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ABSTRACT
Logic decomposition has been extensively used to optimize the
worst-case delay and the area in the technology independent phase.
Bi-decomposition is one of the state-of-art techniques to reduce
the depth of the netlist due to the affordable computational cost.
We present a novel n-way decomposition technique that improves
bi-decomposition. The problem of decomposition is formulated as
a Boolean relation which captures a larger set of possible solutions
compared to bi-decomposition. The solution obtained from the
Boolean relation improves the delay with near-zero cost in area.
As it is shown on the experimental results, a considerable improve-
ment is achieved on large netlists and even larger depending on
which technology mapper is used.
Categories and Subject Descriptors: B.6.3 [Hardware]: Logic
Design - Design Aids; J.6 [Computer Applications]: Computer-
aided engineering
Terms: Algorithms, Design.
Keywords: Logic design, timing optimization, decomposition.

1. INTRODUCTION
Logic decomposition is a logic transformation that has been

extensively used in multi-level minimization [1–4]. Mostly,
this transformation has been used aiming at reducing the area of
Boolean networks, since common factors from different functions
can be shared during the decomposition. Moreover, logic decom-
position has been also applied targeting to other optimization ob-
jectives like timing [5] or layout [6].

Logic decomposition mostly depends on the initial structure of
the network. Sharing common factors is more likely in networks
with large functions on the nodes. Therefore, some techniques per-
form a partial collapse of the network, or even a complete collapse
of the primary outputs, to obtain more factors. In this paper, we
refer to timing-driven recursive decomposition methods applied to
entire or partial collapsed networks. The decomposition is recur-
sively applied from the functions of the collapsed nodes until the
primary inputs are reached. The main objective is to decrease the
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Figure 1: Comparison between (a,b) bi-decomposition and (c)
n-way decomposition.
depth of the netlist. The depth is not an accurate estimation of the
final circuit delay but both have a high correlation.

In timing-driven optimization, several methods have been pro-
posed to perform the decomposition. A non-disjoint technique is
presented in [2]. This approach explores all possible decomposi-
tions with the AND and XOR logic functions. This exact technique
obtains high quality results but incurs on large runtimes because of
the extensive exploration. BDD decomposition [3, 4] approaches
have been also proposed to avoid the wide exploration. They com-
bine BDD manipulation of the functions with the sharing between
internal equivalent functions.

The technique proposed in [7] combines the best characteristics
of each previous approach: algebraic and BDD decomposition, and
function approximation are explored. Sharing is also applied to
reduce the total area. Moreover, the solution is balanced by using
tree-height reduction techniques [8] after the decomposition.

This paper presents a timing-driven n-way decomposition
method. The problem of decomposition is formulated as a Boolean
relation which can be solved towards a specific objective. The pre-
sented algorithm shows improvements on area and delay with re-
gard the bi-decomposition method presented in [7]. The drawback
is that the range of application is limited to small- and medium-size
networks due to the complexity of the decomposition problem with
Boolean relations.

This paper is organized as follows. An overview of the n-way
decomposition approach is presented in Section 2. Section 3 in-
troduces the basic background and terminology that is used in the
paper. Section 4 presents the n-way decomposition method and
the implementation aspects are described in Section 5. Finally, the
experimental results are reported in Section 6.

2. OVERVIEW
In this section, an example of decomposition is presented. Let us

assume the next Boolean function:
F(a,b,c,d,e, f ,g) = abcd f g+ab(c f g)e

Figure 1 illustrates three possible decompositions using the OR2,
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AND2 and MUX functions. The decompositions are represented
in a directed acyclic graph where the nodes represent two-input
logic functions and a bubble on an edge corresponds to an inverter.
The shadowed nodes represent the functions used to obtain the de-
composition (we assume that the MUX is internally represented by
two-input gates). The OR2 function requires one less level of logic
compared to the AND2 function, but a solution with more nodes is
produced. The MUX finds an intermediate solution between them
because the n-way method explores a larger search space of possi-
ble decompositions compared to the AND2 and OR2 decomposi-
tions. The MUX solution can be also retrieved by the OR2 function
but it is more difficult to find because sharing between common
subexpressions must be detected.

The contributions of this paper are detailed next:

• We generalize the bi-decomposition problem to n-way de-
composition.

• The problem is formulated as a Boolean relation [9] which
can be solved targeting to a specific objective. In our case,
the objective is set to improve the depth of the functions.

• N-way decomposition explores a huge space of potential so-
lutions. The selected solution improves the delay with near-
zero overhead in area with regard to bi-decomposition as it is
shown in the experimental results.

3. BACKGROUND
In this section, we review the definition of Boolean relation.

Next, the n-way decomposition problem is formulated and the rep-
resentation for a decomposed netlist is described.

3.1 Review of Boolean relations [9]
Let us define a Boolean function and a multiple-output Boolean

function.

DEFINITION 3.1. Boolean function. A Boolean function f is a
function f : Bn→ B, where B = {0,1}. A Boolean function can
also be interpreted as the set of vertices x ∈ Bn such that f (x) = 1.

2

DEFINITION 3.2. Multiple-output Boolean function. A
multiple-output Boolean function f is a function f : Bn→ Bm. It
can be also specified as a vector of functions f = ( f1, f2, . . . , fm).

2

A Boolean relation is defined as follows:

DEFINITION 3.3. Boolean relation. A Boolean relation R is a
subset of Bn×Bm, where Bn and Bm are called the input set and
output set of R, respectively. It can be specified by a character-
istic function R : Bm×Bn → B, such that (x,y) ∈ R if and only if
R(x,y) = 1. A Boolean relation is well defined if for all x ∈ Bn,
there is y ∈ Bm such that (x,y) ∈ R. 2

A well-defined Boolean relation covers a set of multiple-output
Boolean functions.

DEFINITION 3.4. Compatible functions. Given a relation R,
the set of multiple-output functions compatible with R is defined as

F(R) = {F | F ⊆ R ∧ F is a multiple-output function}

A function F is compatible iff F ∩R = /0. 2

The objective of a Boolean relations solver is to seek for one of the
best multiple-output compatible functions with respect a optimiza-
tion objective (e.g. function with the smallest depth).

3.2 Problem formulation
This section describes the n-way decomposition problem.

DEFINITION 3.5. N-way decomposition. Let us assume a func-
tion F(X) with the set of input variables X = {x1,x2, · · · ,xm}
and a function G(Y ) with the set Y = {y1,y2, · · · ,yn}. The
n-way decomposition of the function F(X) with regard G(Y ) is
a multiple-output function DEC = (F1(X),F2(X), . . . ,Fn(X)) such
that F(X) = G(F1(X),F2(X), . . . ,Fn(X)), where F1,F2, . . . ,Fn are
functions with the same set of variables X than the function F. 2

Bi-decomposition is a particular case of n-way decomposition
where G(Y ) is a two-input function. Hereafter, we will also refer to
bi-decomposition and n-way decomposition as BiDec and NDec
respectively. The n-way decomposition problem can be naturally
represented by a Boolean relation which covers the potential set of
decompositions.

DEFINITION 3.6. Decomposition problem formulation.
Let us assume a function F(X) with the set of variables
X = {x1,x2, · · · ,xm} and a function G(Y ) with the set
Y = {y1,y2, · · · ,yn}. The well-defined Boolean relation that
represents all possible decompositions of the function F(X) with
respect G(Y ) is defined as follows:

R(X ,Y ) = (F(X)⇔ G(Y ))+DC(X)
where X and Y corresponds to the input and output set of the

relation, respectively. The DC(X) is the external don’t care set of
the function F(X). 2

The function being decomposed usually belongs to a network
where flexibility described with don’t cares can be computed. The
don’t care information is added to the problem to increase the flex-
ibility of the search with the decompositions covered in other re-
gions of the network.

EXAMPLE 3.1. The example of a decomposition using a mul-
tiplexer shown in Fig. 1(c) is illustrated next. Let us assume the
Boolean function F(a,b,c,d,e, f ,g) described in the previous sec-
tion and the function of the multiplexor MUX(A,B,C) = AB+AC.
We also assume that the don’t care set of F is empty.

The characteristic function of the Boolean relation that captures
the flexibility of the implementation is
R(a,b,c,d,e, f ,g,A,B,C) = F(a,b,c,d,e, f ,g)⇔MUX(A,B,C)

= (abcd f g+ab(c f g)e)(AB+AC)

+(abcd f g+ab(c f g)e)(AB+A C)

The Boolean relation R covers the set of all possible decom-
positions using a multiplexer. If the Boolean relation is solved
with a Boolean relations solver [9], part of the original func-
tion F is absorbed within the multiplexer. Figure 1(c) shows the
following decomposition that could be obtained with the solver
MUXdec = (Adec,Bdec,Cdec) where

Adec(a,b,c,d,e, f ,g) = c f g;
Bdec(a,b,c,d,e, f ,g) = abd;
Cdec(a,b,c,d,e, f ,g) = abe

The multiple-output function MUXdec is included in the set
of compatible functions of the Boolean relation R, because
MUXdec∩R = /0. 2

3.3 Network representation
A decomposed netlist is a graph where each node represents a

function. In this paper, a BDAG representation is used.
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Algorithm 1 BRCDEC: Algorithm for logic n-way decomposition.
Input: Function F to be decomposed, don’t cares DC,

library of logic functions to perform the n-way decomposition,
required time RT .

Output: Function recursively decomposed in BDAG representation.
1: Collapse(F)

{Obtain bi-decomposition}
2: Decomposition: dec⇐ Obtain bi-decomposition(F , DC, RT )
3: List of decompositions: List⇐ Tree-height reduction(dec)

{Obtain decompositions using the logic functions of library}
4: for each function G in library do
5: dec⇐ Obtain n-way decomposition(F , G, DC, RT )
6: List⇐ List ∪Tree-height reduction(dec)
7: end for

{All decompositions are in BDAG representation}
8: Best Decomposition: Sdec⇐ Select Best Decomposition(List)
9: if Levels(Sdec.le f t)>Levels(Sdec.right) then
10: swap(Sdec.le f t, Sdec.right)
11: end if

{First descompose the child with less number of levels}
12: Decomposition: Ldec⇐ BRCDEC(Sdec.le f t, DC, library, RT -1)

{Add observability don’t cares}
13: Decomposition: Rdec⇐BRCDEC(Sdec.right, DC+ODC(Ldec), library, RT -1)
14: return Create decomposition of function F ⇐ (Sdec.op, Ldec, Rdec)

DEFINITION 3.7. Binary Directed Acyclic Graph (BDAG). A
Binary DAG is a directed acyclic graph, in which a node has either
0 or 2 incoming edges. A node with no incoming is a primary input.
A node with 2 incoming edges is a two-input AND or OR node. An
edge is either complemented or not. A complemented edge, repre-
sented with a bubble, indicates the inversion of the signal. 2

Each node of the BDAG represents a single bi-decomposition.

DEFINITION 3.8. Bi-decomposition representation. A
bi-decomposition D can be represented as a triples

D≡ (op, le f t,right)
where op is the Boolean function G(y1,y2) used in the decompo-

sition, and le f t and right are the resulting functions for y1 and y2.
op is the Boolean operator of the node that can be either ∗, + or
input if the node is a literal. Recursively, le f t and right are also
defined as other triples. 2

The decompositions shown in Fig. 1(c) are represented as
BDAGs. Note that, an n-way decomposition can be also repre-
sented as a BDAG if the function used to perform the decomposi-
tion is also represented in two-input nodes.

In a BDAG, the delay of a function can be easily estimated. Each
node g has a delay or arrival time (AT (g)) based on the worst-
case delay needed to obtain the correct value. The required time
(RT (g)) is defined as the time when the correct value is expected
at the output of the node. In the technology independent phase,
we define the arrival time as the maximum depth from the node g
to the primary inputs. The required time specifies the maximum
depth that should have the node to meet the cycle time.

4. RECURSIVE N-WAY DECOMPOSI-
TION

In this section the recursive n-way decomposition procedure is
presented. Algorithm 1 illustrates the method called BRCDEC
(Boolean Relation Combinational DEComposition). The input of
the procedure is the function F to be decomposed and the don’t
care information DC captured from the environment. A library is
also provided with the set of logic functions to perform the NDec.
The last input specifies the desired required time.

Initially, the function is collapsed (Line 1) and the bi-
decompositions obtained by [7] are explored. This includes alge-
braic and BDD decomposition based on function approximation
(Line 2).

Figure 2: Percentage of selection of the type of decomposition
by number of levels of the decomposed function.

The next step is to explore the decompositions produced using
the set of logic functions of the library (Lines 4-7). The decom-
position problem is formulated as a Boolean relation as we defined
in Def. 3.6 and the relation is solved with a BR solver1. Note that
a Boolean relation covers a huge space of decompositions and the
calculation of the best solution may incur on large runtime penal-
ties. In order to cut the runtime, the solver is limited to explore a
small set of decompositions.

Our approach improves the technique described in [7] by provid-
ing better decompositions using Boolean relations. In the experi-
mental results, the logic functions AND2, OR2, MUX, XOR, OA22
(x1x2 +x3x4), AO22 ((x1 +x2)(x3 +x4)) have been selected for the
library. Notice that the library also includes the AND2 and OR2
function processed by BiDec. The formulation of the BiDec prob-
lem as a Boolean relation is able to produce sometimes a better
decomposition, mostly in large functions.

Experimentally, we have observed there is a relationship between
the selected decomposition (BiDec or NDec) and the number of
levels of the logic function. Figure 2 shows a plot between the
number of levels of the function before decomposition and the per-
centage of selection of the type of decomposition. The plot is
obtained by decomposing around 500 functions of several levels.
Note that, BRCDEC is not recursively called on this experiment.
The objective is to show the percentage of selection on individual
decompositions. When the function has few levels, there are few
feasible decompositions, therefore, a near-optimal solution is eas-
ily obtained by using BiDec. NDec obtains decompositions with a
smaller number of levels compared to BiDec when the complexity
of the function grows. The accuracy of bi-decomposition is dramat-
ically affected by the complexity of the function. Decompositions
provided by the n-way method are mostly selected on function with
a large number of levels, as it is shown in the plot, since a larger set
of candidates is explored.

Tree-height reduction [7, 8, 10] is applied as a post-process in
both methods (BiDec and NDec) before the selection of the de-
composition with the smallest number of levels. The objective is
twofold. First, the decomposition is refined. The solution is bal-
anced improving the number of levels. Moreover, the decomposi-
tion is represented as a BDAG where the area and the delay can be
easily estimated.

Next, the algorithm selects the best decomposition (Line 8). The
selection is performed evaluating their BDAG representation using
the cost function defined in Section 5.2.

Finally, the algorithm recursively decomposes the left and

1The configuration of the solver is described in the following sec-
tion.
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Figure 3: Sum of the squares of the BDD sizes cost function.

right function (Lines 12-13). The observability don’t cares from
one function are applied to the other one to avoid the redundancy
between them. First, the smaller one is processed. This order con-
tributes to reduce the size of the larger function. When left and
right are completely decomposed, the decomposition for the tar-
get function F is constructed (Line 14).

The algorithm describes the NDec process on a single function.
A netlist is composed of a set of primary outputs with their respec-
tive Boolean functions. To recursively decompose the netlist, the
algorithm is applied to the functions of all the primary outputs. The
technique also detects isomorphic functions to avoid multiple de-
compositions of the same function.

5. IMPLEMENTATION ASPECTS
This section describes the configuration of the solver and the cost

functions.

5.1 BREL solver
The BREL solver proposed in [9] is used to solve the Boolean

relations. The solver has been customized to support two cost func-
tions. The first function filters the huge space of solutions using its
BDD representation and a small set of solutions are selected. The
latter one selects the final decomposition using the BDAG repre-
sentation over the best solutions found by the former cost function.
The solver has been limited to perform a partial exploration of 200
decompositions for each Boolean relation due to the large space of
potential solutions.

5.2 BREL cost functions
The former cost function is based on BDD representation to ob-

tain a fast estimation. BDD-based cost functions are not accurate,
since sometimes there is no correspondence between the complex-
ity of the BDD and the function. Another drawback is that the
arrival time of the inputs can not be taken into account. The func-
tion being decomposed usually belongs to a larger network. The
input variables also have timing information which has to be taken
into consideration to obtain a good estimation.

The computation of the number of levels of a function is diffi-
cult to be estimated in BDD representation. Although a BDD can
be transformed to a BDAG to increase the accuracy, it is not rec-
ommended since experimentally we observed that the execution of
BREL is slowed down considerably.

A naive BDD-based cost function is presented in [9]. The bal-
ance of a decomposition is estimated as the sum of squares of the
BDD sizes. This approximation gives an intuition of the quality of
the decomposition.

EXAMPLE 5.1. Consider the bi-decomposition using an OR
function of F = abc + f gh + f gh + f gh. Let us assume the same
arrival time for all the inputs. Two possible decompositions are:

Implicants
Prime

Tree
Binary

f g hf g ha b c f g hf g hf g hf g ha b c

dec2dec2dec1dec1L R RL

dec2dec1

Delay(dec1) = Max ( 2 , 4 ) + 1 = 5
Area (dec1) = 3 + 9 = 12 Area (dec2) = 6 + 6 = 12
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Figure 4: Cost function based on prime implicants.

dec1≡ (+,dec1L,dec1R) ⇒

{
dec1L = abc,
dec1R = f gh+ f gh+ f gh

dec2≡ (+,dec2L,dec2R) ⇒

{
dec2L = abc+ f gh,

dec2R = f gh+ f gh

Figure 3 shows the BDD representation for these two decom-
positions. The BDD cost function ”sum of squares” selects dec1
instead of the more balanced decomposition dec2. 2

The next BDD-based cost function is proposed to obtain a more
accurate estimation of the delay and area. A balanced binary tree
is constructed from the disjunction of all prime implicants of the
function where each prime implicant is a conjunction of input vari-
ables. The arrival time of the inputs is used to build the tree towards
a balanced delay. The delay and the area are evaluated during the
computation of the prime implicants. The delay is estimated by
the depth of the tree and the area by the sum of the support of the
primes.

DEFINITION 5.1. BDD-based cost function. The cost is de-
fined as the pair C = (Delay,Area). A decomposition Bdec with
the cost CBdec is the best one if there is no other decomposi-
tion Dec with the cost CDec in the set of explored decomposi-
tion such that DelayDec < DelayBdec or DelayDec = DelayBdec∧
AreaDec < AreaBdec. 2

EXAMPLE 5.2. Consider the same decompositions of Fig. 3.
Figure 4 depicts both decompositions in binary tree representation
where the cost function based on prime implicants is used. The
selection of the best solution changes since the cost of each decom-
position is Cdec1 = (5,12) and Cdec2 = (4,12). 2

This BDD-based cost function, which is used as the first cost
function in BREL, reduces the possible decompositions to a small
set of candidates. Another cost function based on BDAG represen-
tation is used to perform the final selection over the set of candi-
dates. Notice that the same cost function is used in the algorithm
BRCDEC to select the best decomposition in Select Best De-
composition (Line 8).

The complexity is significantly higher but the estimation is more
accurate and the computational cost is affordable since a small set
of the solutions is processed. The cost is also defined as a pair
C = (D,A) where the delay D and area A are calculated as the depth
and the number of nodes of the decomposition respectively. The
delay and the area are computed as described next:

D(dec)=
{

AT (dec) if dec.op = input
1+max(D(dec.le f t),D(dec.right)) otherwise

where AT (dec) is the arrival time when the node is a primary input.
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LEVELS DELAY AREA CPU
PI PO BiDec NDec BiDec NDec −∆(%) BiDec NDec −∆(%) BiDec NDec

9symml 9 1 9 9 7.17 6.73 6.14 117392 131776 -12.25 6 196
alu2 10 6 11 9 8.91 8.15 8.53 509008 475136 6.65 13 579
apex6 135 99 7 7 7.39 6.92 6.36 1529808 1517280 0.82 11 788
apex7 49 37 8 7 7.67 7.57 1.30 881136 919648 -4.37 7 511
b9 41 21 6 5 5.29 5.14 2.84 212976 218080 -2.40 1 64
c8 28 18 6 6 5.50 5.55 -0.91 212048 207408 2.19 1 57
cht 47 36 4 4 4.94 4.71 4.66 272368 270048 0.85 1 29
count 35 16 7 7 6.46 6.34 1.86 497408 517360 -4.01 3 142
cu 14 11 5 5 4.70 4.73 -0.64 95120 100688 -5.85 1 14
example2 85 66 6 6 8.54 7.49 12.30 1331680 1288528 3.24 7 379
f51m 8 8 7 7 6.43 6.14 4.51 219008 210192 4.03 2 85
frg1 28 3 7 7 5.40 5.41 -0.19 72384 81200 -12.18 3 121
i5 133 66 6 6 6.28 6.23 0.80 1013376 990176 2.29 6 363
i7 199 67 5 5 6.83 7.10 -3.95 833808 942384 -13.02 4 251
lal 26 19 6 5 5.30 5.19 2.08 220864 230144 -4.20 1 59
pcle 19 9 6 6 5.48 5.36 2.19 139664 150336 -7.64 1 43
pcler8 27 17 5 5 5.77 5.73 0.69 229216 237104 -3.44 1 69
sct 19 15 5 5 4.90 4.77 2.65 167040 161008 3.61 1 43
term1 34 10 9 9 6.89 6.93 -0.58 361456 353568 2.18 4 288
ttt2 24 21 6 6 6.40 6.13 4.22 362848 388368 -7.03 2 139
x1 51 35 6 6 5.76 5.62 2.43 487200 498336 -2.29 4 279
x2 10 7 5 5 4.46 4.57 -2.47 62640 62176 0.74 1 16
x3 135 99 7 7 6.92 6.82 1.45 1543728 1525632 1.17 11 16
x4 94 71 5 5 6.74 6.63 1.63 1046784 1056064 -0.89 6 424
z4ml 7 4 5 5 4.98 4.90 1.61 82128 84912 -3.39 1 27
Norm. 1.000 0.972 1.000 0.978 1.000 1.004

Table 1: Comparison with the bi-decomposition method presented in [7] on small networks.

A(dec) =
{

1 if dec.op = input
A(dec.le f t)+A(dec.right) otherwise

The same cost function defined on Def. 5.1 over the cost
C = (D,A) is used to select the best decomposition. The cost func-
tion is more accurate since they work on top of the BDAG repre-
sentation of the decomposition. Note that, the detected isomorphic
functions are merged in a BDAG that contributes to obtain a better
estimation of the area of the function.

6. EXPERIMENTAL RESULTS
Two experiments have been performed to show the efficiency of

the n-way decomposition approach presented on this paper:

• Comparison with the bi-decomposition proposed in [7] on
small- and medium-size netlists of MCNC benchmarks.

• Comparison with bi-decomposition on industrial circuits.

Our approach is not compared to other timing-driven techniques
because an exhaustive comparison has been previously performed
in [7]. BRCDEC has been implemented in SIS using the BREL
solver [9]. A library of logic functions has been provided to BR-
CDEC to compute several decompositions. Specifically, the li-
brary consists of six functions: AND2, OR2, AO22, OA22, MUX,
and XOR. Experimentally, we observed these functions provide the
maximum number of distinct decompositions. More functions can
be used to increase the solution space. However, the exploration
time would be also affected.

6.1 Comparison on MCNC benchmarks
In this section, the comparison with BiDec [7] is performed.

The experiment is run on a subset of small and medium-size cir-
cuits of the MCNC benchmarks. The objective of this exper-
iment is to show the performance of BRCDEC with regard to
bi-decomposition.

The tables of results report for each example the number of
primary inputs and outputs, the number of levels of logic in the

technology independent phase, the delay and area after technology
mapping and the runtime. The circuits have been mapped using the
tree-mapping map -AFG [11, 12] targeting at delay optimization
with the academic library lib2.genlib. The last row of the tables
reports the normalized sum of the columns.

Table 1 summarizes the results on the small netlists. A subset
of the netlists reported in [7] is selected. The smallest ones have
been removed since the decomposition obtained with BRCDEC is
identical to the solution provided by bi-decomposition.

The number of levels of logic is similar in both methods.
BRCDEC reduces the depth of the circuits by 3%. However, the
number of levels is actually reduced only on few examples (alu2,
apex6 and b9). The improvement is closely related to the size of
the network. For instance, the number of levels is reduced from
11 to 9 in the circuit alu2. However, BRCDEC contributes to ob-
tain better delay after technology mapping with similar results on
area. In some examples the results are substantially better (alu2,
apex6, apex7 and example2). Only, the results are slightly worst
in four examples (c8, i7, term1 and x2 ), since a bad decision is
taken during the recursive decomposition. Nevertheless, there is an
improvement of 2% on average, since BRCDEC generates some
decompositions that bi-decomposition is unable to find. However,
the runtime of BRCDEC using Boolean relations is considerably
higher in comparison to [7].

These statements are confirmed in Table 2. This table reports the
results on the largest MCNC netlists that can be run with BRCDEC
without incurring on large penalties on runtime. On larger ones,
BRCDEC blows up due to the construction of too large BDDs.
Here, the improvement in number of levels is similar to the pre-
vious table. However, the improvement on delay after technology
mapping is more significant (5%) with a slightly reduction on the
area. Performing an analysis on individual netlists, we have ob-
served that BRCDEC is able to find decompositions with similar
number of levels but with less area on large functions (i8, i9 and
vda). On the recursive decomposition, the n-way decomposition is
commonly selected on functions with larger depth. Moreover, the
obtained decompositions tend to share more common subexpres-
sions that contributes to slightly reduce the area of the circuits.
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LEVELS DELAY AREA CPU
PI PO BiDec NDec BiDec NDec −∆(%) BiDec NDec −∆(%) BiDec NDec

frg2 143 139 8 8 9.38 8.99 4.16 4139808 4360672 -5.34 47 4284
i8 133 81 9 8 10.37 9.35 9.84 4084128 3849344 5.75 64 3691
i9 88 63 8 8 10.75 10.18 5.30 4447904 4382016 1.48 54 4146
table3 14 14 10 10 10.67 10.05 5.81 3216912 3258208 -1.28 121 3580
vda 17 39 8 8 8.70 9.01 -3.56 2219776 2093568 5.69 24 1307
Norm. 1.000 0.976 1.000 0.954 1.000 0.991

Table 2: Comparison with the bi-decomposition method presented in [7] on medium-sized networks.

LEVELS CELLS AREA WNS TNS
Bidec Ndec Bidec Ndec Bidec Ndec Bidec Ndec Bidec Ndec

100 ps

Netlist1 6 5 153 137 689 602 -12 1 -24 0
Netlist2 5 5 253 182 1234 855 -17 -11 -80 -20
Netlist3 5 5 210 124 1073 579 -19 -16 -102 -28
Netlist4 6 5 363 316 1855 1655 -28 -18 -312 -189

150 ps

Netlist5 5 5 292 251 895 828 9 12 0 0
Netlist6 5 6 572 472 2168 1754 -4 -8 -13 -25
Netlist7 6 6 477 463 2284 2168 -22 -16 -117 -82
Netlist8 6 6 498 468 2342 2136 -20 -17 153 -115

200 ps
Netlist9 7 7 1719 1750 6426 6641 -15 -9 -51 -58
Netlist10 7 7 2077 1512 8358 5237 -19 -5 -156 -7
Netlist11 9 7 6001 1613 39023 5990 -194 -8 -6564 -42
Norm. 1.000 0.982 1.000 0.866 1.000 0.823 1.000 0.597 1.000 0.524

Table 3: Comparison with the bi-decomposition method presented in [7] on industrial circuits.

6.2 Comparison on industrial circuits
In this section, the comparison between both techniques is per-

formed on industrial circuits. We have selected 11 netlists and a
library of 90nm from Intel Corporation. Instead of using the tree-
mapper of SIS, a graph-mapper [13] is applied. This technology
mapper takes better advantage of the graph decomposition per-
formed by both techniques.

Table 3 summarizes the results. The table reports the number of
levels in the technology independent phase; and, after technology
mapping, the number of cells, the area, the worst negative slack
(WNS) and the total negative slack (TNS). The slack is computed
from the required time assigned to each netlist. The required time
is shown in the first column of the table. The last row reports the
normalized sum of the results without the netlist 11.

The improvement on the depth of the netlists is similar to the
previous tables. However, there is a large improvement after tech-
nology mapping. The WNS is reduced by 40% and the area by 18%.
The large difference between the results presented in this table and
the previous ones is for several reasons. First, the netlist are even
larger in area and similar in number of levels that the medium-size
netlists of Table 2. BRCDEC is able to find good decompositions
on large functions that contributes to improve the area and the de-
lay. Moreover, the graph mapper takes profit of the sharing of com-
mon subexpressions reducing significantly the area of the netlist.

Analyzing the netlists individually, we can observe that
BRCDEC obtains better results in all the circuits with the excep-
tion in netlists 5 and 6. The area is considerably reduced in all the
netlist. Only netlists 9 and 11 have a worst result. The netlist 11 is
a clear example of the selection of a wrong decision near the pri-
mary outputs on BiDec. The n-way decomposition is selected on
the large functions that decreases significantly the size and the de-
lay of the final circuit. However, the execution of BRCDEC takes
around 10 hours to complete.

7. CONCLUSIONS
In this paper, a new application of the Boolean relations has been

shown. The experimental results confirm that the n-way decompo-
sition can obtain better solutions than bi-decomposition, mostly, on
large functions. However, a high runtime is required and the exe-
cution is limited to medium-size netlists.

As a future work, we are planning to develop a window-based
approach to run decomposition on larger netlists and perform the
recursive decomposition on partial collapsed netlists. Moreover,
we will explore the trade-off between the quality of the results and
the required runtime to produce the solutions.
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