the scheduler can
always proceed to a state at which the environment may fire
transitions, and cyclic behavior is established from the state.

4.2 Scheduling

The scheduling algorithm creates dynamically a subtree of the
reachability tree. The created tree is composed by nodes that
represent the system states and arcs that represent transitions
which produce new states. A post-processing creates a cycle for
each leaf to generate a schedule. Initially, we create the root
r and set M(r) to the initial marking of the Petri net. The
algorithm then calls a function EP(r, r), shown in Figure 4.

EP takes as input a leaf v of the current tree and its ancestor
target. We say that a node u is an ancestor of v, denoted by
u < v, if u is on the path from the root to v. If in addition
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function EP(v, target)
EP « UNDEF, ECS(v) « ¢;
if(termination conditions hold) return (0,UNDEF);
if(Ju : u < v and M(u) = M(v)) return (0,u);
for(each ECS E enabled at M(v))
if(E = Ey) current_target « v;
else current_target + target;
(AF_ECS,EP_ECS) « EP_ECS(E, v, current_target);
if(AF_ECS =1)
ECS(v) + E, return (1, EP_ECS);
if(EP_ECS < current.target)
ECS(v) « E, return (0, EP_ECS);
if(EP = UNDEF or EP_ECS < EP)
ECS(v) « E, EP + EP_ECS,;
return (0, EP);

(a)

function EP_ECS(E, v, target)

AF ECS + 0, EP_ECS «+ UNDEF, current._target «- target;
for{each transition t of E)
create a node w and an edge [v, w);
Plv,w)) « &
M(w) « the marking obtained by firing t at M(v);
(AF, EP) + EP(w, current_target);
if(AF =1 or ECS(w) = Ey) AF_ECS ¢ 1, current_target + v;
else if(EP = UNDEF or v < EP) return (0, UNDEF);
EP_ECS « min(EP_ECS, EP);
if(EP_ECS < target) current_target « v;
return (AF_ECS,EP_ECS);

(b)

Figure 4: Various termination conditions can be adopted in EP. An example is bounds on the places of the Petri net, i.e. a positive integer
called bound may be associated with a place, and the termination condition hclds if M(v)[p] exceeds the bound of some place p. Other useful
conditions are found in [11]. Ey denotes the set of source transitions. In the function EP_ECS, T'([v, w]) denotes the transition associated with
the edge [v,w]. AF_ECS is a boolean variable that is set to 1 if v has a path to an await node.

u # v, u is a proper ancestor of v, denoted by u < v. EP creates
a tree rooted at v, so that a path can be created from v to some
await node in the resulting schedule. It also makes sure that
all the await nodes in the tree will be contained in cycles when
generated in the post-processing. Specifically, EP returns two
values. The first is a boolean variable, which is 1 if and only if
v has a path to an await node in the created tree. The second
is an ancestor u of v, for which the marking M(v) satisfies the
following: there is an ECS enabled at M(v) such that for each
transition ¢ of the ECS, there is a sequence of transitions starting
from t that can be fired from M (v) and the marking obtained
after the firing is M (u). Further, this property holds at every
marking obtained during the firing of the sequence. E P tries to
find such a u by calling a function EP_ECS for each ECS enabled
at M(v). If there is such a u with u < target, EP returns one.
Otherwise, it returns such a u closest to the root, if exists. In
either case, ECS(v) is set to the ECS with which the property
holds for « and M (v). If no ancestor « with this property exists,
a special value UNDEF is returned.

The ECS’s enabled at M(v) are sorted in the function EP,
where the set Ey of source transitions is positioned at the end
of the order, and EP_ECS is called in this order. This minimizes
the number of await nodes introduced in a schedule. Denoting
by AF and EP the two values returned by EP(r, r), we say that
the algorithm succeeds if either AF = 1, or else EP = r and
ECS(r) = Ey. This means either r has a path to an await
node for which an ancestor u has been found with the property
above, or r is an await node and such an ancestor u is r itself.
In this case, we call the post-processing to create a schedule and
terminate. Otherwise, we report no schedule and terminate.

The post-processing consists of two parts. First, we retain
only a part of the created tree that are used in the resulting
schedule, and delete the rest. The root is retained, and a node w
is retained if its parent v is retained and the transition T'([v, w])
is in ECS(v) set by EP '. Second, a cycle is created for each
leaf w of the retained portion of the tree, by merging w with its
proper ancestor u such that M(u) = M(w). By construction,
such a u uniquely exists for w. The graph obtained at the
end is returned. It is shown that this algorithm always finds a
schedule, if there exists one in the space defined by the terminate
conditions employed in EP [11]. See Figure 5 for an example.

‘When ECS’s are sorted in EP, those other than Ey are or-
dered using t-invariants. This heuristic helps finding a sched-
ule sooner, and often keeps the resulting graph small. It also

'In the actual implementation, this process is done dynamically in EP.

checks a sufficient condition under which a schedule does not
exist. Thus if the condition is met, we can terminate immedi-
ately reporting no schedule. We briefly illustrate the heuristic
in the rest of this section.

A t-invariant is a vector of non-negative integers that solves
equations Cz = 0, where C is a |P| x |T'| matrix given by C;; =
F(tj,pi) — F(pi,t;). It represents a set of sequences, in which
the number of occurrences of the j-th transition is given by
the integer at the j-th position of the t-invariant. If such a
sequence can be fired from a marking M, the marking obtained
after the firing is also M. Our heuristic computes a t-invariant,
and EP processes ECS’s starting from those that have at least
one transition in the sequences represented by the vector. The
vector is updated by decrementing integers whenever transitions
are processed in EP_ECS, and if the result is —1, we compute a
new t-invariant.

A known problem with t-invariants is that it is in general dif-
ficult to find if a t-invariant has a sequence that can be fired at
a given marking [8]. In our case, however, a necessary condition
can be obtained due to the structure of a Petri net generated
from a FlowC specification. The Flow(C compiler translates a
process in the network to a Petri net so that exactly one place
has a token in any reachable marking M, as described in Sec-
tion 3. Let us refer to as a pseudo-enabled ECS at M the ECS
that the successors of this place belongs to. If a t-invariant
is fireable at M, it is necessary that for each process, either
its pseudo-enabled ECS has a transition in the invariant, or no
transition that belongs to the process appears in the invariant.
Therefore, we first compute a basis of non-negative integers for
the equations Cz = 0, and then find a subset of the basis so that
the sum of the vectors of the subset satisfies this necessary con-
dition. This problem can be formulated as a covering problem,
and we heuristically find a subset with a minimal cardinality 2.
If no basis is found for the equations, it is known that no sched-
ule exists, and we terminate the procedure immediately.

4.3 Code Generation

The code generation algorithm takes a schedule S and synthe-
sizes code. A direct translation of the schedule into code is pos-
sible but usually increases the code size, since different paths of
the schedule may be associated with the same sequence of tran-
sitions, which yields a same code segment. We thus perform
optimizations to minimize the code size.

2If no such subset exists, we do not sort ECS’s in the current EP, and
re-compute a new t-invariant when EP is called next.
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Figure 5: (a) shows the tree obtained just before the post-processing, when the algorithm is applied to the Petri net of Figure 3. Suppose
that we use bounds of places as the termination condition, where we set a bound for each place equal to 1. The marking associated with each
node is shown in parentheses adjacent to the name of the node. (b) presents the final schedule. At each node we assume that the ECS shown
is processed first, among those enabled at the marking. Suppose that the procedure has arrived at v2. EP(v2, 7) is called at this node, which
then calls EP_ECS({¢3,t2}, v2, 7). EP_ECS creates a node v3 for a transition t3 and calls EP(v3, r). The only ECS enabled at the marking of v3
is the set Ey of source transitions. Thus EP sets current_target to vz and calls EP_ECS(Ey, vs, v3). EP_.ECS then processes each of the two
source transitions. Consider the transition T}, , and suppose that the procedure has arrived at v7. The target is still v3, and thus EP(v7, vs)
is applied. EP calls EP_ECS with the ECS {t3,t9}. EP_ECS then creates a node vg for the transition t¢ and calls EP(vg, vs). Since the marking
of vg is equal to that of vz, EP returns (0, vy), which makes EP_ECS set EP_ECS to v2. Since EP_ECS < target holds, i.e. vz is an ancestor
of the target v3, EP_ECS sets current_target to v7. It then processes the other transition tg, for which EP returns (0, vz). Suppose now that
the procedure has come back to the node v3, at which EP_ECS(Ey;, vs, v3) returns (0, v2). Since current_target had been set to vz in EP(v3,
r), v2 < current_target holds. Therefore, EP(vg, r) immediately returns (0, v2) to EP_ECS({t2,t3}, vz, r). ECS(v3), the ECS assigned at v3,
is Ey, and therefore EP_ECS({t3,12}, va, r) sets AF_ECS to 1 and current_target to vz. It then continues for the transition t; by calling
EP(vy2, v2). It will return (0, v2), and EP_ECS({t2,t3}, vz, r) returns (1, vz). These values are propagated to the root, and are finally returned

by EP(r, 7). The post-processing is then called, which deletes the nodes vs, vg, v11, v15, and vy7, and creates cycles as shown in (b).

The algorithm is in three steps. First, we traverse the sched-
ule to identify code segments. A code segment is a directed
rooted tree that associates a transition with each edge so that
for each node v’, the set of transitions at the edges out of v’ is an
ECS, denoted by ECS(v'). The traversal generates a minimal
set of code segments with the property that for each node v of
S, the set has exactly one node v’ with ECS(v) = ECS(v').
We say that such a v corresponds to v’. Further, each leaf v'
of a code segment maintains a set of pairs made of a marking
and an ECS defined as follows. For each node u of S that corre-
sponds to the parent u' of v, (M (v), ECS(v)) is included in the
set, where v is the child of u such that the transition T'([u, v])
is associated with [u',v']. This set is used in the second step.

The second step generates a function code in which the gen-
erated code segments are translated. At the beginning, we de-
fine global variables for the places, which are used to represent
markings, and are shared among all tasks. They are initialized
to the initial marking Mo, and whenever a transition is trans-
lated, we increment or decrement the variables of the places
whose token counts change by firing the transition. Then, we
translate the segments, starting from the one whose root has the
ECS equal to Ey: for each source, a function is generated with
its name, so that it’s to invoke the corresponding task. Other
segments within a task may be translated in any order. For a
given segment, we first create a label whose name is derived from
the ECS of the root of the segment, and then visit each node in
a depth-first manner. For a non-leaf node ', the original FlowC
code is copied for each transition of ECS(v'). If ECS(v') has
more than one transition, an if-then-else construct is gener-
ated in addition, with the condition taken from the FlowC code.
For a leaf v', code is generated so that the execution jumps to
the code segment to be executed next. This code segment de-
pends upon the current marking given by the global variables.
We generate a switch construct, where for each pair (M, ECS)

in the set associated with v', a case is generated so that if the
current marking is equal to M, a goto jumps to the label cre-
ated for the EC'S. By the property of code segments given in
the first step, such a label uniquely exists. If the ECS is Ey, we
generate a return instead of a goto, since we cannot continue
the execution until further inputs are received.

The third step is concerned with channels between processes
that have been merged into a single schedule. For each such
channel, we define a circular buffer and replace write and read
operations for the channel that appear in the generated code
with operations on the buffer. The size of the buffer can be stat-
ically identified as the upper bound identified in the schedule.
If the buffer has size 1, it is substituted by a normal variable.

Figure 6 explains more in details how the code segments are
generated, and Figure 2 shows the synthesized code for the same
example. In this case, additional optimizations have also been
applied: unrolling eliminates some gotos and global variables
for places that are not used.

5 Implementation and Experiments

We have implemented the entire flow from FlowC sources to
synthesized tasks in a set of tools, which comprise compiler,
linker, scheduler and code generator. These tools have been
used to apply the methodology presented in this paper to an
example taken from a multimedia application.

The system we used is made of four processes, and is sche-
matically depicted in Figure 7. It implements a video applica-
tion where a producer generates image data, filter processes
them given some coefficients and consumer reads the final im-
age. The process controller governs the whole system, and
is triggered by start. All the process are potentially concur-
rent and communicate through FIFO channels. The producer,
filter, consumer chain constitutes the hard real-time video data
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Figure 6: The code generation algorithm is illustrated for the sched-
ule of Figure 5-(b). The five resulting code segments are shown in (b)
(only cs1 and cs2) and in (c) (segments cs3, csq4 and css). The algo-
rithm recursively traverse the schedule to identify the code segments,
stopping at each await node or when a transition which is already in
a code segment is found: the first step creates a code segment cs;
shown in (a), where the pairs of a marking and an ECS are indicated
in parenthesis for the root and the leaf nodes. It stops at node uz
as the corresponding node v3 in the schedule is an await node, and
at nodes uj4 and u1e because the outgoing transition from vi4 and
vie is £1, already present in csy. The second step starts from vi4: it
immediately recognize that cs; should be splitted, because from t;
you can either go to tg, or to the choice between t3 and t3; therefore
we get three code segments, as shown in (b). The third step starts
from v16 and does not need to create any new code segment. The
fourth starts from v3 and creates a new code segment cs4 rooted at
ug: it stops at uy (an await node is reached) and at us; the next
transition after ug is t7, already present in csz which thus needs to
be splitted, generating a new cs3 and css, as shown finally in (c).

Figure 7: Process network for a video application

path, while the controller makes up the soft real-time control
path. The system shows multiple data rates, as the pixels can
be transmitted either one by one, grouped into a line, or in an
entire frame. Also, the coefficients for filtering are read (using
SELECT) only if available, otherwise the ones received for the
previous frame are used.

Our proposed algorithm generated, in less than a minute, a
single task with all the channels of size 1. This has been com-
piled and profiled on a MIPS R3000 machine, and was compared
to the case where the original four processes were implemented
as separate tasks and executed by a round-robin scheduler.

We performed several experiments varying the size of the
channels and the number of frames transmitted. The results
of comparison between our single-task implementation and the
one in which each original process is implemented as a separate
task are shown in Figure 8. The y axis reports the number
of clock cycles and the z axis the size of the channel buffers.
The three lines represent the four-task version under different
compiler options (large buffers clearly improve performance, but
also increase the memory needed to implement the system). The
three dots in the lower left corner represent the performance of
the single generated task, which always uses one place buffers
as determined by our scheduler. The result of our procedure
out-performs by a factor of 4 to 10. For the experiments with
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Figure 8: Execution time and memory requirements for single task
versus four tasks (with various buffer sizes).

different numbers of frames, our single-task implementation was
consistently faster by a factor of 4 to 5, where frame counts were
changed between 10 and 1000.

6 Conclusions

Given a set of concurrent processes described with a ”high-level”
representation, a procedure to generate a set of tasks from the
processes as well as a schedule for their execution on a single
processor have been presented. The method is based on Petri
nets and can be fairly easily implemented in a flow that can
substantially reduce software design time and errors.
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