
A compositional method for the synthesis of

Asynchronous Communication Mechanisms

Kyller Gorgonio1, Jordi Cortadella2, and Fei Xia3

1 Embedded Systems and Pervasive Computing Laboratory
Federal University of Campina Grande, Brazil

2 Department of Software
Universitat Politècnica de Catalunya, Spain

3 School of Electrical, Electronic and Computer Engineering
University of Newcastle upon Tyne, UK

Abstract. Asynchronous data communication mechanisms (ACMs) have
been extensively studied as data connectors between independently timed
concurrent processes. In previous work, an automatic ACM synthesis
method based on the generation of the reachability graph and the the-
ory of regions was proposed. In this paper, we propose a new synthesis
method based on the composition of Petri net modules, avoiding the ex-
ploration of the reachability graph. The behavior of ACMs is formally
defined and correctness properties are specified in CTL. Model checking
is used to verify the correctness of the Petri net models. The algorithms
to generate the Petri net models are presented. Finally, a method to
automatically generate C++ source code from the Petri net model is
described.
keywords: Asynchronous communication mechanisms, Petri nets, con-
current systems, synthesis, model checking, protocols.

1 Introduction

One of the most important issues when designing communication schemes be-
tween asynchronous processes is to ensure that such schemes allow as much
asynchrony as possible after satisfying design requirements on data. When the
size of computation networks becomes large, and the traffic between the pro-
cessing elements increases, this task becomes more difficult.

An Asynchronous Communication Mechanism (ACM) is a scheme which
manages the transfer of data between two processes, a producer (writer) and
a consumer (reader), not necessarily synchronized for the purpose of data trans-
fer. The general scheme of an ACM is shown in Figure 1. It includes a shared
memory to hold the transferred data and control variables. In this work it is
assumed that the data being transferred consists of a stream of items of the
same type, and the writer and reader processes are single-threaded loops. At
each iteration a single data item is transferred to or from the ACM.

Classical semaphores can be configured to preserve the coherence of write and
read operations. However, this approach is not satisfactory when data items are
large and a minimum locking between the writer and the reader is expected [4].

Shared
memory

Control
variables

ACM

Writer Reader

datadata

Fig. 1. ACM with shared memory and control variables.

By using single-bit unidirectional variables, the synchronization control can
be reduced to the reading and writing of these variables by extremely simple
atomic actions [6]. Variables are said to be unidirectional when they can only
be modified by one of the processes. This provides the safest solution for a
maximum asynchrony between the writer and the reader. In particular, if the
setting, resetting and referencing of control variables can be regarded as atomic
events, the correctness of ACMs becomes easy to prove.

ACMs are classified according to their overwriting and re-reading policies [8,6].
Overwriting occurs when the ACM is full of data that has not been read before.
In this case the producer can overwrite some of the existing data items in the
buffer. Re-reading occurs when all data in the ACM has been read by the con-
sumer. In this case the consumer is allowed to re-read an existing item. Table 1
shows such a classification. BB stands for a bounded buffer that does not allow
neither overwriting nor re-reading. RRBB stands for an ACM is that only allows
re-reading. On the other hand, the OWBB scheme allows only overwriting. Finally,
the OWRRBB scheme allows both re-reading and overwriting.

No re-reading Re-reading

No overwriting BB RRBB

Overwriting OWBB OWRRBB

Table 1. Classification of ACMs.

The choice of using a particular class of ACM for a particular job is gen-
erally based on data requirements and system timing restrictions [4,6]. For the
re-reading ACM class, it is more convenient to re-read the item from the pre-
vious cycle rather than an item from several cycles before. For overwriting, the
typical cases consist of overwriting either the newest or the oldest item in the
buffer [6,9,2]. Overwriting the newest item in the buffer [9] attempts to provide
the reader with the best continuity of data items for its next read. Continuity is
one of the primary reasons for having a buffer of significant size. Overwriting the
oldest item is based on the assumption that newer data is always more relevant
than older.

1.1 ACM example

Now consider an RRBB ACM with three data cells. The single-bit (boolean)
control variables ri and wi, with i ∈ {1, 2, 3}, are used to indicate which cell

each process must access. Initially the reader is pointing at cell 0, r0 = 1 and
r1 = r2 = 0, and the writer to cell 1, w1 = 1 and w0 = w2 = 0. The shared
memory is initialized with some data. This scheme is shown in Figure 2.

cell 1
(empty)(new data)

cell 0 cell 2
(empty)

reader

writer

{ r0=1
r1=0
r2=0

{ w0=0
w1=1
w2=0

Fig. 2. Execution of RRBB ACM with 3 cells.

The writer always stores some data into the ACM and then attempts to
advance to the next cell releasing the new data. In this way, a possible trace for
the writer is 〈wr1wr2wr0wr1〉, where wri denotes “write data on cell i”. A similar
behavior applies to the reader. A possible trace for the reader is 〈rd0rd1rd1rd2〉.

In an RRBB ACM, no overwriting and allowing re-reading imply the follow-
ing behavior:

– The writer first accesses the shared memory and then advances to the next
cell, but only if the reader is not pointing at it.

– The reader first advances to the next cell if the writer is not there and then
performs the data transfer, otherwise it re-reads the current cell.

In general, and depending on how the read and write traces interleave, co-
herence and freshness properties must be satisfied.

Coherence is related to mutual exclusion between the writer and the reader.
For example, a possible trace for this system is 〈wr1wr2rd0 · · · 〉. After the writer
executing twice, the next possible action for both processes is to access cell 0.
This introduces the problem of data coherence when the reader and the writer
are retrieving and storing data on the same memory locations.

Freshness is related to the fact that the last data record produced by the
writer must be available for the reader. On the ACMs studied in this work, the
reader always attempts to retrieve the oldest data stored in the shared memory
that has not been read before. This means that the freshness property imposes
a specific sequencing of data, i.e. the data is read in the same order that it is
written. Depending on the ACM class, some data may be read more than once
or may be missed. However, the sequence should be preserved. For the example
above, one possible trace is 〈wr1rd0wr2rd1rd1 · · · 〉. Note that at the moment
the reader executes the first rd1 action, the writer has already executed a wr2.
This means that there is some new data on cell 2. But the reader is engaged to
execute rd1 again, which violates freshness.

With a correct interleaving both processes will avoid accessing the same data
cell at the same time, the writer will not be allowed to overwrite unread data,
and the reader will have the possibility of re-reading the most recent data only
when there is no unread data in the ACM. For the example above, a correct
trace is 〈wr1rd0rd1wr2rd1wr0rd2wr1〉. Observe that the sub-trace rd1wr2rd1

does not contradict the fact that the reader only re-reads any data if there is no
new one available. This is because after the first rd1 there is no new data, then
the reader prepares to re-read and from this point it will engage on a re-reading
regardless the actions of the writer.

Algorithm 1 RRBB ACM with 3 cells

Require: Boolean w0, w1, w2

Require: External Boolean r0, r1, r2

1: process writer()
2: w1 := 1; w0 := w2 := 0;
3: loop

4: if w0 = 1 ∧ r1 = 0 then

5: write cell 1;
6: w0 := 0; w1 := 1;
7: else if w1 = 1 ∧ r2 = 0 then

8: write cell 2;
9: w1 := 0; w2 := 1;

10: else if w2 = 1 ∧ r0 = 0 then

11: write cell 0;
12: w2 := 0; w0 := 1;
13: else

14: wait until some ri is modified;
15: end if

16: end loop

17: end process

Require: Boolean r0, r1, r2

Require: External Boolean w0, w1, w2

1: process reader()
2: r0 := 1; r1 := r2 := 0;
3: loop

4: if r0 = 1 ∧ w1 = 0 then

5: r0 := 0; r1 := 1;
6: read cell 1;
7: else if r0 = 1 ∧ w1 = 1 then

8: read cell 0;
9: else if r1 = 1 ∧ w2 = 0 then

10: r1 := 0; r2 := 1;
11: read cell 2;
12: else if r0 = 1 ∧ w1 = 1 then

13: read cell 1;
14: else if r2 = 1 ∧ w0 = 0 then

15: r2 := 0; r0 := 1;
16: read cell 0;
17: else if r2 = 1 ∧ w0 = 1 then

18: read cell 2;
19: end if

20: end loop

21: end process

A possible implementation of the example above is described in Algorithm 1.
The writer is shown on the left side and the reader on the right. Each process
consists of an infinite loop. This is just a simple abstraction of the real behavior
of a process, in which the ACM operations are combined with the data processing
actions. At each ACM operation:

– The writer first writes to the shared memory and then tries to advance to
the next cell by modifying its control variable w, if this is contradictory to
the current values of the reader’s control variable r, the writer waits. Note
that when the writer is waiting, the data item just written into the ACM is
not available for the reader to read because the writer has not yet completed
its move to the next cell.

– The reader first tries to advance to the next cell by modifying its control
variable r, if this is contradictory to the current values of the writer’s control
variable w, no modification to r occurs, in either case (with or without
successfully advancing) the reader then reads (or rereads) from cell r. Note
that cell r cannot be accessed by the writer, even if its content has already
been read by the reader.

In other words, at any time, each of the writer and reader processes “owns” a
cell, and for data coherence purposes any cell can only “belong to” one of these
processes at any time. Furthermore, since only binary control variables are used,
the size of this description grows with the size of the ACM. This means that
more variables are needed, and for overwriting ACM classes it is more difficult
to correctly deal with all of them.

In the rest of this paper, a Petri net based method for the automatic synthesis
of ACMs is presented. The method receives as input a functional specification
consisting of the ACM class that should be implemented by the ACM and the
number of cells it should have. As output, it produces the source code imple-
menting the operations with the ACM. The implementation can be either in
software (e.g. C++ or Java) or hardware (e.g. Verilog or VHDL).

In this paper, we will provide C++ implementations. For instance, the C++
code for the 3-cell RRBB ACM described above is shown in Figures 6 and 7.

In the next sections, the methodology presented in the paper will be de-
scribed. The behavior of the RRBB ACM class will be formally defined and
the method to generate its implementation will be detailed. Due to the limited
space, the OWBB and OWRRBB classes will not be discussed in detail. How-
ever, the principle used to generate the RRBB implementations also applies to
the overwriting ACM classes.

2 Overview of the approach

In previous work [1,8,10], a step-by-step method based on the theory of regions
for the synthesis of ACMs was presented. The method required the generation
of the complete state space of the ACM by exploring all possible interleavings
between the reader and the writer actions. The state space of the ACM was
generated from its functional specification. Next, a Petri net model was obtained
using the concept of ACM regions, a refined version of the conventional regions.

This work proposes the generation of the Petri net model using a modular
approach that does not require the explicit enumeration of the state space. The
Petri net model is build by abutting a set of Petri net modules. The correctness
of the model can then be formally verified using model checking. The relevant
properties of the ACM, coherence and freshness, can be specified using CTL
formulae. This paper also extends previous work by introducing an approach
to automatically generate the implementation of the ACM from the Petri net
model. Figure 3 shows the design flow for the automatic generation of ACMs.

Compared to the previous work, the new approach has the advantage of not
dealing with the entire state space of the ACM when generating the Petri net

module test;
initial $display(¨Hello, World!¨);
endmodule

#include <iostream>
int main() {
 std::cout << ¨Hello, World!¨;
 return 0;
}

generation
Model

Code
generation

Verification

specification
Functional

Abstract model

Implementation model

C++ code

Verilog code

Fig. 3. The design flow

model. It is obtained in linear time. On the other hand, it requires to verify
the model generated to provide enough evidence of its correctness. Observe that
it is possible to obtain the ACM implementation without doing verification. In
practice, the new approach allows to obtain the Petri net model when the size
of the ACM grows.

2.1 Models for verification and implementation

The two basic paradigms on the approach presented in this paper are automation
and correctness. For that reason, from the functional specification of an ACM,
two formal models are generated:

– An abstract model, that describes the possible traces of the system and that is
suitable for model checking of the main properties of the ACM: coherence and
freshness. These properties can be modeled using temporal logic formulae.

– An implementation model, that is suitable for generating a hardware or soft-
ware implementation of the ACM. This model is generated by the composi-
tion of basic Petri net modules and contains more details about the system.
This model is required to narrow the distance between the behavior and the
implementation.

For a complete verification of the system, a bridge is required to check that the
implementation model is a refinement of the abstract model. For such purpose,
the Cadence SMV Model Checker [5] has been used.

The Cadence SMV extends the CMU SMV model checker by providing a
more expressive description language and by supporting a variety of techniques
for compositional verification. In particular, it supports refinement verification
by allowing the designer to specify many abstract definitions for the same signal.
It can then check if the signal in a more abstract level is correctly implemented
by another abstraction of lower level.

Thus, the correctness of the generated ACMs is verified as follows:

1. The abstract and implementation models of the ACM are generated.
2. The properties of the ACM are specified in CTL and model checked on the

abstract model.

3. The implementation model is verified to be a refinement of the abstract
model.

In the forthcoming section, the abstract and implementation models for the
class of RRBB ACMs are presented.

3 The abstract model for RRBB ACMs

The abstract model for an RRBB ACM is specified as a transition system. The
state of the ACM is defined by the data items available for reading. For each
state, σ defines the queue of data stored in the ACM. More specifically, σ is a
sequence: σ = a0a1 · · · aj−1aj , with j < n, where n is size of the ACM. aj is the
last written data, and a0 is the next data to be retrieved by the reader. The size
of the ACM is given by its number of cells, i.e. the maximum number of data
items the ACM can store at a certain time.

σ must also express if the processes are accessing the ACM or not. This is
done by adding flags to the a0 and aj items. aw

j indicates that the writer is
producing data aj , and this data is not yet available for reading. Similarly, ar

0 is
used to indicate that the reader is consuming data a0.

Observe that σ can be interpreted as a stream of data that is passed from
the writer (on the left) to the reader (on the right). There are four events that
change the state of the ACM:

– rdb(a): reading data item a begins.
– rde(a): reading data item a ends.
– wrb(a): writing data item a begins.
– wre(a): writing data item a ends.

The notation 〈σi〉
e
−→ 〈σj〉 denotes the occurrence of event e from state 〈σi〉

to state 〈σj〉, whereas 〈σ〉 e
−→ ⊥ is used to denote that e is not enabled in 〈σ〉.

In RRBB ACMs, the reader is required not to wait when starting an access
to the ACM. In the case there is no new data in the ACM, the reader will re-read
some data that was read before.

The writer can add data in the ACM until it is full. In such case, the writer is
required to wait until the reader retrieves some data from the ACM. The reader
always tries to retrieve the oldest non-read data and, if all data in the ACM has
been read before, then it attempts to re-read the last retrieved data item.

Definition 1 formally captures the behavior of RRBB ACMs. Rules 1-3 model
the behavior of the writer. Rules 4-7 model the behavior of the reader.

Definition 1 (RRBB transition rules) The behavior of an RRBB ACM is
defined by the following set of transitions (n is the number of cells of the ACM
and the cells are numbered from 0 to n − 1):

1. 〈σ〉
wrb(a)
−−−−→ 〈σaw〉 if |σ| < n

2. 〈σ〉
wrb(a)
−−−−→ ⊥ if |σ| = n

3. 〈σaw〉
wre(a)
−−−−→ 〈σa〉

4. 〈aσ〉
rdb(a)
−−−−→ 〈arσ〉

5. 〈arσ〉
rde(a)
−−−−→ 〈σ〉 if |σ| > 0 ∧ σ 6= bw

6. 〈ar〉
rde(a)
−−−−→ 〈a〉

7. 〈arbw〉
rde(a)
−−−−→ 〈abw〉

Rule 1 models the start of a write action for a new data item a and signaling
that it is not available for reading (aw). Rule 3 models the completion of the write
action and making the new data available for reading. Finally, rule 2 represents
the blocking of the writer when the ACM is full (|σ| = n).

Rule 4 models the beginning of a read action retrieving data item a and
indicating that it is being read (ar). Rule 5 models the completion of the read
operation. In this rule, a is removed from the buffer when other data is available.
On the other hand, rules 6 and 7 model the completion of the read action when
no more data is available for reading. In this case, the data is not removed from
the buffer and is available for re-reading. This is necessary due to the fact that
the reader is required not to be blocked even if there is no new data in the ACM.

It is important to observe that in the state 〈arbw〉 the next element to be
retrieved by the reader will depend on the order that events wre(b) and rde(a)
occur. If the writer delivers b before the reader finishes retrieving a, then b will
be the next data to be read. Otherwise, the reader will prepare to re-read a.

Definition 1 was modeled using the Cadence SMV model checker and fresh-
ness and coherence properties were verified. Each process was modeled as an
SMV module. In the SMV language, a module is a set of definitions, such as
type declarations and assignments, that can be reused. Specifically, each process
consists of a case statement in which each condition corresponds to a rule in
Definition 1. The SMV model obtained from Definition 1 will be used in Sec-
tion 4 to verify a lower level specification of the ACM. Next, the specification of
the coherence and freshness properties is discussed.

3.1 Coherence

To verify the coherence property it is necessary to prove that there is no reachable
state in the system in which both processes are addressing the same segment of
the shared memory.

In the ACM model described by Definition 1, the reader always addresses
the data stored in the first position of the ACM, represented by σ. On the other
hand, the writer always addresses the tail of the ACM. To prove coherence in
this model it is only necessary to prove that every time the reader is accessing
the ACM, then:

– it is addressing the first data item, and
– if the writer is also accessing the ACM, then it is not writing in the first

location.

In other words, if at a certain time the shared memory contains a sequence
of data σ = a0a1 · · · aj−1aj , with j < n, where n is the size of the ACM. Then:

AG (ar ∈ σ → (ar = a0 ∧ (aw ∈ σ → aw = aj ∧ j > 0)))

The formula above specifies that for any reachable state of the system (AG),
if the reader is accessing the ACM, then:

1. It is reading a data from the beginning of the buffer (ar = a0);
2. If the writer is also accessing the ACM, then it is not pointing at the begin-

ning of the queue ((aw ∈ σ → aw = aj ∧ j > 0)).

3.2 Freshness

As discussed before, freshness is related to sequencing of data. Now, let us as-
sume that at a certain time the shared memory contains a sequence of data
σ = a0a1 · · · aj−1aj , with j < n, aj is the last written data, and a0 is the next
data to be retrieved by the reader. Then, at the next cycle the ACM will contain
a sequence of data σ′ such that one of the following is true:

1. σ′ = σ: in this case neither the reader has removed any data item from the
head of σ nor the writer has stored a new item in its tail;

2. σ′ = a0a1 · · · aj−1ajaj+1: in this case the reader has not removed any item
from the head of σ, but the writer has added a new item to the tail;

3. σ′ = a1 · · ·aj−1aj : and, finally, in this case the reader has removed a data
item from the head of σ.

The above can be specified by the following CTL formula:

AG(|σ| = x → AX((|σ′| >= x ∧ σ′ = σ+) ∨ (|σ′| = x − 1 ∧ σ′ = σ−)))

where σ+ is used to denote a0a1 · · ·aj−1aj or a0a1 · · ·aj−1ajaj+1 and σ− is used
to denote a1 · · · aj−1aj . Observe that 1 and 2 are captured by the same same
CTL sub-formula, which is given by the left side of the ∨ inside the AX operator.

The guidelines introduced above can be used to generate an SMV model for
any RRBB ACM with three or more data cells. After that, the model can be
verified against the CTL formulas for coherence and freshness. Observe that the
number of CTL formulas needed to specify freshness grows linearly with the
size of the ACM. This is because, for each possible size of σ, it is necessary to
generate another CTL formula.

4 The implementation model and its verification

The modular approach for the generation of ACMs is now introduced by means
of an example, including the generation of a Petri net implementation model
and its verification.

4.1 Generation of the implementation model

A Petri net model for a 3-cell RRBB ACM will be generated and mapped into a
C++ implementation. As stated before, this new modular approach is based on
the definition of a set of elementary building blocks that can be easily assembled
to construct the entire system.

The repetitive behavior of the writer consists of writing data into the ith cell,
checking if the reader process is addressing the next cell and, in the negative case
advancing to it, otherwise waiting until the reader advances. In a similar way,
the reader is expected to retrieve data from the ith cell, check if the writer
is accessing the next cell and, in the negative case advancing to it, otherwise
preparing to re-read the contents of the ith cell.

Two modules to control the access of each process to the ith cell are defined.
One corresponds to the behavior of the writer and the other to the behavior of
the reader. The modules are shown in Figure 4.

λ

w != jw = j

r != j

w != iw = i

w

w

wr

i

pw
i

j

i

ij

(a) writer module

r

i

i

r

pr
r != i

w = j

w != j

r != j

µ

µ

r = j

r = i

rd

i

j

ii

ij

(b) reader module

Fig. 4. Basic modules for the writer and the reader.

In Figure 4(a), a token in place wi enables transition wri, that represents the
action of the writer accessing the ith cell. The places with label 〈w = i〉, 〈w = j〉,
〈w 6= i〉 and 〈w 6= j〉 indicate if the writer is pointing at the ith or at the jth

cell. 〈r 6= j〉 indicates when the reader is pointing at the jth cell. If transition λij

is enabled, then the reader is not pointing at cell j, the writer has just finished
accessing the ith cell and it can advance to the next one. The places 〈w = i〉,
〈w = j〉, 〈w 6= i〉 and 〈w 6= j〉 model the writer’s control variables, and they
are also used by the reader to control its own behavior. Note that j = (i + 1)
mod n.

The same reasoning used to describe the writer’s module also applies to the
reader’s. The difference is that the reader should decide to advance to the next
cell or to re-read the current cell. This is captured by the two transitions in
conflict, µii and µij . Here the decision is based on the current status of the
writer, i.e. if the writer is on the jth cell or not, captured by a token on places
〈w = j〉 or 〈w 6= j〉 respectively. It is easy to realize that there is a place invariant

involving those places, since the sum of tokens is always equal to one, and only
one of the transitions in conflict can be enabled at a time.

In order to create a process, it is only necessary to instantiate a number
of modules, one for each cell, and connect them. Instantiating modules only
requires replacing the i and j string by the correct cell numbers. For example,
to instantiate the writer’s module to control the access to the 0th cell, the string
i is replaced by 0 and j by 1. Connecting the modules requires to merge all the
places with the same label. Figure 5 depicts the resulting Petri net models for
the writer and reader of a 3-cell RRBB ACM.

w0

wr0
pw

λ

w 1
wr1
pw

λ

w 2
wr2
pw

λ

0

1

2 w!=2

w!=1

w!=0w=0

w=1

w=2

r!=0

r!=j

r!=1
01

12

20

(a) writer process

rd0

µ w=1

r0

pr0 r!=0r=0

µ

rd1

µ w=2

pr1r=1

r1

r2

µ

rd
µ

pr2r=2

2

µ
w!=0

w=0

w!=2

w!=1

r!=2

r!=1

01

00

12

11

20

22

(b) reader process

Fig. 5. The write and read processes for a 3-cell RRBB ACM.

After creating the processes, they can be connected by also merging places
with same label on both sides. In this case, the shadowed places in each module
will be connected to some place on the other module.

Definition 2 formally introduces the concept of a module. In this definition,
it is possible to see that a module is an ordinary Petri net model that has some
“special” places called ports. A port is a place that models a control variable.
The local ports model the control variables that are updated by the process to
which it belongs, while the external ports model the control variables updated by
the other process. Ports are used to identify control variables when synthesizing
the source code for an ACM.

Definition 2 (Petri net module) A Petri net module is a tuple MODULE =
(PN, LOC, EXT, Ta, Tc) such that:

1. PN is a Petri net structure (P, T, F) with:

(a) P being finite set of places.
(b) T being finite set of transitions.
(c) F ⊆ (P × T)

⋃
(T × P) being a set of arcs (flow relation).

2. LOC ⊂ P is a finite set of local ports.
3. EXT ⊂ P is a finite set of external ports such that p ∈ EXT ⇐⇒ p• = •p.

Places in EXT are said to be read-only.
4. Ta ⊂ T is a finite set of transitions such that t ∈ Ta ⇐⇒ t models a media

access action.
5. Tc ⊂ T is a finite set of transitions such that t ∈ Tc ⇐⇒ t models a control

action.
6. Ta

⋃
Tc = T and Ta

⋂
Tc = ∅.

7. Ma ⊂ (Ta ×N) is a relation that maps each access transition t ∈ Ta into an
integer that is the number of the cell addressed by t.

8. Mc ⊂ (Tc × N × N) is a relation that maps each control transition t ∈ Tc

into a pair of integers modeling the current and the next cells pointed by the
module.

Definitions 3 and 4 formally introduce the writer and reader basic modules,
respectively.

Definition 3 (RRBB writer module) The RRBB writer module is a tuple
WRITER = (PNw, LOCw, EXTw) where:

1. PNw is as defined by Figure 4(a)
2. LOCw = {〈w = i〉, 〈w = j〉, 〈w 6= i〉, 〈w 6= j〉}
3. EXTw = {〈r 6= j〉}
4. Ta = {wri}
5. Tc = {λij}
6. Ma = {(wri, i)}
7. Mc = {(λij , i, j)}

Definition 4 (RRBB reader module) The RRBB reader module is a tuple
READER = (PNr, LOCr, EXTr) where:

1. PNr is as defined by Figure 4(b)
2. LOCr = {〈r = i〉, 〈r = j〉, 〈r 6= i〉, 〈r 6= j〉}
3. EXTr = {〈w = j〉, 〈w 6= j〉}
4. Ta = {rdi}
5. Tc = {µii, µij}
6. Ma = {(rdi, i)}
7. Mc = {(µii, i, i), (µij , i, j)}

The connection of two modules, MOD1 and MOD2, is defined as another
Petri net module that is constructed by the union of them. Definition 5 captures
this.

Definition 5 (Connection for Petri net modules) Given two Petri net mod-
ules MOD1 and MOD2, where:

– MOD1 = (PN1, LOC1, EXT1, Ta1
, Tc1

, Ma1
, Mc1

) and
– MOD2 = (PN2, LOC2, EXT2, Ta2

, Tc2
, Ma2

, Mc2
).

The union of them is a Petri net module m = (PN, LOC, EXT, Ta, Tc, Ma, Mc)
such that:

1. PN = PN1

⋃
PN2 where P = P1

⋃
P2, If two places have the same label

them they are the same, T = T1

⋃
T2 and F = F1

⋃
F2.

2. LOC = LOC1

⋃
LOC2.

3. EXT = EXT1

⋃
EXT2.

4. Ta = Ta1

⋃
Ta2

.
5. Tc = Tc1

⋃
Tc2

.
6. Ma = Ma1

⋃
Ma2

.
7. Mc = Mc1

⋃
Mc2

.

The complete ACM model can also be generated by the union of the Petri net
models of each resulting process. The procedure is as introduced by Definition 5
except that rules 2 and 3 do not apply.

The last required step is to set an appropriated initial marking for the Petri
net model. This can be done using Definition 6.

Definition 6 (Initial marking for RRBB ACMs) For any Petri net model
of an RRBB ACM, its initial marking is defined as follows. All the places are
unmarked, except in these cases:

1. M0(wi) = 1, if i = 1.
2. M0(〈w = i〉) = 1, if i = 1.
3. M0(〈w 6= i〉) = 1, if i 6= 1.
4. M0(ri) = 1, if i = 0.
5. M0(〈r = i〉) = 1, if i = 0.
6. M0(〈r 6= i〉) = 1, if i 6= 0.

Observe that according to Definition 6, the writer is pointing at the 1st cell
of the ACM and reader is pointing to the 0th cell. By this, it can be deduced
that the ACM is assumed to be initialized with some data on its 0th cell.

4.2 Verification of the implementation model

The Petri net model generated using the procedure discussed above will be used
to synthesize source code (C++, Java, Verilog, etc.) that implements the behav-
ior specified by the model. So, it is necessary to guarantee that such a model
is correct with respect to the behavior given by Definition 1 in Section 3. In
this work, it is done by applying refinement verification. In other words it is

necessary to verify if the low-level specification, given by the Petri net model ob-
tained as described above, implements correctly the abstract specification given
by Definition 1.

Since Definition 1 was specified with the SMV language, it was necessary
to translate the Petri net ACM model into SMV. The PEP tool [3] provides a
way for translating a Petri net model into SMV and was used in our synthesis
framework for such purpose.

The Petri net model specifies the mechanisms to control access to the ACM,
but it does not model the data transfers. Since the goal is to check if the im-
plementation model refines the abstract model, it is necessary to model data
transfers in the implementation model. For that reason, a data array with the
size of the ACM was added to the implementation model. For each event mod-
eling a data access action, it was necessary to add the actions simulating the
storage and retrieval of data in the array.

The following steps summarize what should be done to add the glue between
the implementation and the abstract models.

1. Add a data array, with the same size as the ACM, to the SMV code of the
Petri net model.

2. Identify in the SMV code generated by PEP the piece of code modeling the
occurrence of each transition t of the Petri net model.

3. If t is a reader’s action and t ∈ Ta, then the data stored in the ith, where
(t, i) ∈ Ma, position of the data array created in step 1 should be read.

4. If t is a writer’s action and t ∈ Ta, then a new data item should be stored
in the ith, where (t, i) ∈ Ma, position of the data array created in step 1.

Note that the only control actions included in the model are required to
avoid the non-determinism in the extra control variables. For instance, it is not
desirable to allow non-deterministic changes in the values stored in the data
array. By doing the above modifications in the SMV code of the generated Petri
net model, it is possible to verify if the implementation model is a refinement
of the abstract model with respect to the data read from the data array. It
is important to note that the CTL formulae are defined in terms of the data
array. Thus, if both models always read the same data from the array, and if the
abstract model satisfies coherence and freshness, then the implementation model
will also satisfy those properties and it can be used to synthesize the source code
for the ACM.

Following the procedure described above a tool to automatically generate
ACMs was designed and implemented4. A number of RRBBs with different sizes
(starting from 3) where generated and proved to be correct for all cases.

4 See http://acmgen.sourceforge.net/ for details.

5 Synthesizing the source code

The implementation is generated from the Petri net model of each process. And
the resulting source code is based on the simulation of the net model. So, the
synthesis method consists of:

1. Create the shared memory as an array of the size of the desired ACM.
2. For each place p of the model, declare a Boolean variable vp named with the

label of p and initialize it with the value of its initial marking. Note that if
p ∈ EXT then it will in practice be initialized by the other process, since in
this case vp is seen as an external variable that belongs to another process.

3. For each transition t of the model, map into an if statement that is evaluated
to true when all input variables of t are true. The body of the statement
consists of switching the value of the input places of t to false and output
places to true. If t models an access action, also add to the body of the if
actions to write (or read) a new data item to (or from) the shared memory.

In order to perform the steps above, templates are used to define a basis
for the source code of the ACM, then some gaps are fulfilled. More precisely,
such gaps consist of: the declaration of the shared memory of a given size, the
declarations of the control variable and the synthesis of the code that controls
the access to the ACM.

Observe that the generation of the source code is performed from the Petri
net model of each process and not from the model of the composed system.
Algorithm 2 defines the basic procedure for the declaration and initialization of
the control variables.

Algorithm 2 Control variables declaration and initialization

1: for all p ∈ P do

2: if p ∈ LOC then

3: Declare p as a local Boolean variable
4: Initialize variable p with M0(p)
5: Make variable p a shared one
6: else if p ∈ EXT then

7: Create a reference to a Boolean variable p that has been shared by the other
process

8: else

9: Declare p as a local Boolean variable
10: Initialize variable p with M0(p)
11: end if

12: end for

In the first case, p is declared as a local Boolean variable that can be shared
with the other processes and initialized with the initial marking of p. In the
second case p is a shared Boolean variable that was declared in the other process

and in that case it cannot be initialized since it is a read-only control variable,
from the point of view of the process being synthesized. Finally, in the third
case, p is declared as a private Boolean variable and is initialized with the initial
marking of p. In other words, each place will be implemented as a single bit
unidirectional control variable. And each variable can be read by both processes
but updated only by one of them.

Up to now the control part has not been synthesized, and there is no indica-
tion on how the data is passed from one side to the other. The shared memory
can be declared statically as a shared memory segment and the only action
needed to create it is to set the amount of memory that should be allocated to
it.

Finally, the synthesis of the control for the reader and writer processes are
introduced by Algorithms 3 and 4 respectively.

Algorithm 3 Synthesis of control for the reader

1: for all t ∈ T do

2: if t ∈ Ta with (t, i) ∈ Ma then

3: Create new if statement
4: ∀p ∈ •t add to the if condition p = true

5: ∀p ∈ •t add to the if body p = false

6: ∀p ∈ t• add to the if body p = true

7: Add to the if body an instruction to read data from the ith ACM cell
8: else if t ∈ Tc with (t, i, j) ∈ Mc then

9: Create new if statement
10: ∀p ∈ •t add to the if condition p = true

11: ∀p ∈ •t add to the if body p = false

12: ∀p ∈ t• add to the if body p = true

13: end if

14: end for

In Algorithm 3, the first case captures the synthesis of control to a data read
transition addressing the ith cell. The condition to the control is given by the
pre-set of t and if it is satisfied then its pre-set it switched to false and its post-
set to true. And some data is read from the ith cell. The second captures the
synthesis of control to a control transition. As in the previous the condition is
given by the pre-set of t and then its pre-set it switched to false and its post-set
to true.

Algorithm 4 is similar to Algorithm 3. The difference is that instead of reading
some data from the ith cell, the process will write some data into it.

The approach described here was used in the generation of C++ implemen-
tations for ACMs. In Figures 6 and 7 the methods that perform the shared
memory accesses and control actions to the 3-cell RRBB ACM introduced in
Section 4 are shown.

In Figure 6(a) it is possible to see the method that actually writes some
data into the ACM. Line 3 captures the transition wr0 in the Petri net model
enabled. In this case: the variables implementing its pre-set are turned to false,
line 4; the variables implementing its post-set are turned to true, line 5; and

Algorithm 4 Synthesis of control for the writer

1: for all t ∈ T do

2: if t ∈ Ta with (t, i) ∈ Ma then

3: Create new if statement
4: ∀p ∈ •t add to the if condition p = true

5: ∀p ∈ •t add to the if body p = false

6: ∀p ∈ t• add to the if body p = true

7: Add to the if body a instruction to write new data on the ith ACM cell
8: else if t ∈ Tc with (t, i, j) ∈ Mc then

9: Create new if statement
10: ∀p ∈ •t add to the if condition p = true

11: ∀p ∈ •t add to the if body p = false

12: ∀p ∈ t• add to the if body p = true

13: end if

14: end for

some data is written into the 0th cell of the ACM, line 6. Note that the val

is the new data to be sent and shm data implements the shared memory. Note
that each if statement refers to some transition in the Petri net model.

2.

4. w0 = false;

6. *(shm_data + 0) = val;

8. w1 = false;

10. *(shm_data + 1) = val;

12. w2 = false;

14. *(shm_data + 2) = val;
15. }
16. }

1. void Writer::Send(acm_t val) {

5. pw0 = true;

9. pw1 = true;

13. pw2 = true;

3. if (w0 == true) { //wr0

7. } else if (w1 == true) { //wr1

11. } else if (w2 == true) { //wr2

(a) Writer::Send()

2.
3. acm_t val;
4.
5. if (r0 == true) {
6. r0 = false;

8. val = *(shm_data + 0);
9. } else if (r1 == true) {
10. r1 = false;

12. val = *(shm_data + 1);
13. } else if (r2 == true) {
14. r2 = false;

16. val = *(shm_data + 2);
17. }
18.
19. return(val);
20. }

1. acm_t Reader::Receive(void) {

7. pr0 = true;

11. pr1 = true;

15. pr2 = true;

(b) Reader::Receive()

Fig. 6. Access actions implementation

The same reasoning applies to the reader access method shown in Figure 6(b).
The only difference is that instead of writing into the ACM, it reads from there.

The methods implementing the control actions are somewhat more complex,
but follow the same principle. The implementation of the writer’s control actions
are given by the method in Figure 7(a). As before, the same idea is used, im-
plementing each control transition as an if statement whose condition is given
by the variables of the pre-set and the body consists of switching the pre-set to
false and the post-set to true. For example, the code implementing the firing

of transition λ01 is given by lines 3 to 14 of Figure 7(a). Observe that we0 and
wne0 stands for w = 0 and w 6= 0 respectively.

The writer’s control actions are inside an infinite loop whose last instruction
is a call to a pause()5 function. This is done because if there is no λ transition
enabled, with the writer pointing at the ith cell, it means that the reader is
pointing at the (i+1)th cell. And in this case the writer should wait for the reader
to execute. By using the pause() function in line 17, busy waiting algorithms
are avoided. Also, note that the exit from the loop is done by a break statement,
as in line 13.

2. while (true) {
3. if (*we0 == true &&
4. *wne1 == true &&

7. *we0 = false;
8. *wne1 = false;
9. w0p = false;
10. w1 = true;
11. *wne0 = true;
12. *we1 = true;
13. break;
14. }
15. if (...) {...} // l1_2
16. if (...) {...} // l2_0
17. pause();
18. }
19. }

1. void Writer::Lambda(void) {

5. w0p == true &&
6. *rne1 == true) { // l0_1

(a) Writer::Lambda()

2. if (r0p == true &&
3. *we1 == true) { // m0_0
4. r0p = false;
5. r0 = true;
6. kill(pair_pid, SIGCONT);
7. } else if (*re0 == true &&

12. *rne1 = false;
13. r0p = false;
14. r1 = true;
15. *rne0 = true;
16. *re1 = true;
17. kill(pair_pid, SIGCONT);
18. } else if (...) {... // m1_1
19. } else if (...) {... // m1_2
20. } else if (...) {... // m2_2
21. } else if (...) {...} // m2_0
22. }

1. void Reader::Mu(void) {

11. *re0 = false;
10. *wne1 == true) { // m0_1
9. r0p == true &&
8. *rne1 == true &&

(b) Reader::Mu()

Fig. 7. Control actions implementation

The control actions of the reader process are implemented by the method
in Figure 7(b). Again, each transition is implemented as an if statement. For
instance, µ00 is implement by the code from line 2 to 6 and µ01 is implemented
in lines 7 to 17. It is important to observe that every time the reader executes a
control actions, it sends the signal SIGCONT to the writer, as in lines 6 and 17.
This is to wake up the writer in the case it is sleeping due to a pause().

Finally, the methods generated above need to be integrated into the com-
municating processes. As explained before and shown in Figure 8, the writer
first calls the Send() and then the Lambda() methods. On the other hand, the
reader first calls the Mu() and then the Receive() methods. In the code generated
these operations are encapsulated into two public methods: Write() and Read(),
available for the writer and reader respectively. With this, the correct use of the
communication scheme is ensured.

In this Section an automatic approach to generate source code from Petri
net models was discussed. The algorithms introduced here only gives conceptual

5 The pause() library function causes the invoking process (or thread) to sleep until
a signal is received that either terminates it or causes it to call a signal-catching
function.

write data

is next cell
empty?

advance to
next cell

wait until next
cell is empty

more data?

Finish writer
process

Generate
data

Start writer
process

noyes

yes

Lambda()

Send()

no

(a) Writer flow

is next cell
empty?

next cell
advance to

read data

Consume
data

more data?

Start reader
process

yes

no
Receive()

Mu()

process
Finish reader

yes

no

(b) Reader flow

Fig. 8. Flowchart for communicating processes

ideas on what needs to be done for the synthesis of the code. When executing the
procedure, many details related to the target programming language has to be
taken into account. The algorithms above were implemented to generate C++
code to be executed on a Linux system. The reader should consult [7] for more
details on creating shared memory segments on UNIX systems.

6 Conclusions and future work

This work introduces a novel approach to the automatic synthesis of ACMs. The
method presented here is based on the use of modules to the generation of Petri
net models that can be verified against a more abstract specification.

Firstly, the behavior of RRBB ACMs was formally defined and the proper-
ties it should satisfy were described by CTL formulas. Then the procedure of
generating the Petri net models was presented, including the definition of the
basic modules and the algorithms required to instantiate and connect them. It
was argued how the the resulting model is translated to an SMV model in order
to be verified against the more abstract model defined in the beginning of the
process. Finally, a C++ implementation is generated from the Petri net model.

Compared to the previous work [1], the method of generating Petri net models
introduced here has the disadvantage of requiring model checking to guarantee its
correctness. In the previous approach based on ACM regions, it was guaranteed
by construction. However, the cost of executing the ACM regions algorithms is
too high. And when it becomes limited by the state-space explosion problem, no
implementation Petri net model could be generated and synthesis fails. In the
approach proposed here, state-space explosion is limited to the verification of the
Petri net implementation model. This step is off the design flow (see Figure 3).
Thus we could generate C++ codes from the implementation model whether it

can be verified or not. An unverified implementation nonetheless has practical
engineering significances because the Petri net model is highly regular and its
behavior can be inferred from that of similar ACMs of smaller and verifiable
size.

The next step into the direction of the automatic generation of ACMs is to
provide a formal proof that the procedure of generating the net models is correct
by design. With this, it will be possible to skip the verification step. And the
time required to synthesize devices that can be trusted will drastically reduce.
Also it is necessary to introduce formally the mechanisms used in the overwriting
ACM classes. Finally, it is a primary goal to be able to generate the ACMs in
the form of a Verilog code that can be used to synthesize a piece of hardware.

Acknowledgments. This work has been supported by CICYT TIN2004-07925, a
Distinction for Research from the Generalitat de Catalunya and by the EPSRC
(grant EP/C512812/1) at the University of Newcastle upon Tyne.

References

1. Jordi Cortadella, Kyller Gorgônio, Fei Xia, and Alex Yakovlev. Automating synthe-
sis of asynchronous communication mechanisms. In Proceedings of the Fifth Inter-
national Conference on Application of Concurrency to System Design (ACSD’05),
pages 166–175, St. Malo (France), June 2005. IEEE Computer Society.

2. Jean-Philippe Fassino. THINK : vers une architecture de systèmes flexibles. PhD
thesis, École Nationale Supérieure des Télécommunications, December 2001.

3. Bernd Grahlmann. The pep tool. In Orna Grumberg, editor, Proceedings of CAV’97
(Computer Aided Verification), volume 1254 of Lectures Notes in Computer Sci-
ence, pages 440–443. Springer, June 1997.

4. Leslie Lamport. On interprocess communication — parts I and II. Distributed
Computing, 1(2):77–101, 1986.

5. Kenneth L. McMillan. The SMV System: for SMV version 2.5.4, November 2000.
Available from: http://www-2.cs.cmu.edu/˜modelcheck/smv/smvmanual.ps.gz.

6. Hugo R. Simpson. Protocols for process interaction. IEE Proceedings on Computers
and Digital Techniques, 150(3):157–182, May 2003.

7. W. Richard Stevens. Advanced programming in the UNIX environment. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1992.

8. Fei Xia, Fei Hao, Ian Clark, Alex Yakovlev, and Graeme Chester. Buffered asyn-
chronous communication mechanisms. In Proceedings of the Fourth International
Conference on Application of Concurrency to System Design (ACSD’04), pages
36–44. IEEE Computer Society, 2004.

9. Alex Yakovlev, David J. Kinniment, Fei Xia, and Albert M. Koelmans. A fifo
buffer with non-blocking interface. TCVLSI Technical Bulletin, pages 11–14, Fall
1998.

10. Alex Yakovlev and Fei Xia. Towards synthesis of asynchronous communication
algorithms. In Benoit Caillaud, Philippe Darondean, Luciano Lavagno, and Xiaolan
Xie, editors, Synthesis and Control of Discrete Event Systems. Part I: Decentralized
Systems & Control, pages 53–75. Kluwer Academic Publishers, Boston, January
2002.

