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Abstract

This paper presents a new methodology to automati-
cally synthesize asynchronous circuits from descriptions
based on process algebra. Traditionally, syntax-directed
techniques have been used to generate a netlist of basic
components previously implemented by skilled designers.
However, the generality of the approach often involves the
insertion of redundant functionality to the circuit.

We propose a new approach based on the composition of
Petri nets and the automatic synthesis through Signal Tran-
sition Graphs that allows to take advantage of logic syn-
thesis methods to optimize the circuit and make it portable
Jor different delay models and technologies. Some prelim-
inary experimental results have shown the effectiveness of
the approach to improve the quality of the circuits.

1 Introduction

Process algebras have been successfully used for
the specification and formal verification of digital asyn-
chronous circuits. Several algebras based on the semantics
of Hoare’s CSP [9] and trace theory [22] have been pro-
posed for different delay models [15, 2, 10, 7, 1].

In CSP-based algebras, the computation of a system is
specified as a set of communicating processes that must be
connected according to some discipline that guarantees a
correct composition. Each language construct is hierarchi-
cally translated into a netlist of processes. The primitives
of the language can describe parallel and sequential com-
position of processes, communication, synchronization and
choice.

Inmodels based on trace theory, the behavior of a circuit
is specified as a set of traces of its environment alphabet.
The model includes statements such as concatenation or
projection to implicitly enumerate all possible strings of
symbols generated by the functionality of the circuit.

Both models provide high-level abstractions of the be-
havior of a circuit. This is the main reason why synthesis
is done through the so-called syntax-directed translation
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paradigm, consisting in hierarchically creating a netlist of
atoms that implement the unrefinable primitives of the lan-
guage. Handshake components such as “parallelizer”’ and
“mixer” used for the translation of TANGRAM [20], mod-
ules like “decision wait”, “toggle” and “merge” for delay-
insensitive algebras [10], or the macromodules in {2] and [8]
are some- illustrative examples of basic primitives. Skilled
designers must provide an efficient implementation for each
module according to the semantics of the language.

Each basic module must be designed assuming that it
must be able to interact with any correct environment.
However, each particular composition of modules forces
a different sequence of events of the environment of each
of its components, thus often using a subset of their com-
plete functionality. In some cases, composition patterns
often used can be identified and substituted by cheaper
implementations. This is the purpose of the peephole opti-
mizations proposed in [20, 8]. Syntax-directed translation
provides a completely automatic method for synthesis, al-
though the logic obtained with such method may contain a
significant degree of redundancy withregard to the required
functionality.

Martin’s technique based on the generation of produc-
tion rules through handshake expansion [15] allows to syn-
thesize a circuit at a finer granularity (gate or transistor
level). However this method requires an expert designer’s
interaction for some decisions that have significant impact
on the quality of the circuit (e.g. reshuffling and insertion
of state variables for state disambiguation).

On another side, Petri net-based techniques for synthesis
are totally automatic and have been proved to be efficient
for moderate size descriptions [14, 13]. By using low-
level synthesis tools, logic synthesis techniques to minimize
combinational and sequential circuits as well as different
delay models (e.g. bounded wire delays [13] or unbounded
gate delays [12]) can be considered for the same input
specification of a circuit. However, many designers agree
in that describing the behavior of a circuit with a Petri net
is an intricate task.

In this work we propose to combine both models for

the synthesis of asynchronous circuits to benefit from the
advantages of each method: -process algebras provide a



neat formalism for describing behavior, whereas Petri nets
play the role of the “assembly language” that describes the
low-level operations to be executed.

An important part of this work will be devoted to pro-
pose the required link between process algebras and Petri
nets. We will show how the abstraction provided by the
basic modules is essential for the method. But rather than
asking an expert designer to make an efficient circuit im-
plementation of each module, we will ask the designer of
the language to define the behavior of each module with a
Petri net. Finally, given a netlist of basic modules and a
library of Petri nets describing the basic modules, a circuit
will be derived by the automatic composition of the Petri
nets and the use of automatic logic synthesis tools.

The key advantages of this approach are the following:

o The designer of a language does not need to imple-
ment the basic modules of each construct. Only the
behavioral description of such modules is required for
synthesis.

¢ By using low-level synthesis techniques, the input de-
scription can be made portable for different delay mod-
els and technologies.

e The final circuit can be automatically optimized to
strictly adjust its functionality to the behavior of its
environment, thus eliminating the redundancy intro-
duced by pure syntax-directed translation techniques.

2 Methodology

An overview of the methodology presented in this paper
is depicted in Figure 1. From the designer’s point of view,
this framework is based on the well-known VLSI program-
ming paradigm which looks at circuit design as a simple
programming activity.
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Figure 1: Overview of the synthesis methodology

-

In such approach the behavior of the system is described
by a program in a high-level programming language, and
the corresponding VLSI circuit is obtained automatically
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Figure 2: One-place buffer: (a) TANGRAM program, (b)
network of handshake components

by a compiler. Thus, the efforts of the designer will be
focused on the algorithmic and architectural aspects of the
system, while the low-level and physical aspects will be
addressed by the compiler.

A program consists of a set of concurrent processes
which cooperate by the synchronization and exchange of
messages along channels. Its translation into a circuit is
done by syntax-directed translation (SDT), where the com-
piler generates a network of simple asynchronous synchro-
nizing elements that implement the primitives of the lan-
guage. Such elements are already implemented in a library.

A programming language very similar to TANGRAM
is used in our framework. The basic components imple-
mented for each language construct are called handshake
components [20].

The TANGRAM program in Figure 2 (a) describes a
one-place buffer [20]. Its translation into handshake com-
ponents is depicted in Figure 2 (b). It consists of 5 hand-
shake components, 5 channels (c, d, e, we and wy) and
3 ports ( I> or activation port, A and B). A given channel
connects one passive port (white circle) to an active one
(black circle). The communication along a channel is by
means of a simple four-phase! handshake protocol in which
the active port starts the synchronization.

2.1 Petri nets and their composition

When two synchronizing elements are connected, their
original behaviors are mutually restricted to satisfy their

ITwo-phase protocols can also be supported
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Figure 3: Connection of handshake components: (a) network of components, (b) STGs for a sequencer and a parallelizer,
(c) new macro-component and (d) equivalent STG for the entire circuit.

synchronizations. Therefore, we may expect that some sim-
plifications can be done in the corresponding sub-circuits
when they interact with others.

In our methodology we propose to automatically cre-
ate new- macro-handshake components by synthesizing a
Signal Transition Graph (STG) [18, 3] obtained from the
composition of the STGs of the basic components.

Figure 3 illustrates how the composition of STGs is
performed according to the connectivity of the handshake
components of a circuit. Figure 3 (b) describes the STGs
of a sequencer and a parallelizer respectively. After com-
posing the two sequencers and the parallelizer as shown in
Figure 3 (a), and after removing the internal events of the
new macro-handshake component (Figure 3 (¢)), the STG
of Figure 3 (d) is obtained.

It is important to emphasize that the composition of
STGs and the re-synthesis of the new STG is done com-
pletely automatically. The re-synthesis of STGs is per-
formed by petrify [5], a tool for Petri net synthesis.
The method for Petri net composition is presented in Sec-
tion 4.

2.2 Petri net re-synthesis

Petrify [5] is a novel tool that allows to synthesize a
Petri net from either another Petri net or a state graph. This
tool has played a key role in the optmuzatlon of the STGs
obtained by composition.

Within our synthesis framework, and after constructing a

Petri net by composition, petri fv performs the following
tasks:

1. builds a transition system by performing a token flow
analysis of the Petri net. Symbolic techniques (BDD-
based) are used to handle Petri nets with a vast space
of markings.

. eliminates those dummy and internal events that have
appeared as the result of the composition (projects the
transition system onto the external events).
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3. re-synthesizes a new simplified Petri net from the tran-
sition system obtained after the projection.

Moreover, a new algorithm for state encoding has been

_integrated in petrify [4] that allows to directly obtain

an implementable STG. We refer the reader to [5] for fur-
ther details on the synthesis of Petri nets from transition
systems.

3 Modeling processes with Petri nets

In this section we provide some terminology and defini-
tions related to formalisms we will use later. This includes
specification and composition of processes, Petri nets and
how they model a process.

3.1 Alphabets, traces and processes

Definition 3.1 (symbol, alphabet, trace)

An alphabet is a finite set of symbols. Symbols are de-
noted by identifiers. Finite sequences of symbols are called
traces. X* denotes the set of all traces over alphabet %,
including the empty trace .

Definition 3.2 (concatenation, projection, ¢)
Concatenation is denoted by the ‘-’ operator, where the
empty trace A is the neutral element.

The projection of a trace s on an alphabet Z, denoted by
${Z is defined as follows:

A[Z

A

{

A new special “silent” symbol ¢ is defined, for which s =
€-s=s§-¢

s[= ifs, € T

5o 5)[Z s0 - (8[Z) otherwise

Definition 3.3 '(process) [17]

A process P is the pair P = (aP, BP) where o P stands
'for an alphabet of events, and P C aP* is the set of
traces modeling the behavior of P.



Definition 3.4 (parallel composition of processes)
Given two processes P = (aP, P) and Q = (aQ, fQ)
their parallel composition P || Q is defined by:

o(P|Q) = aPUaQ
BPIQ) = {s€a(P| Q) | (s[aP) € BP A
(s[e@) € BQ}

The new set of traces reflects the interaction between
processes P and (). The traces of both processes are
“synchronized” on the common events, if they exist, i.e.

aPna@Q #0.

We are mainly interested in modeling such composable
processes with labeled Petri Nets, and in defining new par-
allel composition operators in this domain.

3.2 Petri nets

Definition 3.5 (labeled Petri net)

A labeled Petri net is a 6-tuple N = (P, T, F, M,,Z, A),
where P is a finite set of places, T is a finite set of tran-
sitions, F' C (P x T) U (T x P) is a finite set of arcs
representing the flow relation, M, : P — IN is the initial
marking (state) of the Petri net, X is an alphabet, and
A : T — ZU {e} is alabeling function.

Definition 3.6 (pre-set, post-set, transition firing)
Given a labeled Petrinet N = (P, T, F, M,, %, A):

(a) The pre-set and post-sét of a node x € PUT are
denoted by *cz = {y | (y,2) € F}andz®* = {y |
(%, y) € F}, respectively.

(b) Atransitiont € T is enabled in a marking M, denoted
by M[t), when all places in *t are marked. This is
Vpe't, M(p) > 1.

(c) An enabled transitiont in marking M, fives removing
a token from places in *t and adding a token to places
in t*, reaching a new marking M' (M[t)M’), i.e..

M(p)—1 ifpe’t\t*
VpeP, M'(p)z{ M@ +1 ifpet*\*
M(p) otherwise

(d) A marking M is reachable from M, if there is a fir-
ing sequence of transitionst = tit... € T* that
transforms M, into M, i.e. M,[t)M. The set of all
reachable markings from M, is denoted by [M,,).

Definition 3.7 (language of a Petri net)

Given a labeled Petri net N = (P,T,F,M,,Z, A), we
denote by II(N) the set of all possible firing sequences
overT':

(V)

U {=tita...eT" | M,[{)M}
Me[M,)
The language L(N) over the alphabet X is given by:

L(N) {s=s18...€2* | A =tity... € TI(N)
A Vi, s; = A(:)}

Definition 3.8 (modeling of processes)
A labeled Petri net N = (P,T,F, M,,X, A) models the
process P = (aP,3P) ifX = aP and L(N) = BP.

-
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4 Parallel composition of Petri nets

This section presents a new definition for the parallel
composition of Petri nets. This definition keeps the equiva-
lence with respect to the behavior expressed by the parallel
composition of processes.

The definition given here is intended to be used within
the framework described in Section 2. We consider Petri
nets modeling the behavior of synchronizing elements (i.e.
handshake components in the case of TANGRAM). The cir-
cuit generated by the compiler is correct by construction,
and such elements follow an established synchronization
protocol which guarantees the correctness of their compo-
sition.

The method we present has linear cost on the number of
transitions, places and arcs of the original Petri nets. Such
linearity is achieved because of the restrictions on the STGs
we are composing, and the use of dummy (silent) transitions
in the construction of the synchronization areas. Moreover,
in most practical cases many of the places and silent events
added by the algorithm can be removed by local transfor-
mations during the composition process itself. In contrast,
other previous approaches ([17, 6]) require quadratic tran-
sition splitting and a subsequent merging of the pairs of
transitions generated for every common symbol.

Another approach for Petri net composition (product of
two Petri nets) is presented in [23]. This is a very liberal
form of parallel composition of Petri nets in which arbi-
trary synchronizations are allowed, i.e. synchronizations
between common events may or may not occur nonde-
terministically. Moreover, the model assumes that each
transition represents a different event. The previous as-
sumptions make this composition approach unappropriate
for our framework.

4.1 Composable Petri nets

When defining the synchronizing elements that will be
connected later to build a circuit, some restrictions about
their behavior must be assumed.

For sake of simplicity, in the sequel we will refer to defi-
nitions and properties given for the handshake circuits [20].
However, they also apply for any asynchronous architec-
ture under the VLSI programming paradigm, like those in
[15,71.

Firstly we must define the correctness of the individual
behaviors of the handshake components (i.e. handshake
processes). Therefore, we must charecterize the port struc-
ture of these elements and the traces of communication
events they can produce through their ports. A handshake
through a port basically consists of two events: a request
followed by an acknowledgement. In this sense, we con-
sider traces in which the occurrence of requests and ac-
knowledgements of each port strictly alternate and in which
the first event of each port is a request (see Definition 2.8
in [20]). In terms of Petri nets these consideration can be
interpreted like the switchover and non-autoconcurrency
conditions required for the synthesis of speed-independent
circuits ([11]).

On the other hand we must talk about what conditions
make the handshake circuits to be suitable for connection
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~ Figure 4: Two simple examples of incorrect composition: due to the incompatibility between the ordering of common events
(a), and due to the mismatch of the multiplicity of the common events (b)

with others, in such a way that the result will be a new hand-
shake circuit with equivalent behavior. In this sense an im-
portant fact is that the parallel composition is only defined
for connectable handshake processes. Connectablility of
handshake circuits establishes that a pasive port can only
be connected to a single active port and vice versa (see Defi-
nition 3.0 in [20]). Another key fact is the required absence
of interference. Interference with respect to symbols oc-
curs when one process sends a symbol and the other process
is not ready to receive it. The receptiveness of handshake
processes and the imposed handshake protocol exclude the
possibility of interference (see Section 3.0 in [20]). This
means that no deadlock can be produced in the synchro-
nization between handshake components because of their
parallel composition. And this can be directly translated in
terms of the Petri nets which will model their behaviors.

All these conditions make the circuit to be correct by
construction as stated in [20]. In this way, the behavior of
the handshake components can be described using Petri nets
in a simple way, and to derive correct algorithms to perform
the parallel composition of the hanshake components in
terms of the Petri nets which model their behaviors.

Figure 4 shows two simple examples of incorrect com-
position. In the first case, an incompatible ordering of the
common events a+ and a— leads to a deadlock. In the
second case, when H 1 has completed a full cycle and is in
its initial state waiting to fire b+, the token in H2 is in the
arc ‘b— — a+’, and a deadlock is produced. This kind of
situations are not allowed by the conditions stated above.

In the sequel, only composable Petri nets joining the
above requirements will be considered.

4.2 Parallel composition of Petri nets
Definition 4.1 (7°9)

Given a labeled Petri net N = (P,T,F,M,,Z,A), and a -

symbol o € X the set
T°={teT | A@) =7}

contains all the transitions labeled with the same event
name o.

Let Ny = (P,Ti, F1,Mo,Z1,A;) and N =
Py, Ty, F3, Moy, 5, A;) be two labeled Petri nets such that
PiUTY)N(PUT) = 0, i.e. they are node-disjoint. Their

parallel composition is denoted by N = N || Na.

The composition is defined by the construction of a so-
called synchronization area for every common event o €
X1 NX,. Hence we define the way the synchronization area
is created for each of such events. We will consider the most
general case in which | TY |=m > 1and |75 |=n > 1.
That is, there is an arbitrary number of transitions labeled
with ¢ in both Petri nets.

Construction of the synchronization area

In the process of building a synchronization area for a given
o € X1 N X, some new places and transitions are created,
while others are removed. The same occurs with the flow
relation. The following sets are defined:

e P, = {py , pa} UEP,, where:

- py and p, are two new places added to perform
the synchronization between both Petri nets.

- &P, = U {p:} is the set of new places cre-
teT?
ated to keep the relation among predecessors and
successors of each transition of 7.
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e &T, = EU, UED, is the set of new silent events
created to hide the transitions of 7{, where

[;‘U‘,: U {€t,u} and ngz U {61,4}

teTy teTy

* RF, ={(p,t) € F1 | t €T} U {(t,p) € Fy |
t € I7} is the set of flow relations removed from F'
because of the removal of transitions in 77 .

o AF, = U {(p,etu) | €, EEU, A pE *t}U
teTy

U {(e1,0:p) | €14 €€Ds A pet}u
teTy

U {(et,thpt) | Et,u € gUa A Dt € SPU} U
teTy

U {(pt,€0,0) | €1, €ED; N pi € EP}
teTy?

is the set of new flow relatxons added to F instead of
those in RF,.

o SF, = (8U, X {pu HU({pu} x Ty YU(T7 x {pa})U
({pa} x€D,) istheset of new flow relations created
to join both Petri nets by the synchronization places.

The idea behind the synchronization area is that the
transitions of both Petri nets will fire concurrently until the
Petri nets reach a marking “willing to enter” this area. At
this point the synchronization will take place. Once it has
occurred both Petri nets will continue their concurrent evo-
lution until another synchronization area is reached. More-
over, the traces of events of the new Petri net will only reflect
the firing of the t; transition (labeled with o), because the
rest of the transitions in the synchronization area are silent
events (i.e. they produce the empty trace). An example of
how such synchronization area for a given 0 € £; N X; is
built, may be seen in Figure 5.

Definition 4.2 (parallel composition of Petri nets)

The new Petrinet N = Ny || Ny = (P, T, F, M,,%, A)
after the creation of the synchronization areas for every
o € i N X, is defined as follows:

U »

e P=P, UP U

g€IINIy
eT=(N\ |J Hvnu | €T,
€N, oELINT,
e F=(F\ |J RF,)URU |J (4F,USF,)
o€ELINI, ogEZINT,
o M,: P — NN, is defined as:
Mo(p) ¥pe P
Vp€ P,M,(p) = Mo(p) ifpe P,
0 otherwise

e X=X,UZ,

227

1AL

j
T3 | ; i
!
1 | :

AVARVi

[

Figure 5: Construction of the synchronization area for a
common symbol o € £, N X,

o A:T — XU {e} is defined as:
M) iften\ | 17

gEX N,
Az(t) ifteD
€ otherwise

Note that all the new silent events created for a given
o € X1 N Xy, ET, set, are labeled with €.

Vie T,A(t) =

Even this composition method requires the insertion of
silent events, for most practical cases we have encountered
in our experiments, we have seen that the silent events can
be easily removed by local transformations of the Petri net.
As a last resort, petrify removes all those silent events
that could not be eliminated after the composition.

Figure 6 shows an example of composition of two simple
Petri nets. We may see the Petri net once the synchroniza-
tion area for event a is built (Figure 6 (b)). After some local
transformations to remove the silent events and places in-
troduced by the composition algorithm, a simpler Petri net
is obtained (Figure 6 (c)).

Theorem 4.3 (Composition theorem)
Let Ny, N, be two labeled Petri nets. Then:

P(Ny || N2) = P(Ny) || (V) ice.:
(a) aP(Ny|| Np)
(b) BP(N: || N2)
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Figure 6: Given two Petri nets (a): parallel composition
before (b) and after (c) the elimination of silent events

Proof:

The alphabet equivalence (a) is an obvious consequence
of Definitions 4.2 and 3.4.

We now present an intuitive proof for equivalence (b).
Rather than proving trace equivalence for the composition
of Petri nets, we merely prove that “traversing” the syn-
chronization area only generates the observable symbol o.
Assuming this fact, a complete proof by induction on the
length of the traces can be easily derived (see [16]), since
the behavior of the Petri net outside the synchronization
area is identical to the parallel behavior of the original Petri
nets.

Assume we have a marking M in which some transition
of the synchronization areais enabled (say &, - in Figure 5).
By the construction of the synchronization area we have that

dtely: M[Ct,u) A €y € SUU
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The firing sequence M ey - t’ - €¢ 4) M’ can take place,
where M’ is the marking obtained after traversing the syn-
chronization area. Moreover, the marking M’ is identical
to the composition of the markings of the original Petri nets
(N1 and N») after having fired a transition from 77 and 75
respectively.

The transition sequence s = &,y -t - £i,4 has only the
symbol o as observable trace, i.e. A(s) = A(er,u) -A(t')-
A(es,q) = €- o - € = 0. That is, the only observable event
inside a synchronization area corresponds to the one that

will occur in the synchronization of the related processes.
a

Property 4.4 (Linear cost)

Let NI (Plaﬂ)FlaMolazlaAl> and Ny
(P2, T3, F>, M,y,20, Ay) be two labeled Petri nets. Their
parallel composition N = Ny || Ny has linear cost on the
number of transitions, places and arcs of N1 and N,.

Proof:

The proof focuses on how the construction of the syn-
chronization areas for the common symbols affects the car-
dinality of the sets of places, transitions and arcs.

Let us consider the most general (worst) case of com-
position for a given '€ T; N Xy, where | 17 |=my > 1
and | 77 |= n, > 1, i.e. the Petri nets can contain more
than one transition labeled with the same symbol. Note that

> m,<|Ti| and Y o | T
gETINT, oEZIN

The following expressions show the cardinality of the
sets P, T and F in the new Petri net N = Ny || Na:

1Pl = [P+ +) (2+m,)
0ELINT

IT| = [T+ IDl+)Y m,
cEIiN,

[F| = |F1l+|F2|+Z(4ma+2"0)
gEIINI,

The terms in the expressions above, represent the amount
of information required to perform the composition be-
tween two Petri nets. The cost of the composition is linear
on the number of transitions, places and arcs of the original
Petri nets.

Note that the number of implementable transitions (i.e.
silent events) has been reduced from | Ty | + | T2 | to

[Tl =3 17 |+ T2
oELINI, i
A full proof of this property and a complete derivation
of the expressions given above can be found in [16]. O

5 Experimental results

This section presents the experimental results obtained
by the application of our methodology to some TANGRAM
examples.
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Figure 7: STGs for the different handshake components composing the One-place buffer

5.1 The synthesis system

The methodology presented in this paper is implemented
by a set of automatic tools (see Figure 1). Our first tool
is a syntax-directed translator from a TANGRAM-like lan-
guage into a network of handshake components. The be-
havior of each handshake component has been described
by means of an STG.

The central tool transforms a network of synchronizing
elements into a single STG with equivalent behavior. It uses
the library of STGs and connects the several descriptions
which forms the circuit, using the Petri net composition
algorithm described in Section 4.2.

Then petrify is used to remove the internal events
produced in the composition process, and to perform some
optimizations on the new global STG. It is also used to
make the new STG satisfy the CSC condition. Finally, a
speed-independent circuit is synthesized using SIS [19].

5.2 Circuit partitioning

The complexity manageable by current synthesis tools
is directly constrained by the size of the state graph of the
circuit. For this reason it is not always possible to han-
dle the STG we obtain for the complete input description.
Therefore, partitioning techniques have to be devised to
fully automate the synthesis.

Our synthesis tools cannot partition the circuit automat-
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ically yet. This is an important part of our future work
to complete the framework. In some of the presented ex-
amples, partitioning has been required to obtain a final
implementation. - The number of handshake components
that can be currently considered for a feasible synthesis
ranges between 5 and 20, depending on the behavior and
connectivity of the network.

Two basic criteria have been used to partition the net-
work of handshake components: minimize the intercon-
nection between partitions and minimize the degree of par-
allelism inside each partition. Thus we try to derive the
largest partitions whose corresponding STGs can be han-
dled by the subsequent state-based tools, i.e. petrify
and the logic synthesis tools.

We expect the size of the STGs handled by future synthe-
sis tools will increase by using new symbolic or structural
syntesis techniques. If so, larger partitions or even the full
STG generated for the complete input description could be
handled, and thus better area results could be achieved.

5.3 A complete example

To illustrate our methodology we have chosen the well-
known One-place buffer [20]. A TANGRAM program de-
scribing its behavior is shown in Figure 2 (a). The program
is translated into a network of handshake components by
means of syntax-directed translation (Figure 2 (b)). The
STGs describing the behavior of each handshake compo-



nent are shown in Figure 7. After Petri net composition an
STG for the whole circuit is obtained (see Figure 8 (a), in
this case all silent events have been automatically removed
by local transformations on the STG). Petri fy has been
used to remove the internal events, re-synthesize the STG
(see Figure 8 (b)) and solve state encoding by inserting state
signals (Figure 8 (c)). The synthesized circuit is depicted
in Figure 8 (d).

54 Results

Most of the benchmarks are classical in TANGRAM
literature. Here we report the results obtained for some
buffers (BUF1, RIP.BUF, WAG_BUF) and shift register
elements (SRC, SRD) [20], a 3-token FIFO, a DME arbiter
cell and the XYZ benchmark (modeled in TANGRAM from
its original STG description). The BUF1 example is the one
depicted in Figure 2.

Table 1 summarizes the results. The SDT columns re-
ports the number of handshake components and the area
obtained by the pure syntax-directed approach. The next
column reports the number of states of the STG for the
whole circuit. When partitioning has been required, the
states of the STG for each partition are shown. The area re-
sults obtained using our methodology are listed in the next
column (the asynch library of SIS has been used). The
last column presents the area reduction obtained with our
method. The area reported for the pure syntax-directed ap-
proach has been calculated by implementing the handshake
components according to the circuits described in [20] and
using the same gate library. ’

It can be observed that, even the circuits obtained with
our method have been derived automatically, significant
area reductions can still be achieved. We expect to improve
these results in the future by

o improving the quality of the synthesis tools for STGs
and

¢ increasing the size of the circuits fnanageable by the
synthesis tools by using structural and/or symbolic
methods to represent the space of states of the STGs.

The XYZ example is one of the classical benchmarks
used in the literature on STGs. Our TANGRAM-like pro-
gramming language has been modified to allow the de-
scription of interfaces with individual signals also, rather
than channels that implicitly require two handshake sig-
nals. New non-handshake components to link the external
signals with the internal handshake components have been
derived (similar components have been presented in [21]).
The complexity added by the new components and the un-
suitability of TANGRAM to describe timing-diagram-like
behaviors is the main reason of the drastic difference of
both implementations. This example corroborates the ef-
fectiveness of the Petri net composition and re-synthesis
method: from a network of 12 handshake components, an
STG with 3 signals, 6 transitions and 8 states was derived.

6 Conclusions

We have presented a new methodology for the synthesis
of VLSI asynchronous circuits from high-level specifica-
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SDT final STG Red.
Example HSKs | Area States [ Area || (%)
BUF1I 5 402 18 192 52
RIP.BUF 12 1076 9+247 786 27
WAG_BUF 16 1992 16+564+112 1906 4
SRC 8 914 43419080 768 16
SRD 11 1414 || 95+4460+612 | 1328 6
3-FIFO 14 1112 53 870 22
DME 13 550 52+392+332 | 500 10
XYZ 12 1686 8 72 95
TOTAL 9146 6422 30

Table 1: Experimental results

tions. Behaviors described with process algebras are trans-
lated into a network of synchronizing elements by means
of syntax-directed translation. We have used the Petri net
formalism to build a library of behavioral descriptions for
such elements.

A new Petri net composition method with linear cost
with respect to the number of transitions, places and arcs
of the original Petri nets has been proposed. The composi-
tion method is complemented with an optimization process
which removes the new internal and silent events originated
on the composition. As a result, a single STG with equiv-
alent external behavior is derived for the whole network of
synchronizing elements,

The circuit is then synthesized by CAD tools. Sig-
nificant improvements with regard to methods using pure
syntax-directed translation can be obtained.

Classical CAD tools are state-based tools. The expo-
nential cost of building the state graph restricts the size of
the synthesizable circuits with these tools. Therefore, in
some of the benchmarks we must partition the network of
handshake components and apply the methodology to each
partition separately. We expect that the size of the STGs
handled by future synthesis tools will drastically increase
by using synthesis techniques at structural level or by us-
ing symbolic methods. If this happens, the quality of the
circuits will still be further improved.

We must remark that all the tasks involved in this
methodology are fully automated by several tools?. The
methodology presented in this paper can be used for the
synthesis of asynchronous circuits described with any lan-
guage based on communicating processes, such as CSP,
TANGRAM, OCCAM, etc. Currently, our framework is
able to synthesize any netlist of handshake components as
far as a behavioral description (STG) for each of them is
provided.

Finally, the combination of process algebras and Petri
nets for modeling asynchronous circuits opens a new route
for verification. We do not discard the possibility of using
unfoldingsor symbolic traversal of Petri nets for the formal
verification of circuits whose environment can be specified
with process algebras.

20nly automatic partitioning is under development
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