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Abstract

The speed of high-radix digit-recurrence dividers is
mainly determined by the hardware complexity of the
quotient-digit selection function. In this paper we present
a scheme that combines the area efficiency of bundled data
with data-dependent computation time. In this scheme the
selection function is very simple and may be implemented
using a fast adder. This function speculates the result digit
and, when the speculation is incorrect, a correction of the
quotient and of the residual must be performed. When
the residual satisfies some constraints it is also possible
to switch to a higher radix, computing a fraction of the next
digit in advance. This results in a division scheme with a
variable iteration time and a variable number of iterations
and hence with an asynchronous behaviour. Several designs
were realized and compared both in terms of execution time
and area. The fastest unit considered is a radix-64 divider
that may switch to radix 128 or 256. Our evaluations show
that area x delay savings from 25% to 65%, compared to
equivalent synchronous designs, may be achieved.

1 Introduction

High-speed arithmetic operations are becoming impor-
tant also in general purpose processors. While sub-micron
technologies are an important step toward addressing the

latency problem, they are not a complete solution. As chips

become larger, problems such as clock distribution and skew
are a major concern. A possible design tendency to tackle
these problems in future processors is asynchronization [3].
In this paper we explore a novel design technique suitable for
the design of asynchronous arithmetic circuits for division.
Among all the known algorithms for division, the ones
involving recurrence [10] exhibit a good tradeoff between
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performance and area occupation. Such class of algorithms
computes a quotient digit per iteration, thus resulting in lin-
ear convergence. Consequently, to reduce the number of
iterations, it is convenient to use a higher radix for the result
digit. Nevertheless, the higher the radix, the higher the com-
plexity of the result-digit selection function. The complexity
of the selection function increases the iteration delay as well
and eliminates the advantage. Several techniques to improve
the execution time of the algorithm have been proposed, in-
cluding prediction, operands prescaling and overlapping of
several selection stages [1, 18, 19,7, 8,9, 10].

Previous works related to asynchronous division [19, 13,
12], deal with radix-2 division. This paper, to the au-
thors’ knowledge, is the first dealing with a design technique
suitable for implementing very-high radix asynchronous di-
viders. There are several differences between {19, 13, 12]
and the algorithm we describe in this paper. The architec-
tures reported in [19, 13, 12] are self-timed loops formed
by several pipelined stages. Each stage represents a radix-2
iteration step of the standard recurrence division [10] and op-
erates as soon as the required operands arrive. Synchroniza-
tion between adjacent stages is achieved by using DCVSL
differential logic and a dual-rail handshake protocol [2].
Each stage computes all the possible assimilations of the
partial residual in advance, and since this number depends
on the maximum quotient digit, this approach is clearly lim-
ited to radix 2.

As mentioned previously, the use of a low radix is highly
penalizing because it increases the number of iterations nec-
essary to complete a division. The proposed algorithm over-
comes this intrinsic limitation of the approaches described
in [19, 13, 12] allowing the implementation of very-high
radix asynchronous dividers.

The proposed approach is general and suitable for any
kind of hardware implementation, including self-timed
loops, even if in this paper we present a standard imple-
mentation with cascaded CSA stages [10] suitably modified
to interact with a bundled-data handshake circuit.

Unlike [19, 13, 12] where each stage is designed to have



two different delay paths, and to operate as soon as the
inputs are valid, the proposed algorithm achieves variable
execution times by means of a selection function with data-
dependent computation times [5). This selection function
speculates the quotient digit. In case of correct prediction,
the completion-detection logic is switched on the delay chain
that matches the best-case datapath delay. If the speculation
is wrong the error must be corrected. This requires an addi-
tional latency and the completion-detection logic is switched
on the delay chain matching the worst-case datapath delay.

The correctness of a speculation is checked by an error
detection and correction function. However, unlike [5],
speculation and error detection are parallel processes, hence
a wrong speculation does not need any additional iteration
and the execution time results to be shortened also in case of
wrong speculation. Parallelism between these processes is
achieved by speculating the result digit using the integer part
of the shifted partial remainder, whereas the fractional part
is used to determine the correctness of the speculation. This
also leads to very simple, and hence faster, implementations
since the selection function may be realized using an adder.

In a variation of this scheme, we allow the possibility to
switch to a higher radix when the partial residual satisfies
certain constraints. This permits to increase the number of
bits of the result computed in an iteration. This technique,
that reminds the approaches proposed in [5, 14] results in an
implementation with a variable number of iterations. This
approach is a further advantage with respect the implemen-
tations described in [19, 13, 12] since those designs perform
a division in a fixed number of iterations with a variable
iteration delay, whereas the proposed realization performs a
division with a variable number of iterations and a variable
iteration delay, thus decreasing the overall execution time of
the algorithm.

In summary, the variable-delay behaviour is achieved
through data-dependent computation times by means of a
very simple speculation and error detection and correction
function and by a function that permits to switch to a higher
radix when the divider input matches certain constraints.
Synchronization is achieved by means of bundled-data with
a four-phase handshake protocol [2]. This allows to imple-
ment division units with a reduced area since we avoid the
use of differential logic with dual-rail synchronization.

We develop the method, evaluate alternative possibilities
and present some examples of implementation, comparing
them with the implementation of conventional and specula-
tive algorithms using the same technological constraints.

This paper is organized as follows. Section 2 summa-
rizes the division algorithm and notation. In Section 3,
we introduce the basic idea behind quotient digit specula-
tion as well as the idea to switch to a higher radix when
certain constraints are matched. Quotient digit speculation
and operand scaling, as a technique to improve the rate of

correct predictions, are discussed thoroughly in Section 4.
Section 5 gives an example of how the proposed algorithm
works. In Section 6, we summarize the evaluation criteria
of the implemented units. Section 7 reports the characteris-
tics of aradix-16 unitimplementing the proposed algorithm.
Finally, in Section 8, we draw up some conclusions. All the
implementation details and formal proofs are reported in {4].

2 Division Algorithm and Notation

We now briefly review the well-known division algorithm
and outline the notation used along this paper. The standard
recurrence used for division is [10]:

wii+ 1] =7 wli] -~ gj1-d,  wl0]=2,
where w{j] is the full-precision partial residual after the j-
th iteration, r is the radix, ¢;4 is the quotient digit, d the
full-precision divisor and x the full-precision dividend. For
the sake of simplicity, we assume that z and d are positive
normalized fractions and that # < d so that the division
always starts with the shift of the partial residual and the
quotient () result a positive normalized fraction as well.

To have a fast iteration, a carry-save adder is used, with
the partial residual in carry-save redundant form, although
a similar development could be done for other redundant
representations of w[j]. Redundant quotient digits are con-
verted on-the-fly [6] into a conventional representation.

The quotient digit is a signed digit |gj+1] < a with re-
dundancy factor p = %5 (with p € (‘%, 1]). This requires
wl[0] < pd, which is obtained by shifting the dividend.
Moreover, to assure the convergence of the algorithm, the
partial residual must be bounded [10], namely:

— pd < w(j] < pd. (D)

The quotient digit ¢;4 is determined by a quotient-digit
selection function F'. This function depends on an estimate
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Figure 1. Iteration Step of Digit-Recurrence
Division.

of the residual and on an estimate of the divisor; that is:

gj+1 = F(d,d). (2
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Figure 2. Basic Scheme: (a) Block Diagram, (b) Timing Diagram.

The basic scheme that implements the iteration step is shown
in Figure 1. There are several ways of implementing the
selection function F'. Most of them are described in detail
in[10]

3 Division Scheme with Quotient Digit Spec-
ulation

We now describe the basic scheme, without higher radix
switch, and then introduce the scheme with higher radix
switch (HRS).

3.1 Basic Scheme

The basic scheme is depicted in Figure 2(a). As al-
ready mentioned in the introduction, the quotient digit is
speculated. The theory developed to design the speculation
function will be described in detail in the next section. The
speculated digit ¢}, ; is used to compute an interim residual
@[j + 1] = r-w[j] — ¢f, - d. The next residual is then
calculated as follows:

o [ w41 if @[j + 1] is bounded
wlj+1] = { Dlj+1] - g5y d otherwise
(3)

¢j41 is the correction digit, and is such that ¢j4; =
441+ 9541 with g5 € {—1,41}, whereas in case of
correct speculation g; 1 = g ;. As we will see later in this
paper, the bound checking operation, necessary to check
whether a speculation is correct or not, is performed by ex-
amining w(j] and not @[j + 1]. This leads to fast execution
times. As shown in Figure 2(b) the proposed scheme for
division exhibits a variable delay behaviour. Handshake
signals are generated using switched delays [15, 16, 11] and
a four-phase protocol [2] using request (req) and acknow!-
edge (ack) as handshake signals. The increased iteration
length in case of wrong prediction depends on the hard-
ware complexity of the error-detection function. However
since speculation and error detection are overlapped, the
time overhead due to a wrong prediction does not affect the
performance of the algorithm significantly.
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3.2 Scheme with Higher Radix Switch (HRS)

In the basic scheme, two situations may occur: either we
have a short-latency iteration if the speculation is correct, or
a long-latency iteration if the prediction is wrong and a cor-
rection must be carried out. The delay of the implementation
is reduced by the scheme with HRS. In this scheme, when
the residual is small, a third situation is allowed, namely the
switching to a higher radix R, so that a fraction of digit is
computed in advance, thus reducing the overall number of
iterations necessary to complete the division. Radix R is
such that R = pr, where r is the original radix and p is
a power of 2. The amount of bits of the advance must be
selected so that the next residual is bounded. That is, it is
possible to calculate log, p extra bits if:

|Rwlj + 1]] < rpd.

Consequently, taking into account that R = pr, we obtain
that:

(4)

Finally, Figure 3 shows the basic scheme of the implemen-
tation with HRS. The multiplexer used to select the amount
of shifting at the end of an iteration increases the iteration
latency, nevertheless the reduction of the overall number of
iterations due to the HRS increases the performance of the
algorithm.

. P
wl7 + 1]] < =d.
[w(j ]I_p

4 Quotient Digit Speculation and Operands
Scaling :

As indicated in the previous section, the idea is to re-
duce the latency of the quotient-digit selection by using a
simpler function that gives a correct value with high proba-
bility. The complexity of this function is related to its delay,
namely the simpler the selection function, the shorter the
latency. However, since the probability of a correct predic-
tion decreases as the hardware complexity of the speculation
function decreases, all the design space must be accurately
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Figure 3. Scheme with Higher Radix Switch.

examined and a tradeoff must be found between accuracy
and simplicity.

We develop first the theory for the case of full-precision
residuals and divisors and then extend it to the case with
restdual estimates. In particular, we propose to speculate
the quotient digit considering only the integer part of the
shifted residual (represented in carry-save form), namely:

)

consequently a fast adder may be used to implement the
selection function. Since ¢; ., is only a speculation it may
be incorrect.

Equation (5) does not depend on d. We can achieve this
by operand scaling [8]. Namely we want to find a scaling
factor M such that: X = Mz (X = w[0]) and D = Md.
The scaling factor M must be such that the divisor d is scaled
in an interval [Dyin, Dmax], being Dyip, = 1 —27¢ and
Dpaz > Dmin, whereas § is the number of bits of d that
must be evaluated in order to compute the scaling factor M.
The value of é must be suitably calculated so that:

i 41 = Int(rwlj]);

Dpin=1-2"%x~1.

(6)

As it will be explained later in this paper, this is necessary
to improve the rate of correct predictions of the selection
function. The upper bound D,,,, of the scaled divisor
range is such that:

Dmaz:1+a

(7)

where 0 < o < 1 depends on p, 6 and a. In [4] we proved
that in order to guarantee the convergence of the algorithm
6 must satisfy the following equation:

p>(a+p)27°, (8)
whereas o must be such that:
1—p(1 =279
o< izp1=27) (9)

a

In conclusion, to simplify the selection function and to in-
crease the number of correct predictions, the operands must
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be preprocessed by a scaling function before executing the
recurrence (3). The scaling requires two extra iterations.
However this technique is still advantageous because the
iteration latency is reduced.

4.1 Selection Function Design

The selection function, speculates and eventually corrects
the quotient digit. The error detection and correction is
carried out by examining the fractional part frac(rw(j])
of the assimilated residual. Considering equation (5), and
supposing that ¢; 41 = gj . (hence by equation (3) w[j +
1] = &[4 + 1)), the recurrence becomes:

wlj+1] rowlj]-gjy - d

(1 — d)Int(rw(j]) + frac(rw(j]).

After operand scaling, the recurrence becomes:

wlj + 1] = (1 — D)Int(rw(j]) + frac(rw(j]). (10)

4.1.1 Correct Prediction

Selection of quotient digits is essentially a bound-checking
operation where the residual is compared with some bounds
that depend on the scaled divisor D. To simplify the se-
lection, making it independent from D, we may restrict the
selection bounds imposing that |w[]| < pDnin. The value
of Dpnin and hence of § must be suitably chosen in order to
guarantee the convergence of the algorithm. Consequently
we may impose that (10) must be bounded. To obtain con-
stant bounds we consider the worst case. In[4] we show how
this happens for D = Dp;, and Int(rw{j]) = a. Hence
we obtain:

|frac(ruli))| < (p + @) Dmin —a (1)
If equation (11) holds then the selected digit is ¢j 11 =
7541 = Int(rw[j]).



4.1.2 Error Detection and Correction

A prediction error occurs when, after a prediction the resid-

ual falls out of the bounds fixed by equation (11), or equiv

alently if: :
|w[] + 1“ > pDmin -

In [4] it has been demonstrated that when this situation
occurs the worst-case interim residual is @[j + 1] = 1.
Moreover the smallest convergence interval is such that
lw[j + 1]| < ., hence to guarantee the convergence of
the algorithm the interim residual must be corrected by +D
and the speculated digit by +1.

As a consequence, taking into account equation (11)
and imposing that (p + a)Dmin — a = B and that
—(p + a)Dmin + a = B, the selection function becomes:

qj+1 I{

s|Int(rw(j])| if B < frac(rw[j]) < B

s|Int(rw[j]) + 1| otherwise
(12)
where s is such that:
. . +1 ifrwlj] >0
s = sign(rulj]) = { i B E)

From equation (11) it is evident that the larger Dy,;, (and
hence the larger &), the larger the rate of correct predictions,
since this increases the range of the bounds of frac(rwj]).

4.1.3 Using Residual Estimates

Until now we have considered full precision residuals. How-
ever, to reduce the adder size and to simplify the selection,
we use a truncation ¥[j] to the ¢-th fractional bit of the full-
precision redundant residual to select the quotientdigit q; 4 1.
We perform a truncation error that affects the upper bound
of the convergence interval. Since the maximum truncation
error ¢, in case of redundant residuals in carry-save form is
2-t+1 the convergence is assured if?:

_poin < ﬁ)[]] < +poin - 2—t+1-

Considering this new bounds constraint, in [4] we found
that:

pr+ 1)1 =27 —a(l+a)>27F  (14)

Obviously 6 must also satisfy the constraint defined by equa-
tion (8). Hence for a radix-r divider we need to evaluate
log, r 4+t + 1 bits of the residual, in order to speculate and
eventually correct a quotient digit. Naturally, log, r + 1 is
the number of bits of the integer part of the residual. Ac-
cording to these considerations, the selection function with
truncated residuals becomes:

_ [ slmt(rafs))]
4i+1 = { §l_[nt(r12‘)[j']) + 1]  otherwise

(15)

if B< frac(rw[j]) < B—-¢
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Where § = sign(®[j]) and ¢ = 27'*! is the maximum
truncation error. Equation (14) fixes a lower bound for
t. Also in this case the design space must be accurately
explored since ¢ affects the rate of correct predictions. In
particular, from equation (15) we note that the larger ¢, the
higher the rate of correct predictions. However a large ¢
implies a large adder and hence an increase of both hardware
complexity and latency of the implementation, so a tradeoff
must be found.

4.1.4 Simple Scaling

To compute the scaling factors we use an approach very
similar to the one described in [8, 10]. Proofs and imple-
mentation details are reported in [4]. We want to multiply the
divisor d and the dividend z by a radix-4 scaling factor M =
S ) _omi4i, such that my € {1,2}, m; € {-1,0,1,2},
my € {~2,—-1,0,1,2}andm; € {—2, 1,0, 1,2} and that
Md > 1 — 2~% The radix-4 scaling is the one that offers
the best tradeoff between performance and ease of imple-
mentation [10]. In [4] we showed that the scaling factors
M, may be computed using the following relation:

20 -1 ]
20— 1—n 5

n being an integer such that 1 < n < 25~! — 1, whereas
s, = 55[2%7] and 6, = 3log, 4 (3 being the number
of fractional radix-4 digits of the scaling factor). We also
proved [4] that the scaling factors, and hence 6, limit the
maximum digit value a; namely that:

M, = [ (16)

r—1
a<

(r-1 (maxlgngzé—‘—l {M. (1= %)} — 1) +1

(17)
Equation (17) is very important because it determines the
value a of the maximum digit and hence the redundancy
factor p.

5 Example

We give now an example of how the proposed algorithm
works. For the sake of simplicity we perform a division
withr = 8, ¢ = 7, ¢ = (0.6670666)s and d = D =
(0.7644162)s. From equations (8), (14) and (15) we deduce -
that 6 = 5 and ¢ = 4, hence it results that D,,;, = 0.96875
and that a speculation is correct if —0.75 < frac(rw(j]) <
0.625. If —0.1875 < @[j]. < 0.0625 a change to radix
32 is performed, whereas if —0.4375 < ¥[j] < —0.1875 or
0.0625 < ®[j] < 0.3125 the algorithm switches to radix 16.
The higher radices are determined by equation (4). Since
according to this equation the higher the radix, the smaller
the bounds, to obtain an implementation with a switching



r=8 a=7 p=1
z = (0.6670666)s D = (0.7644162)s M =1 -Dpin = 0.96875
—0.75 < frac(rw[s]) < 0.625
Selection [[ #Bit Adv. (p) | Tter.

[w0]=T (0.6670666)s | q =0 I »=0 ] B
[ 2Prw[0] = || (6.670666)s

-qD = (—6.6575436)s

r9[0] = 6.8125

w(l] = (0.0111222)5 gt = Int(ra[0]) +1 =7 p=2 SLOW

2Prw(l] = || (0.44511)s

—qu = (-—0.0)3

rfl] = 0.5

w[2] = (0.44511) ¢ = Int(r@[l]) =0 p=0 FAST

2Prw(2] = || (4.4511)g

3D = (—3.722071)s

T9[2] = 4.5625

w[3] = (0.527007)s g3 = Int(rd[2]) =4 p=0 FAST

2Prw(3] = (5.27007)

—quD = (—4.7065072)3

rd[3] = 5.3125

wid] = (0.3613606)s qs = Int(rdf3]) =5 p=0 FAST

2Prwld] = || (3.613606)s

—gsD = (—3.722071)s

ri[4] = 3.75

w[5] = (—0.106263)s gs = Int(rof4]) +1=4 p=2 SLOW

2Prw[5] = || (—4.31314)s

—q5D = (3.72207]0)8

r[S]) = —4.4375

w([6] = —(0.371047)s | g6 = —(|Int(r@[5]]+ 1) = —4 p=1 FAST

[ @ = (0.704544)s = 0.877288

Table 1. Example of Radix-8 Division.

probability sufficiently high we have to keep these bounds
as large as possible. This limits the advance to 2 bits, and
hence the radices to switch to are 2r and 47, namely R = 16
and R = 32 in this particular case. Table 1 reports the steps
performed by the algorithm to calculate the correct quo-
tient ). As we will see in more detail in Section 7.1.1, the
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Figure 4. Example of Radix-8 Division with
HRS.

adder used for quotient-digit speculation is implemented by
cascading two smaller adders that compute the integer and
the fractional part of the partial residual in carry-assimilated

form. Hence we have three possible iteration times: a fast
iteration if the prediction is correct and no carry ripples be-
tween the two adders, a medium iteration if the prediction is
correct but a carry is propagated from an adder to the other,
and a slow iteration if the speculation is incorrect and a cor-
rection must be performed. Figure 4 depicts the evolution
of the example of Table 1. By observing the figure, it results
clear that the algorithm has a variable execution time. This
is due to the three different iteration types that determine the
latency of an iteration and to the HRS. In fact, the possibility
to switch to a higher radix permits to increase the number of
bits computed per iteration (as for iterations 2 and 6) reduc-
ing the overall number of iterations necessary to complete
a division and achieving an asynchronous behaviour. In the
example described in this section, the division ends after 6
iterations instead of 7.

6 Evaluation
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To evaluate the performance of the schemes that imple-
ment the algorithm we have described, we used a standard



conventional - speculative
no adv. adv. hrs
radix 2 [16scal [4x4 ] 512 16 [ 512 32 7 64 [ 512 16 | 64
a 1 10 2x2 511 12 320 22 37 320 9 41
iter./digit 1 1 1 2.2 1.3 1.8 1.14 | 1.21 1.17 0.96 | 0.98
iter. delay 20.4 28.8 31 40 28.8 | 43.6 || 34.2 36 43.8 27.2 | 35.2
delay/bit 20.4 8.6 7.8 9.8 9.4 8.8 7.8 7.2 5.6 6.5 5.7
cell area 3100 | 4700 | 4900 | 13600 || 4900 | 8400 || 6800 | 8900 | 10500 || 5870 | 6800
speedup 1.0 2.4 2.6 2.1 2.2 2.3 2.6 2.8 3.6 2.7* | 3.1°
area factor 1.0 1.52 1.6 4.4 1.6 2.7 2.2 2.9 34 1.9 2.2
delay x area 1.0 0.63 0.61 2.1 073 | 1.17 || 0.84 | 1.03 | 0.95 0.7 | 0.71

* Includes two iterations for operand scaling.

Table 2. Characteristics of the Designs.

cell family and designed two double-precision floating-point
dividers (the width of the datapath affects only the area es-
timates). Since a design depends on many parameters, we
have not done a complete analysis of the solution space, but
performed some reasonable designs to evaluate and com-
pare.

In Section 1, we have dealt with one of the major concerns
when designing a recurrence divider, that is the choice of
the radix. A high radix may lead to improved performances
only if the increase of the iteration time is kept as small as
possible. As a consequence a tradeoff between radix and
cycle time must be found, since using a high radix does not
lead necessarily to improved speedups. For this reason the
performances of the different algorithms reported in Table 2
are analysed for several radices, in order to identify the
solution that better matches the design constraints.

In particular, in order to compare our designs with the
ones described in [10, 5], we have used the same 1-xm stan-
dard cell CMOS library and the same design tools. Delays
and areas are expressed as multiples of the delay and the area
of a two-input NAND gate with a fanout of three NAND
gates (the size of a two-input NAND gate is 12.5 x 47.5
pum?, the delay of the unloaded gate is 0.24 ns). Some sim-
ple modules have been designed by hand (multiplexers and
CSA’s), whereas SIS [17] has been used for the synthesis of
the decoders and error detection function. SIS has always
been guided to optimize delay at the expense of increasing
the area. Fan-in and fan-out capacitances (but not routing)
have been considered for delay calculations. In Table 2, we
report the final results. In our estimations we take into ac-
count also the extra iterations necessary for operand scaling.
We consider the conventional dividers described in [10] and
the speculative dividers both with partial advance and no
advance reported in [5] and compare these implementations
with the speculative asynchronous dividers that realize the
proposed algorithm with HRS. We compare all the imple-
mentations both in terms of speedup and area and the results
are normalized withrespect to the conventional radix-2 case.
All the measures performed are summarized in Figure 7. To

estimate the performance we use three parameters [4]: the it-
eration delay, the average number of iterations per quotient
digit and the average delay per quotient bit. The average
number of iterations per quotient digit includes both spec-
ulation and correction latencies. In [4] we show how to
compute this parameter. Moreover, from Table 2, we note
that the proposed schemes have a delay x area saving of
about 65% with respect the conventional radix-512 unit and
of about 25% with respect to the speculative radix-512 unit
with partial advance. It is important to remark how, from
Table 2, the approach with HRS leads to a number of it-
erations per quotient digit that is smaller than “1”, since
there are iterations where some quotient bits are computed
in advance.

” Module H Area "
2 x 3b Csa 40
3 x 3b CPA 66
1 X 54b 3-input MUX | 240
1 x 54b 2-input MUX || 160
1 x 54b Csa 360
QSEL 9

” total " 875 “

Table 3. Area of Basic Block of a Radix-2 Self-
Timed Stage [19].

6.1 Comparison with Other Asynchronous Design
Methodologies

Although the designs described in [19, 13, 12] are
pipelined and use differential DCVSL gates and a dual-rail
handshake for stage synchronization, it would be interesting
to perform some rough performance and area estimations in
order to compare these design methodologies with the one
proposed in this paper. Since the designsreported in [13, 12]
are shared units for division and square root we prefer to
compare our implementation only with [19].

Table 3 reports normalized delays and area of the basic
blocks that form a stage of the self-timed loop. In [19], it
has been determined an analytical expression to compute the
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Figure 5. Block Diagram for a Speculative Radix-16 Divider with HRS.

average case delay of each stage of the pipeline that accord-
ing to our estimations is about 11.5 2-input NANDs delay.
Table 4 reports the estimated average delay and area occu-
pation of the schemes proposed in [19]. Hence, according to

|| Module ” Area ] Delay ”
5 x Div. Stage 4375 11.5
1 x 54b 2-input MUX ]| 160 1.4
2 X 54b register 430 not critical

” total } H 4965 | 648 ﬂ
speedup 1.7
area factor 1.6

Table 4. Characteristics of the Self-Timed
Radix-2 Divider [19].

our estimations, the pipelined divider with self-timed loop
has a speedup of 1.7 and an area factor of 1.6 with respect
a conventional radix-2 synchronous divider but is still un-
competitive with the design proposed in this paper for which
we estimated a speedup of 3.1 with respect a conventional
radix-2 synchronous divider.

7 A Design Example

This section describes the implementation of a radix-16
divider with HRS. Further details, as well as the description
of a radix-64 unit for division, may be found in [4].
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7.1 Radix-16 with HRS

We preferred a bundled-data approach basically for two
reasons. The former is to limit the area occupation of the
implementations, thus achieving better area x delay prod-
ucts. The latter is the need to compare the proposed design
approach with the ones reported in [10, 5] using objective
criteria. We think that further investigation is necessary to
study the impact of a dual-rail implementation on the per-
formances of the proposed algorithm, since the increased
wiring load typical of such realization may not lead necessar-
ily to a better throughput. The block diagram of the proposed
implementation is shown in Figure 5, and the characteristics
are shown in Table 2. The quotient digit speculated by the se-
lection function is g, + q;, where g, € {-8,—4,0,+4,+8}
and ¢; € {—1,0,+1}. Therefore we choose a = 9, since,
according to equation (17) and to the design parameters of
Table 2, results that a < 10. Moreover, in this way we
avoid the generation of ¢, + ¢; = 11 that would imply the
use of three carry-save adders increasing both iteration time
and hardware complexity. Table 5 reports area and delay
characteristics of this design. Since gj, is the highest-weight
component of the quotient digit, the decoding logic DEC is
simpler and faster than for ¢;. During the synthesis of the
decoder DEC, SIS has been guided to reducing the delay of
qn since it is the critical path.

Note that two modules are required: one for quotient
digit speculation and one for switching to an other radix.
The latter controls the amount of the shift at the end of an
iteration and permits an advance of one bit in case of switch-
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[ Module | area [ pelay 1
speculation 115 10.4/6.4* (for qun)
) 11.5/7.5 (for q)
error detection 22 15.5/11.5
mux (for g¢;d) 2x302 | 18"
mux (scaling) 1650 1.4*, 1.6 or 1.8
mux (err. det.) 12 1.4
mux (HRS) 230 1.6*
csa 2x360 | 42% (from rw(j])
2.2" (from g;d)
buffers 8x26 | 1.8
HRS 26 not critical
switched delays 71 not critical
registers 170x 3 | 7.8*
Lconvert [10] 1900
[Ltotal 4”75870 L27.2 “

* Denote blocks in the critical path.

Table 5. Area and Delay of the Radix-16
Scheme with HRS.

ing to radix 32 or two bits in case of switching to radix 64.
These two modules are conceptually identical, but evaluate
different ranges of w[j]. The CSA has been designed as a
radix-2 full adder and its worst-case delay is determined by
two cascaded XOR gates. However, the outputs of the ¢;d
multiplexers have been connected to the last gate in order
to reduce the critical path delay (the same optimization has
been used in the other designs). This approach may not
be used for the residual since it is represented in redundant
form and requires two signals. Moreover, to save hardware,
we use the divider carry-save chain to compute the scaling
factors as well, this implies the insertion of multiplexers to
switch between scaling and division iteration.

For what concerns the computation of the delays that
must be matched by the switched-delay chain we assume
that all the gates along the three possible delay paths have
a propagation delay equal to the worst-case one. It must be
remarked that, in order to compare our designs with [10, 5],
in our performance analysis we neglect the delay due to
wiring. This means that we give only a rough estimation of
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the real delays.

We think that more realistic estimations may be per-
formed by assuming a draft layout plan in order to compute
the worst-case load due to wires, that, especially in the case
of components with large fan-out such as the buffers that
drive the ¢;d multiplexers, may lead to significant delays.

7.1.1 Selection Function

The block diagram is shown in Figure 6. The integer and the
fractional part of ri[j] are assimilated by two fast adders,
so that the carry-out signal Co may be used jointly with
signal the error signal e to select the iteration type as shown
in Figure 6. In fact, when Co is “0”, digit ¢}, is generated
after the delay of one adder, whereas when Co is “1”
is generated after the delay of two adders.

Digitgj,,isrepresented in two’s complement on log, r+
1 bits, whereas digit ¢§,, € {—1,41} is encoded on two
bits (each line encodes one of the possible values).

s
G+

8 Summary and Conclusions

The division method that has been presented in this paper
is based on the speculation of the result digit. Speculation
is performed by using an adder, this results in implementa-
tions that are faster than conventional ones and that require
less hardware resources with respect to other speculative
approaches analyzed in this paper. The selection function
permits to switch between three kinds of iterations: a slow,
a medium and a fast one. The slow iteration is the one that
is performed when a correction has to be carried out. The
performance of the algorithm may be enhanced using HRS,
namely switching to a higher radix when the partial residual
falls into certain bounds. The HRS permits to obtain imple-
mentation with a variable number iterations. We performed
several designs using the same technology and determined
the relative speed and area. The results are summarized in
Figure 7.

From the analysis of the experimental results reported in
Figure 7 we may infer that the proposed approach (HRS)
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Figure 7. Summary of the Implementations for Different Dividers.

has, in case of radix-64, a latency comparable with the spec-
ulative radix-512 divider with partial advance (denoted with
“p.a”’) described in [5] but an area saving of about 35%. In
addition, as showed in Section 6, the schemes that imple-
ment the proposed algorithm have a delay x area saving of
about 65% with respect the conventional radix-512 unit and
of about 25% with respect to the speculative radix-512 unit
with partial advance. They also outperform the efficiency
of other known asynchronous designs.
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