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Abstract

Synthesis of asynchronous circuits from Signal
Transition Graphs (STG;‘;/ and/or State Graphs (SGs)
involves solving state coding problems. A well-known
example of such problems is that of Complete State
Coding (CSC), which happens when a pair of different
states in an SG has the same binary encoding. A stan-
dard way to approach state coding conflicts is to add
new state signals into the original specification in such
a way that the original behaviour remains intact. Ez-
isting methods have not yet been able to provide such
theoretical foundation for event insertion, that could
yield efficient practical results when applied to large
models. )

This paper aims at presenting such a general frame-
work, which is based on two fundemental concepts.
One is a region of states in an abstract labelled SG
(called a Transition System). Regions correspond to
places in the associated STG. The second concept s a
speed-independence preserving set, whick is strongly
related to the implementability of the model in logic.
Regions and their intersections offer “nice” siruc-
tural properties that make them efficient “construction
blocks” for event insertion. The application of our the-
ory, through the software tool petrify, to state graphs
of large size has proved to be successful.

1 Introduction

The problem of Complete State Coding (CSC) is
a fundamental problem in synthesis of asynchronous
control circuits from Signal Transition Graphs (STGs)
and State Graphs (SG? 2]. This problem arises when
a pair of semantically different states in an SG has the
same binary encoding. Such states are said to be in
CSC conflict. To resolve CSC conflicts, the synthesis
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procedure must insert one or more new signals into the
STG (or SG) specification. The value of these new sig-
nals have to be different in all pairs of states involved
in a CSC conflict. State signal insertion must usually
satisfy a set of important requirements: preserving
equivalence of the specifications and implementability
of the new and the original non-input signals without
hazards (speed-independence preservation). The for-
mer requirement refers to the language generated by
the STG. The latter implies that the implementability
conditions (determinism, commutativity, persistency,
deadlock-freedom and consistency) must be preserved
in the transformed specification.

Related Work. A number of methods for solving
the CSC problem are known to date [6, 8, 9, 10, 13,
14, 15, 18, 22; 23, 24, 26, 27, 30]. Reported ex-
perimental results and our own experience with the
available tools for solving CSC ensured the authors
of this paper that none of the published methods ap-
pears to be successful when applied to general SGs or
STGs with more than a few thousand states. Meth-
ods from [13, 15, 18, 22, 24, 27] work at the STG level
without doing state traversal. They allow to avoid
state explosion and therefore can process large speci-
fications if some additional constraints on an STG are
given. Such constraints (no choice is allowed, or ex-
actly one rising and falling transition for each signal is
allowed, etc.) severely limit the design space and do
not allow to get a solution for many practical specifica-
tions. [14] solves CSC problem by mapping an initial
SG into a flow table synthesis problem and then using
classical flow table minimization and state assignment
methods. This method is restricted with live and safe
free-choice STGs and cannot process large SGs due to
limitations of classical state assignment methods.

In [23, 26] a very general framework for state as-
signment is presented. The CSC problem is formulated
as state varlable assignment on the state graph. The
correctness conditions for such assignment are formu-
lated as a set of Boolean constraints. The solution
can be found using a Boolean satisfiability solver. Un-
fortunately, this approach allows to handle only rela-
tively small specifications (hundreds of states) because



the computational complexity of this method is dou-
ble exponential from the number of signals in the SG.
Although [6] presented a method to improve the res-
olution of the method based on a preliminary decom-
position of the satisfiability problem, decomposition
may produce sub-optimal solutions due to the loss of
information incurred during the partitioning process.
Moreover, the net contraction procedure used to de-
compose the problem has never been formally defined
for non-free-choice STGs.

In {8, 9, 10] another method based on state signals
insertion at the SG level was given. At first the exci-
tation regions are distinguished in the SG. These are
sets of states, which correspond to transitions of STG.
Then the graph of CSC-conflicts between excitation re-
gions is constructed and colored with binary encoded
colors. Each bit of this code corresponds to a new
state signal. After that new state signals are inserted
into the SG using excitation regions of the original or
previously inserted signals. The main drawback of this
approach was its linitation to STGs without choices.

The method described in detail in [29, 30] is proba-
bly the most efficient and general published so far. It
is based on partitioning of the state space into blocks
which contain no internal CSC-conflicts. Similar to
[9] a coloring procedure is used to find the optimal
number of state signals to resolve all the CSC-conflicts
between blocks of partitioning. Each of these state
signals can be inserted using as excitation region the
sets of states that immediately follow excitation re-
gions (switching regions).

Contribution of this paper. This paper provides
a general theoretical framework for insertion-based
resolution of coding conflicts. The transformations de-
scribed here are applied to abstract SGs, called Tran-
sition Systems (TS? and to binary encoded SGs. This
framework is aimed at being independent of the sort
of conflicts between states to be resolved, therefore its
application to CSC conflicts is only a special case. An-
other application of the method may be, e.g., solving
Monotonous Cover conflicts [12], for technology map-
ping of asynchronous circuits in the basis of simple
gates (AND, OR, NAND, NOR).

It is essential that the theory presented in this pa-
per is based on the concept of regions in a TS. It
renders an efficient framework for such transforma-
tions due to the two following major reasons. Firstly,
regions are subsets of states which have a uniform
“crossing” (exit-entry) relationship with events in a
TS (see Section 3). They can be easily manipulated in
intersections and unions, thus providing a good level
of granularity in sectioning the TS (for example the
excitation and switching regions are obtained as in-
tersection of pre- and post-regions for the same transi-
tion). Secondly, regions in a TS directly correspond to
places in an STG with a reachability graph isomorphic
to the TS. This allows reconstructing an STG for the
TS with all CSC conflicts resolved — an option much
more suitable for the designer than viewing the TS.

The concept of regions was firstly presented in [17)
and further applied to efficient generation of Petri Nets
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and Signal Transition Graphs from state-based mod-
els [4]. The practical implementation of our method,
which is only briefly outlined in this paper (those de-
tails require a separate presentation), uses symbolic
BDD representation of the main objects in the inser-
tion procedure. It has enabled us to solve CSC prob-
lem for state graphs with hundreds of thousands of
states while the quality of the solutions obtained for
smaller state graphs has been quite comparable with
other known methods.

Our method differs from previous work as follows:

e Our technique for state signal insertion is more
general and allows to explore more solutions than
that of [29] and [30], since our method uses re-
gions, their intersections and unions of intersec-
tions for insertion. On the other hand, [29] and
[30] used excitation regions and switching regions,
which are just particular cases of region inter-
sections. Even though the authors of those pa-
pers admitted that intersections and unions of
intersections of excitation and switching regions
“could” be used for insertion, they claimed that
“this does not seem necessary in practice”, and
did not provide any method for reducing the com-
plexity of the resulting huge search space.

e The notion of speed-independence preserving set
(SIP-set) by which the insertion of state sig-
nals can be- done without violation of speed-
independence properties is generalized in compar-
ison to [26], as will be shown in detail when dis-
cussing Theorem 4.1.

e Our method is proven to be complete for a fairly
general class of SGs.

o An additional advantage of the theory presented
in this paper is back-annotation at the STG level.
The result of CSC resolution is shown to the user
as a modified STG, so that the impact of state
signal insertion on, e.g., the concurrency of the
specification, can be more easily analyzed.

From the practical side we observed that although
the tool assassin [28] which implements methods
from [24, 26, 30] often allows better solutions than
other previously known tools, it has difficulties in han-
dling large specifications. For example, a master-read
STG with 8932 states ran for more than 24 hours
of CPU time at SPARC-10 machine without having
solved CSC. Our tool petrify solved this example in
15 min of CPU time. We also solved examples with
10! states using a few hours of CPU time. It is worth
to mention that on the basis of the region approach
petrify succeeded in handling examples that were
traditionally difficult for CSC solution by any other
tool (see Section 8 for more details).

The paper is further organized as follows. Section 2
introduces both state-based and event-based models.
Section 3 presents the basics of the theory of regions.
Section 4 is dedicated to property-preserving event in-
sertion, which uses the notion of speed-independence-
preserving sets (SIP-sets) of states. Section 5 discusses



the issue of selection of SIP-sets, based on regions.
Section 6 applies the event insertion technique to bi-
nary encoded TSs. Section 7 characterizes the set of
STGs for which CSC can be solved using the proposed
method. Section 8 outlines some experimental results.
Finally, Section 9 draws conclusions.

2 State and Event models

Transition systems. A iransition system (TS)
might be viewed as an abstract state graph and is for-
mally defined as a quadruple {17] 4 = (S, E, T, si),
where S is a finite non-empty set of states, E is a set
of events, T C S x E x S is a transition relation, and
Sin is an initial state. The elements of T are called the

transitions of TS and will be often denoted by s = s’
instead of (s, e, s').

The reachability relation between states is the tran-
sitive closure of the transition relation 7. A feasible
sequence is a (possibly empty) sequence of transitions

o between states s and s’ (denoted by s = s’ or sim-
ply by s 5 s'.) A feasible trace is obtained from a
feasible sequence by removing states. If s; =3 59, 59 =3
53,83 -3 54 is a feasible sequence, then ey, eq, e3 is the
corresponding feasible trace. We also write s =, < &,
and s 5, 5 &' if s 5 & or s = &', correspondingly.
Note that each state is reachable from itself. A state
of a TS is called a deadlock if there is no event e € F
such that s .

Furthermore, a TS must satisfy the following four
basic axioms:

(A1) No self-loops,
(A2) No multiple arcs between a pair of states,
(A3) Every event has an occurrence,

(A4) Every state is reachable from the initial state.

state = <a,b,c,d>
0114

......

(@) () (c)

Figure 1: An example of Transition System (a), the
corresponding SG (b), and STG (c)

A TS is called deterministic if for each state s and
each label a there can be at most one state s’ such that
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s =5 §'. Otherwise, a TS is called non-deterministic.
In the following we are interested only in deterministic
TSs. An example of a deterministic TS is shown in
Figure 1,a.

State Graph. For the purpose of logic synthesis TSs
must be binary encoded. A state graph, SG, is a binary
encoded TS. A SG is given by (A, X, As, Ag), where
A = (S,E,T,si,) is a transition system, X = X; U
Xo is the set of binary signals, X is the set of input
signals, and Xo is the set of output signals!, such that
XinXo=9. !

Each state s € S in the SG is labelled with a bi-
nary vector {s(1),s(2),.. ., s(n)) according to the sig-
nals X = {z1,22,...,2,} of the system. The labeling
is given by a state assignment function A\g : S x X —
{0,1}. For a given state s € S, s(i) denotes the i-th
component of s corresponding to the value of signal
z; € X.

Each event e € F in the SG is labelled with a signal
transition. The labeling is given by an event assign-
ment function Ap : E — X x {+,~}. Each signal
transition can be represented as x;4 or z;— for the
rising (0 — 1) or falling (1 — 0) transition of signal
Z;. x;* is used to depict either a “x;4+” transition or
a “z;—" transition. Further, if no confusion arises,
we will denote different signal names by different let-
ters a,b,... instead of &1, zs,... Also, (s, z;%,8') € T
stands for (s,e,5") € T A Ag(e) = a;*.

An SG has a consistent state assignment (we call
such an SG consistent) if the following conditions for
assignment functions are met: let (s, e,s’) € T then

(1) if Ag(e) = i+, then s(¢) = 0 and s'(¢) = 1;
(2) if Ag(e) = z;—, then 5(3) = 1 and s'(3) = 0;
(3) in all other cases s(i) = s'(3).

Consistent state assignment is a necessary condi-
tion for deriving logic functions for signals encoding a
SG [2]. Figure 1,b shows a consistent SG which is ob-
tained by binary encoding of the TS from Figure 1,a.
After binary encoding, for example, event ¢ is mapped
into signal transition b— and state sl is mapped into
binary code < a, b, c,d >= 0010.

Complete State Coding. An unambiguous state
assignment is required for deriving logic for encoding
binary signals. Logic must be derived only for output
signals and therefore the unambiguous state assign-
ment must concern only output signals. This require-
ment is called Complete State Coding (CSC, [2]):

A SG 15 said to satisfy the Complete State Coding
requirement if for any two states s1 and s2 which are
assigned the same binary vectors the sets of enabled
output signals are identical.

Let a and b be output and ¢ and d be input signals
for the SG in Figure 1,b. States s0 and s2 have the
same binary code 0110. Output signal b is enabled in

1The output signals include both external output and inter-
nal signals of the modeled circuit.



sl and is not enabled in s2, therefore CSC is violated
and we say that states s0 and s2 are in CSC conflict.
Although states s5 and s7 are also assigned the same
binary code 1111, they are not in CSC conflict, since
no output signals are enabled in s5 and s7.

Petri Nets and Signal Transition Graphs. A
Petri Net is often a more compact model to represent
systems with concurrency than a TS.

A Petri Net [20] is a quadruple N = (P, T, F, my),
where P is a finite set of places, T is a finite set of
transitions, F' C (P x T)U(T x P) is the flow relation,
and mg is the initial marking. A transition t € T
is enabled at marking m; if all its input places are
marked. An enabled transition ¢t may fire, producing
a new marking ms with one less token in each input

place and one more token in each output place (m; 4
mg). The sets of input and output places of transition
t are denoted by e¢ and te.
The Reachability Graph (RG) of a PN is a graph
with: .

¢ 3 vertex for each reachable marking of the PN and

e an arc (my, my) if and only if my — m; in some
firing sequence of the PN.

A net is called safe if no more than one token can
appear in a place. Safe nets are used in many applica-
tions, since they have simple verification algorithms [5]
and simple semantics. A labeled PN is a PN with a
labeling function A : T — A which puts into corre-
spondence every transition of the net with a symbol
(called label) from the alphabet A. A Signal Tran-
sition Graph (STG) is a PN whose transitions are la-
belled with signal transitions (a+, a—, ...). Places
with one input and one output transition are called
implicit places and are depicted as an arc connecting
these two transitions. An STG expressing the same
behavior as the SG from Figure 1,b is shown in Fig-
ure 1,c.

3 Basics of the theory of regions
In this section we will briefly review the theory of
regions and will show how this theory allows to per-

form transformations between TSs and PNs (hence,
between SGs and STGs).

Regions. Regions are sets of states which corre-
spond to places in Petri Nets. Let S; be a subset of
the states of a TS, S; C S. If s ¢ S; and ¢’ € Sy, then

we say that transition s L ¢ enters Sy. If s € Sy and
s’ ¢ Sy, then transition s = s’ exits S;. Otherwise,

transition s = s’ does not cross S;. In particular, if
s € S; and &' € S, then the transition 1s said to be
internal to Sy, and if s € S1 and s’ ¢ Sy, then the
transition is ezternal to S;.

A subset of states, r, is a region if for each event
e exactly one of the following conditions holds: all
transitions labelled with e (1) exit r, (2) enter r, or
(3) do not cross .
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Let us consider the TS shown in Figure 1,a. The
set of states 71 = {s5, 85, 59} is a region, since all tran-
sitions labeled with a and with d exit 7, and all tran-
sitions labeled with b and with g enter ;. On the
other hand, {sg,ss} is not a region since transition

59 — 8o exits this set, while another transition also

labeled with a, 85 2 54, does not.

Let » and ' be regions of a TS. A region ' is said
to be a subregion of r iff » C r. A region r' is a
minimal region iff #' is not a subregion of any other
region of the TS. A region r is a pre-region of event
e If there is a transition labeled with e which exits
r. A region r is a post-region of event e if there is a
transition labeled with e which enters . The set of
all pre-regions and post-regions of ¢ is denoted with
°e and €° respectively. By definition it follows that
if » € %, then all transitions labeled with e exit r.
Similarly, if r € e°, then all transitions labeled with
e enter . There are two pre-regions for event a in
Figure 1: ry = {s5, 8,80} and 72 = {s5,87,50}. Both
of them are minimal regions, since no subset of r; or
r9 is a region.

The following propositions state a few important
properties of regions [1, 4, 17].

Property 3.1

1. If r and v are two different regions such that '
18 a subregion of r, then r — r' is a region.

2' A set of states r is a region if and only if ils coset
7= S—7 is a region, where S is a set of all states
of the TS.

3. Every region can be represented as e union of dis-
joint minimal regions.

Excitation regions. While regions in a TS are re-
lated to places in the corresponding PN, an excitation
region [9] for event a is a maximal set of states in which
transition a is enabled. Therefore, excitation regions
are related to transitions of the PN.

A set of states S is called a generalized ezcitation
region (an excitation region) for event @, denoted by
GER(a) (by ER;(a)), if it 1s a mazimal (a mazimal
connected) set of states such that for every state s € S)

there is a transition s . The GER for a is the union
of all ERs for a. In the TS from Figure 1,a there are
two excitation regions for event a: ER;(a) = {s5} and
ERj(a) = {s9}. The corresponding GER for event a
is GER(a) = {ss,89}.

Deriving Petri Nets from Transition Systems.
The procedure to synthesize a PN from an elementary
TS is as follows:

e For each event a a transition labeled with a is
generated in the PN;

e For each minimal region r; a place p; is generated;

e Place p; contains a token in the initial marking
my iff s;, € 745



e The flow relation is as follows: a € p;e iff r; is a
pre-region of a and a € ep; iff r; is a post-region
of a. '

This procedure allows to obtain a safe PN with a
RG isomorphic to the initial TS or to its minimized
version if the initial TS is elementary [17]. As shown
in [4] elementarity for minimal TS can be defined by
the following two conditions.

o FEzxcitation closure.

For each event a: [ r = GER(a);

r€°a

e FEvent effectiveness.
For each event a: GER(a) # 0;

As shown in Figure 1, region r1 is mapped into place
ry of the STG.

If a TS is not elementary, then it is always possible
to transform it to an elementary one by label split-
ting (one label a which causes violations of elemen-
tarity is substituted in the TS by a few independent
labels aq,as,...) or by inserting dummy transitions.
Therefore, for any TS an equivalent safe PN can be
synthesized. .

4 Constrained transformations of TSs

In this section we describe constrained transforma-
tions of TSs which preserve equivalence and other im-
portant properties. In particular, we formalize the no-
tion of behavioral equivalence for TSs, and we define
speed-independence.

Speed-Independent Transition Systems. A de-
sign is speed-independent if its behavior does not de-
pend on the speed of its components (gates). Asshown
in [7], two properties ensure that a deterministic TS
allows for a speed-independent implementation: per-
sistency and commuilativity. The persistency property
states that no event can be disabled by any other
event. The commutativity property guarantees that
the same state of the TS is reached under any order
of enabled event firing.

Definition 4.1 (Event persistency)
Let A = (S,E,T) be a transition system. An event
a € F is said to be persistent in r C S iff- Vsl € r:
[s1 > /\(sl—b->s2)€T] = 25

An event a € E is said to be persistent if a is per-
sistent in S.

Definition 4.2 (Commutativity) A transition
system A is called commutative if for any traces ab
and ba that are feasible from some state s1 € S both

traces lead to the same state, i.e., if s1 = s2, s2 2osa
and 515 s3, 53 % sb then s4 = sb.
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Trace equivalence. The set of feasible traces of a
TS A is called the language accepted by A and is de-
noted as L(A). If p is a feasible trace for A, then its
projection on a subset of events £y C E, denoted as
p | B, is a sequence of events p’ obtained from p by
deleting all events from E ~ E;. If L(A) is the lan-
guage accepted by A, then its projection L(A) | E is
the set of sequences {p | By : p € L(4)}.

Let A = (§,E',\T') and A = (S,E,T) be two
TSs such that £ C E’. Then, TSs A and A’ are
trace equivalent if L(A') | E = L(A). Additionally
to trace equivalence, the following properties must be
preserved after transforming a TS: persistency, com-
mutativity, determinism, and deadlock freedom. The
first three properties guarantee that the new TS al-
lows for a speed-independent, implementation. The
latter property guarantees that liveness of the initial
TS is preserved. It is defined as follows: if state s’ is a
deadlock in A’ and is reachable from the initial state
si, by a feasible trace p’, then state s of the original
TS reachable from s;, by a feasible trace p = p' | E
is a deadlock in A.

Event insertion. The basic transformation is the
insertion of a single event into a TS. There can be
different schemes of event insertion that preserve trace
equivalence [3]. In this paper we will rely on a simple
on]e which consists of two steps and is similar to [9, 26,
30]: ‘

o Choosing in the original TS a set. of states r in
which the new event z will be enabled. » corre-
sponds to a generalized excitation region of event
2 in the new TS and therefore 'is denoted as
ER(z) in Figure 2. ‘

e Delaying all transitions that exit the set of states
7 until event z fires.

Definition 4.3 (Event insertion)

Let A= (S, E,T) be a transition system and z ¢ E be
a new event. Assume thatr C S is an arbitrary subset
of states. Letr', r'NS =, be a set of new states such
that for each s € r there is one state s’ € v’ and vice
versa. The insertion of x in A by r produces another
transition system A’ = (S', E',T") defined as follows:

S'=Sur

E'=EU{z}

T =TU{(s>s)ser A s er'}u
{(s1' 5 s2)|sl,s2€r A (s1-3552) e TIU
{(s1" 5 s2)[s1er A s2¢r A (s1 5s2) €T}~
{(s1 5 82)sler A s2¢r}

By Definition 4.3 transforming A to A’ via adding
the new event z by a set of states r leads to splittin
all states s € 7 in S into two states s and s’ in S’. Al
other states s & r are in correspondence with only one
state in S’. Figure 2 illustrates how event insertion is
performed.



S-ER(x)

ER(x)

Figure 2: Insertion of event z from ER(z)

Speed-independence preserving sets. It is easy
to show that the insertion of event z by Definition 4.3
always preserves trace equivalence, determinism and
deadlock-freedom [3]. Persistency and commutativity,
on the other hand, are not automatically preserved,
and need a more careful analysis.

Definition 4.4 (SIP-set) Let A = (S,E,T) be a
transition system, ¢ ¢ E be a new event and r C S.
Let A' = (S',E’',T") be a transition system obtained
after inserting by r. r is said to be a speed-
independence preserving set (SIP-set) ¢ff

1. Yo € E : a ispersistentin A
a is persistent in A’

2. A is commutative => A’ is commutative
If v satisfies only condition 1 then r is a persistency
preserving set. '

-

The following theorem determines two conditions for
preserving persistency and commutativity.

A’

A: sl . s1
4 ) : Y X
3 E s3 s2
b Wx
s2
s4

4

(a) sd4
A:’ A% o
r LN
s3 s1’ . s2
s V2N
¥ 2
s4 bw
b) s4

Figure 3: Set of states r is not persistency preserving.

Theorem 4.1 Let A = (S,E,T) be a TS and r C S
a subset of states. r is a persistency-preserving set iff

[(s1 2 53),(s2 2 s4),(s1 & s2) eT N 82 €
rsddr] = sler A s3¢r 1)

Let A= (S,E,T) be a commutative transition sys-
tem and v C S be a persistency preserving set. Then
r 18 a SIP-set iff:
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515 52, 52 5 54, s1 5 83, 63 % s4cTA
(sl,52€rAs3dr)=>s4¢r (2)

This theorem refines conditions for speed-indepen-
dence from [23]. It allows to handle correctly the
so called asymmetric “fake” conflicts between signals
(Lll]). Consider, for example, Figure 3.(a), where
there is no arc between s3 and s4. On the other hand,
SIP conditions were defined in [23] only with respect
to complete diamonds of states. Hence, the conditions
stated in [23] are not sufficient to find the violation of
persistency in cases like that of Figure 3,a.

Figure 3 shows two possible cases of violation of
the persistency preserving condition (1) from Theo-
rem 4.1. In both cases event b becomes non-persistent.
Note that event z is persistent by construction in the
TS obtained after the insertion. Hence, if a persis-

tency preserving set is used for signal insertion, then

no new non-persistencies can arise.

s4’

Figure 4: Commutativity violation after signal inser-
tion

Figure 4 shows a violation of commutativity when
a set of states r does not meet condition (2) of Theo-
rem 4.1, Figure 5 shows allowable correct intersections
of a SIP-set with all state diamonds in a SG.

5 Selecting SIP-sets

This section presents a few basic properties which al-
low us to formulate improved strategies for selection
of SIP-sets. In [23, 26] SIP-sets are selected by solv-
ing a satisfiability problem. Efficiently constraining
the search space for SIP-sets is problematic since in
the reduction to the satisfiability problem each state
in SG is considered separately (it is encoded by two
binary- signals) that quickly leads to unmanageable
complexity when solving the satisfiability instance.
In [8, 9, 10] SIP-sets are constructed from excitation
regions of the original signals and previously intro-
duced state signals. [30] generalized this method in
such way that both ERs and switching regions (SRs)
are used for SIP-sets. In this paper we further gen-
eralize this method: SIP-sets are constructed as re-
gions, their intersections and union of intersections.
We will show below that regions ensure to automati-
cally find valid SIP-sets, rather than checking for SIP
a posteriori, which is considerably less efficient. Note
that ERs and SRs are particular cases of region in-
tersections. Therefore, our method allows to explore
a larger search space for SIP-sets and to find more
efficient solutions.
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Figure 5: SIP-sets for a state diamond

Property 5.1 Ifr is a region in a commutative ele-
mentary transition system, then r is a SIP-sel.

The proof of this property is trivial. At the PN
level this property corresponds to a following struc-
tural transformation: place » is substituted by two
places r and »* with a new intermediate transition la-
belled with . Place r has only one output transition,
z, and all transitions which belong to re in the ini-
tial PN belong to ‘e in the new PN. Obviously, such
transformations cannot violate persistency or commu-
tativity for any event.

Property 5.2 If r is an ezcitation region of event c
in a commutative transition system A and c ts persis-
tent in r, then r is a SIP-set.

Intuitively, this property can be stated as follows:
delaying a persistent event cannot create violations
of persistency or commutativity. At the PN level this
means that substituting a persistent transition by a se-
quential composition of two transitions preserves per-
sistency and commutativity. At the circuit level this
property corresponds to a well-known fact: inserting
delays at the gate outputs before a wire fork does not
violate semi-modularity of the circuit [16]. Most of
the previous methods for CSC used variations of prop-
erty 5.2 (2, 9, 14, 23, 30].

Definition 5.1 (Exit and input border) Let A =

(S,E,T) be a transition system. Given a subset of

states r C S, the exit border of r (denoted as EB(r))
and the input border of r (denoted as IB(r)) are de-
fined as follows:

EB(ry={s€rla€cE sdecS:s 55T As¢gr}

IB(ry={ser|da€e E,se€S:s SseT A §¢r)

Exit borders of regions and intersection of pre-
re%ions of the same event can also be safely used as
SIP-sets under the following conditions.

Property 5.3 Let A = (S,E,T) be a commutative
elementary transition system and let r be a region in
A. If all the exit events of r are persistent then EB(r)
is a SIP-set.
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Proof: 1. Violations of Condition 1 (Figure 3).
If Condition 1 for a SIP-set is violated, then s2 €
EB(r) and s4 ¢ EB(r). Hence, there exists event ¢

such that s2 = s5, s5 ¢ ». Clearly c is an exit event
for r and from the properties of a region any state in
which ¢ is enabled belongs to r. If ¢ # b then from
s4 ¢ EB(r) follows that event ¢, which is enabled
in 52, becomes disabled in s4. This contradicts the
assumption that all exit events of » are persistent.

If ¢ = b then sl-belongs to EB(r) (contradiction
with Figure 3,a) and s3 must be out of r (contradiction
with Figure 3,b). o

2. Violations of Condition 2 (Figure 4). By the
same consideration if ¢ # b then ¢ becomes disabled
in §3. If ¢ = b then s4 cannot be in EB(r). O

A set of states S is called forward connected if for
any pair of states 51, s2 € S there is a state s3 € S (s3

may coincide with s; or with s3) such that s; % s,
s2 4 s3 and all states of o and &1 belong to S.

Property 5.4 Let A = (S, E,T) be a commutative
elementary transition system and let ry, vy be pre-
regions of the same eveni. If ry N1y is forward con-
nected and all exit events of ryNry are persistent, then
riNry s a SIP-set.

Proof: Assume that A = (5, E,T) is a commutative
elementary transition system. Assume also that ry,
7y are pre-regions of the same event b € E, r; N7y is
forward connected, and all exit events of ry N 7y are
persistent. Let us prove that r1 Nry is a SIP set, i.e.,
ry N vy is persistency-preserving and commutativity-
preserving.

Assume that A’ is the TS obtained after inserting
a new event z by ry N ry. We need to prove that
persistency and commutativity are preserved in A’.

Persistency preservation.

(1) A new event z and all events from E which do
not exit r; N ry are persistent in A’ by construction.

(2) Consider event b. Let us refer to condition (1)
from Theorem 4.1 and Figure 3. Since r1,r; € b, all
transitions labelled with & must exit hoth r; and rs.

Hence, sl 2, $3 exits both r1 and 7, and therefore,

1 s3 exits ; N re. Condition sl € 71 N r§ A s3¢
r1 N 7y is satisfied and persistency holds by Theorem
4.1.



(3) Consider event b’ other than b such that ¥ exits
r1MNrg but ry or vy are not pre-regions for &', Transition

52 % s4 from condition (1) of Theorem 4.1 exits ry N
r9. Hence, 52 -9—’> s4 exits either r; or r9. Let us
assume, for example, that 52 L 84 exits r1. Then
transition sl LA 83 also exits ry.

Let s, € GER(b). Since b is persistent and s2 L s4,

state s4 € GER(b) and s2 Y, s4is internal to GER(b).
In an elementary TS the intersection of pre-regions
for the same event b gives the excitation region for b.

Hence, s2 Y s4is internal to r; and we have reached
a contradiction.
Let 53 € (r1Nre)—GER(b). Since r1Nry is forward
connected three cases are possible:
(1) 3s' € GER(b) : 52 = &,
(2) 35 € GER(b) : s' 5 55, and
(3) 3s' € GER(b),s" € (r1 Nry) — GER(b) : s =
" A o1 s, .
Let us consider the first case. Event &' is persistent
and since b’ exits ry, the following condition holds:

b’ ¢ o. Therefore, there is a state s such that s’ LA 5.
Since s’ € GER(b) and b is persistent the following

holds: s5 LN Therefore, s5 € GER(b) and s’ LA ss

!
is internal for GER(b) transition. Hence, s L s
is internal to r1 and we have reached a contradiction
with the assumption that ¥ exits ry.

Let us consider the second case. Since b is persis-
tent, 7 N ry is forward connected and both ry and
ry are pre-regions for b, then event b ¢ o. Therefore,
state s2 € GER(b) and both b and ¥’ are enabled in s2.
Since b is persistent we may conclude that transition

s2 & is internal for GER(b) and hence is also internal
for r;. We again have reached a contradiction.

Let us consider the third case. Since b is persistent,
r1 N7y is forward connected and both r; and 75 are
pre—regions for b, event b is enabled in s” which implies
that s” € GER(b). Therefore, we have reduced the
third case to the first case, which has been already
considered.

Commutativity preservation. Let us refer to
condition (2) from Theorem 4.1 and Figure 4. Given

a diamond s1 3 2, 52 LA s4, sl LA 3, 53 = s4, the
commutativity property may be violated only in one
case: if state 3 & r1Nry and states s1, 2,54 € ryNra.

" b .
In such case transition s1 — s3 exits »; N 72 and
therefore must exit 7y or r5. Assume for example

that s1 2 3 exits r1. On the other hand, transi-

tion s2 2 s4 is internal for r1 N7z and hence does
not exit r;. We have reached a contradiction with the
definition of a region. O

A significant consequence of these properties is
that the good candidates for insertion can be built
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on the basis of regions and their intersections, since
they guarantee to preserve equivalence and speed-
independence. One may also conclude that SIP-sets
for event insertion can be built very efficiently from
regions rather than states.

6 Transformations of State Graphs
The binary encoding of a TS to obtain an SG im-

plies additional constraints for inserting new events:
each inserted event has to be interpreted as a signal
transition and therefore consistency of state assign-
ment must be preserved. Any event insertion scheme
which preserves trace equivalence (like those in Defi-
nition 4.3) also preserves consistency for the original
signals. Special care must be taken to ensure consis-
tency of the new signals (that are usually called state
signals).

gA sgeciﬁc class of SGs transformations can be de-
fined as follows:

1. Insertion is made by signals not by events. There-
fore, instead of inserting a single event two signal
transitions of a new signal are inserted at each
step: z+ and z—. Two sets of states for insertion,
GER(z+) and GER(z-), are defined simultane-
ously such that GER(z+) NGER(z-) = 0.

2. Similar to TSs transformations, both sets for in-
sertion, GER(z+) and GER(z—), must be SIP-
sets. In addition, consistency of state assignment
for signal « is required.

Given an SG with a set of binary states S, a par-
tition for the insertion of signal z, called I-partition,
is a partition of § into four blocks ({25]): §9, §%, §+
and S~. S°(S!) defines the states in which z will
have the stable value 0 (1). S*(S™) defines GER(z+)
(GER(z—)).

Let A be. a consistent SG and let I
{80, 8%, S+ S~} be an I-partition of A. SG A’ obtained
by inserting signal © by partition I is consistent iff the
only allowed arcs crossing boundaries of the partition
blocks are the following: S° — St — St — 5~ — 89,
St -8~ and S~ — S+, 8t - 5% and S— — SL.

Arcs like those shown in Figure 6 are forbidden.

" The proof of this property trivially follows from the

rule)as of insertion for events z+ and z— (see Definition
4.3).

So
S+

S1

-

Figure 6: Illegal transitions in an I-partition

An I-partition can be found in two steps:



o Find a bipartition {6,8}, (6 = S —b) of S. The
value of signal z is constant inside blocks b and b.

o Choose GER(z+) and GER(z—) at the bound-
aries of blocks b and b respectively.

The boundaries might be defined in two ways: as
exit borders or as input borders. Figure 7,a shows

insertion by exit borders: given a bipartition L{b’g}’
GER(z+) = EB(b) and GER(z—) = EB(b) (or
vice versa). Figure 7,b illustrates insertion by in-
put borders. In this case GER(z+) = IB(b) and

GER(z—) = IB(b) (or vice versa).

b)

Figure 7: Signal insertion by exit (a) and input (b)
borders

In general, using exit and input borders as inser-
tion sets for new signal transitions does not always
guarantee the consistency for the new signal. It may
be necessary to enlarge the exit border EB(b) with
those states of the block b which are directly reach-
able from EB(b). Similarly, for input border IB(b)
an enlargement is required with those states of b from
which I B(bf} can be entered. Such enlargement is not

necessary if a border is well-formed.

Definition 6.1 Let {b,b} be a bipartition of a SG
states. '

1. The ezit border EB(b) is called well-formed iff Vs €
EB(b) : [Vs 5 ' : s € bU EB(b)] (similarly for

EBQZ”,));
2. The input border IB(b) is called well-formed iff
Vs € IB(b) : [Vs' 5 5 : 8 € bU IB(b)] (similarly for
IB()) .

Let us refer to Figure 6. If well-formed exit bor-
ders are chosen. for inserting new signal transitions,
then the I-partition is defined as follows: S° = b —

EB(b), St = EB(b), S =b— EB(b), S~ = Eng .
Since a transition can exit b only through the EB(b),
no arcs S® — S! and S° — S~ in Figure 6 are pos-
sible. Due to the well-formedness of FB(b) it is not
possible to return from ZB(b) to b— EB(b), hence arcs
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St — S® are not possible either. A similar reasoning

holds for EB(b), hence none of the illegal transitions
from Figure 6 can occur.

Property 6.1 Let A be a colzsisteni SG with a set of
states S partitioned into {b,b}. The SG A’ obtained

by inserting signal = by exit (input) borders of {b,b}
is consistent iff these borders are well-formed.

If the borders of a given partition {b,0} of S
are not well-formed, we can still use it by consider-
ing larger sets of states that guarantee consistency.
Namely, given {b,b}, we can define minimal well-
formed extended EB and IB gdenoted MWFEEB(b) and
MWFEIB(b)) as minimal well-formed enlargements of
exit and input borders respectively. MWFEEB(}) can
be calculated as the least fix point of the following
recursion:

1. MWFEEB(b) = EB(b)

2. [s€ MWFEEB(D) A s’ €b A 5 — 5] =
s’ € MWFEEB(b)

A similar recursion can be applied for calculating
MWFEEB(4), MWFEIB(b), and MWFEIB(4). Minimal
well-formed extended borders hence are minimal sets
of states for signal transition insertion which guaran-
tee consistency.

7 Completeness of the method

In this section we will show that the method for CSC
solution using region-based signal insertion is com-
plete, i.e. it allows to solve all CSC conflicts, for a
fairly general class of SGs. )

A direct synthesis method for speed-independent
implementation of STGs without choice has been pro-
posed in [9). It solves all CSC conflicts by construc-
tion. This method can be generalized to any safe
STG [3] which is persistent with respect to the tran-
sitions of output signals (so called output-persistent
STGs). Hence, this direct method can be applied to
any SG for which a safe and output-persistent STG can
be generated using regions as described in Section 2.

Generating such an STG is possible if an SG sat-
isfies the following conditions: (1) it is deterministic,
consistent, commutative and persistent by output sig-
nals, and (2) it is elementary after splitting all GERs
into ERs. This result implies that for each SG which
meets these conditions, the procedure of signal inser-
tions based on intersection of regions will eventually
converge.

Let us have a closer look at an I-partition, in order
to estimate an upper bound on the number of state
signals needed to solve all CSC conflicts. Assume that
{b, b} is a bipartition of a set of states. Assume that an
I-partition is constructed from {b,b} by exit borders,
ie., St = MWFEEB(b), S~ = MWFEEB(%) and S° =
b—S*,S* =b— S~ (see Figure 7,a).

Clearly, all the states from S and S* will differ in
the new SG obtained after the transformation by the



value of signal z. However, this is not the case for
the states from MWFEEB(b) and MWFEEB(b). Each
state s € MWFEEB(b) (s € MWFEEB(})) is mapped

into states s and s’ in the new SG, such that s =5
s’. Signal z has different values in s and s’. Thus,
no CSC conflict in MWFEEB(b) and MWFEEB(b) is
solved by z. Then we can use one more state signal
y and another insertion scheme (by input borders) to

distinguish these conflicts.

Figure 8: Signal insertion using both exit and input
borders

This method is illustrated in Figure 8. At first,
one additional state signal, &, is inserted by minimal
well-formed extended exit borders of b and b and then
another state signal, y, is inserted by minimal well-
formed extended input borders of the partition {b',b'}
inherited from {b,5} by a new SG. The only CSC con-
flicts which are not solved by such insertion of two sig-
nals are those which exist between MWFEEB(b) and
MWFEIB(b), MWFEEB(b) and MWFEIB(b).

Definition 7.1 Let {b,b} be a bipartition of a SG
states. Let sl and s2 have the same binary code,
sl € b, and s2 € b. States {sl,s2} are said to be
distinguishable by partition {b, b} if the following con-
dition does not hold: _

(s1 € MWFEEB(b) A s2 € MWFEIB(b))v

(s1 € MWFEIB(b) A 52 € MWFEEB(E))

Theorem 7.1 Let {b,b} be a bipartition of a SG
states. All _distinguishable pairs of states {sl,s2}
(s1 € b, 52 € b) will obtain different binary codes after
mserting two state signals by MWFEEB and MWFEIB
(the method from Figure 8).

The proof of this theorem can be found in [3]. It fol-
lows from the fact that if s1 and s2 are distinguishable
by partition {b,5} in SG A, then the corresponding
states in A’ are distinguishable by partition {¥,b'},
where b’ and ¥ are “images” of b and b in the new SG,
A’. Hence, if all CSC conflicts can be distinguished by
k bi-partitions, then no more than 2k state signals are
needed for solving all CSC conflicts in a SG.

Moreover, it is easy to show, by using the same di-
rect synthesis method of 59], that the number of places
of an STG or, equivalently, the cardinality of an irre-
dundant cover of minimal region of an SG gives a very
loose worst-case upper bound for the minimal number
of partitions solving all CSC conflicts.
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The following corollary of Theorem 7.1 states the
conditions for implementability of an SG as a speed-
independent circuit.

Corollary 7.1 Let A be a deterministic, consistent,
commutative and outpui-persistent SG. Assume that
for every pair of states sl,s2 with the same binary
code there ezxists a partition gb, b} distinguishing sl
and s2 such that minimal well-formed extended exit
and input borders of b and b are SIP-sets. Then there
erists a finite sequence of SIP insertions that yields
an SG A’ such that: (1) A' is trace equivalent to A,
(2) A’ is deterministic, consistent; commutative and
output-persistent, and (3) A’ satisfies CSC.

Indeed, if every pair of states with the same bi-
nary code is distinguishable by some partition, then
according to Theorem 7.1 all CSC conflicts in this SG
can be solved by inserting state signals. The consis-
tency is preserved since signals are inserted by well-
formed borders. Since these borders are SIP-sets (by
the condition of Corollary 7.1), then commutativity
and persistency aré also preserved.

It follows from the direct synthesis method of [9],
that if an SG is elementary after splitting the GER
into ERs, then all CSC conflicts are distinguished by
some bipartition, and therefore the method based on
EB and IB insertion can be successfully applied. For
non-elementary SGs the completeness of our approach
is an open problem. However, the authors are not
aware of any example which will be irreducible within
the proposed approach.

8 Experimental results
The region-based approach presented in this paper has
been integrated in petrify, a tool for the synthesis of
Petri nets [4]. An experimental algorithm to calcu-
late bi-partitions and insert state signals has been im-
plemented. The algorithm uses heuristic search tech-
niques to explore the space of valid bi-partitions and
is guided by a cost function that attempts to find bi-
partitions that maximize the number of solved CSC
conflicts at low cost (i.e. minimizing the number of
trigger signals of the new state signaﬁ. .

This section presents some experimental results
that illustrate the main features of the approach. The
major advantages of our tool are:

o It can handle a wider class of STG and SG spec-
ifications than existing tools. This is due to the
completeness of our method and to an efficient
search strategy based on manipulating regions
rather than states.

One of the examples that was traditionally dif-
ficult to solve (even by hand by expert design-
ers) is depicted in Figure 9. Our region-based
approach obtained. the best solution among those
we could obtain manually. Interestingly, the ex-
ample is unsafe (the arcs a+ — b— and b+ — a—
are 2-bounded), which shows that the applicabil-
ity of the region-based approach extends beyond
the class of elementary TS.
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Figure 9: Difficult example to solve CSC
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Figure 10: (a) STG, (b) SG, (c) solution obtained by
ASSASSIN [28], (d) solution obtained by petrify.

o It can explore efficient solutions by manipulating
sets of states at the level of regions, their inter-
sections and unions of intersections.

Figure 10,a and 10,b depict an STG with CSC con-
flicts and its state graph. Figure 10,c presents a
solution with the insertion of state signals based
on a restricted exploration of only excitation and
switching regions (as in [30]). In this case, no so-
lution can be found with only one state signal.
Moreover, the final solution obtained by ASSAS-
SIN [28) manifests some asymmetry (between the
positive and the negative phase of the transitions)
produced by the dependency of the approach on
the initial state.

Petrify can solve all CSC conflicts with only
one state signal, deriving the STG shown in Fig-
ure 10,d. The state signal is inserted at the inter-
section of regions (post-regions of {a+,b+} and
{a—, b—} respectively). The final STG can be im-
plemented with a single C element.

e It can manage extremely large SGs generated by
highly concurrent STGs.
Two factors are essential for this capability:

1. the exploration of blocks of states at the level
of regions rather than states
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2. the symbolic representation and manipula-
tion of the state graph and regions by means
of Ordered Binary Decision Diagrams [4]

One of the examples we used is a 16-process par-
allelizer built by means of the composition of 15
Tangram parallelizers [21]. After projecting the
STG onto the input/output signals, an STG with
83 places, 68 transitions, 34 signals and 1.5 x 1011
markings (states) was obtained. To solve CSC,
16 state signals were inserted (the optimal solu-
tion in terms of number of state signals) and an
STG with 2.8 x 102 markings was retrieved. Even
with such vast space of states, petrify was able
to solve CSC in less than 4 hours of CPU time.

Further experimental results have shown that the
running time used by petrify does not depend
on the number of states, but on the complexity
of the underlying Petri net which directly deter-
mines the number of variables used to encode the
states [19].

9 Conclusions

We have presented a theoretical framework for
insertion of pnew events into an asynchronous be-
havioural specification with the purpose of resolving
state encoding conflicts. Our theory is based on the
combination of two fundamental concepts. One is
the notion of regions of states in a Transition System
(an abstract labelled SG). The second concept is a
speed-independence preserving set (SIP-set), which is
strongly related to the implementability of the model
in logic. Regions and their intersections can serve as
bricks for efficient generation of SIP-sets.

The theory presented in this paper has been used in
developing algorithms for the software tool petrify,
which was originally created as a program for synthe-
sizing Petri net-based specifications from state-based
models [4]. The combination of the PN synthesis func-
tionality with the framework for state-encoding event
insertion described in this paper allows to solve CSC
for large asynchronous specifications which were not
solvable by any previously known approach. It also
allows the user to view the result of the transforma-
tion applied to the Transition System, in the form of
an STG. We are currently working on the application
of the theory of event insertion to solving other state
encoding problems involved in asynchronous synthe-
sis.
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