7C-1

Verification of Timed Circuits with Symbolic Delays

Robert Claris6

Department of Software
Universitat Politécnica de Catalunya
e-mail: relariso@lsi.upe.es

Abstract— Verifying timed circuits is a complex problem even
when the delays of the system are fixed. This paper deals with a
more challenging problem, the formal verification of timed cir-
cuits with unspecified delays represented as symbols. The ap-
proach discovers a set of sufficient linear constraints on the sym-
bols that guarantee the correctness of the circuit. Experimental
results from the area of asynchronous circuits show the applica-
bility of the approach.

I. INTRODUCTION

The correct operation of a timed circuit often depends on
the delays of its gates and wires and the timing behavior of
its environment. Timing analysis can check the correctness of
the circuit but the result is only valid for the particular timing
information provided for that instance of the circuit. The an-
swer could not be extrapolated to the same circuit implemented
in other technologies. A more meaningful answer would be a
characterization of the circuit as a set of timing constraints that
could guarantee the correctness of the circuit and that would
be independent of the technology. For example: The circuit is
correct if

Dy + Dy <dsg +dy +ds A
Dy <« 3d1+2d7

where d; (D;) denotes the minimum (maximum) delay of a
gate i. The advantage of this type of answer is obvious. Apart
from the useful feedback provided to the designer, the cor-
rectness of a set of delays can be checked automatically and
efficiently just by testing if the delays satisfy the constraints.
Many technology mappings can be tested efficiently instead of
choosing conservative delays to ensure correctness. However,
this requires an analysis with symbolic delays, that makes ver-
ification more complex.

This paper presents an algorithmic approach for the auto-
matic discovery of linear constraints in timed systems that
guarantee their correctness. The technique is based on the
the paradigm of Abstract Interpretation [7], that was originally
devised for the static analysis of programs [8]. One of the main
motivatiens of this work is the characterization of the behavior
of asynchronous controllers. Under certain gate delays, these
circuits may manifest hazardous behavior that can be propa-
gated to some output signal and produce a failure. The purpose
of the verification is to derive a set of linear constraints on the
gate delays that guarantee a correct behavior. Each constraint
usually refers to a pair of structural paths in the circuit whose
delays must be related by an inequality, e.g.

delay(pathl) < delay(path2)

0-7803-8175-0/04/$17.00 (£)2004 IEEE.

Jordi Cortadella

Department of Software
Universitat Politécnica de Catalunya
e-mail: jordi.cortadella@upc.es

The complexity of the problem restricts the size of the cir-
cuits that can be verified with this approach, since explicit rep-
resentations of the states are required. So far, circuits with up
to 20 symbols have been verified. This makes the approach
specially suitable for the verification of small circuits whose
behavior depends on the timing characteristics of the compo-
nents, such as asynchronous controllers, e.g. [19]. But the
technique is also applicable to any level of granularity. For ex-
ample, one could verify RTL. specifications with delays at the
level of functional blocks (ALUs, counters, controllers, etc).

The paper is organized as follows. Section II presents a sim-
ple example of verification with symbolic delays. Section III
discusses related work in the area. Section IV introduces timed
transitions systems and symbolic delays. The main algorithm
for reachability analysis is presented in Section V. Finally,
Section VI illustrates the applicability of the approach to some
examples.

II. EXAMPLE: VERIFYING A D FLIP-FLOP

We illustrate the power of symbolic analysis with linear con-
traints by means of an example. Let us take the D flip-flop
depicted in Fig. 1(a) {18]. Each gate g; has a symbolic delay
in the interval [di, Di]. We call Tsetupy Thota and TCK—»Q the
setup, hold and clock-to-output times, respectively. T o and
Ty define the behavior of the clock. Our goal is to symbol-
ically characterize the latch behavior in terms of the internal
gate delays.

The method presented in this paper is capable of deriving a
set of sufficient linear contraints that guarantee the correctness
of the latch’s behavior, The verified property is the following:

The value of Q after a delay Teg_.q from CK's
rising edge must be equal to the value of D at CK'’s
rising edge.

Any behavior not fulfilling this property is considered tobe a
failure. Fig. 1(c) reports the set of sufficient timing constraints
derived by the algorithm. The most interesting aspect of this
characterization is that it is technology independent.

As an example, let us focus on two constraints. First,
dy > D» is necessary to prevent the cross-coupled gates gl
and g2 read the wrong vatue of IJ or enter metastability. Sec-
ond, Teequp > Dy + Dy — dp defines the setup time that, in-
terestingly, depends on the variability of the delay of g2. In
case of no variability on the delays, the constraint is reduced to
Tyetup > D1, which is the time required for gl to capture the
value of D.

The degree of parametrization can be chosen at the design-

- er’s will. If some delays are known, they can be used during

628

Terp ' o

. 7 =t T
o -
& & - Two S
” & oy CK->0 o
CK ﬁ# S _.__—IQ
) {B)

7CA

Tekmg S Do+ Da+ Dy

Tietwy > D1+ Da—dz Tek—g < 3+ D3+ Dy
Thota > D2+ Ds Toetap > 9

Ty > Da+Ds+ Dy Thota > 0

Tyr > Tho Ty > 34+ Da+4 Dy
Teo > Tewp Tro > Tserup

dy > Dy
(®))

Fig. 1. (a) Implementation of a D flip-flop 18], (b) description of variables that characterize any D flip-flop and (c) sufficient constraints for correciness for any
delay of the gates, (d) sufficient constraints if some delays are known: g1 = 4, 7] and g2 = [1, 3].

the verification. As an example, let us assume that the delay
of g, and g, are in the intervals [4, 7] and [1, 3], respectively.
The sufficient constraints with these assumptions are reported
in Fig. 1(d).

IT1. RELATED WORK

Several techniques for computing conservative timing con-
straints for the correct operation of asynchronous circuits are
available in the literature. Many techniques rely on analyzing
the circuit with known constant min-max delays in gates and
wires [4, 5,16, 17]. Time-symbolic simulation [14] assumes
that each gate has an unknown constant delay, but the analy-
sis requires that a lower and upper bound is known, Contrary
to these approaches, the technique presented in this paper can
deal with completely unknown delays that are represented as
symbols.

The kind of timing constraints that can be computed also dif-
fers from our approach. The first class of constraints is metric
timing constraints [3, 16]. i.e. constant min-max bounds for the
components of a circuit and its inputs events. Another group
of constraints is relative timing (4, 15, 17], i.e. constraints that
describe the relative order among concurrent events. Our ap-
proach can compute a wider class of constraints, linear con-
straints, Therefore, our analysis provides less conservative
timing constraints, that can yield an increase in performance.

Few techniques allow the analysis of asynchronous circuits
with symbolic delays. Parametric difference bound matrices
[2,13] and Presburger arithmetic [1] handle symbolic delays
in the verification of timed automata and timing diagrams, re-
spectively. However, these approaches exhibit a high complex-
ity that limits the number of states and symbolic delays of the
examples: at most 5 symbols with parametric DBMs, and 12
symbols with Presburger formulas. Another approach avoids
this complexity by selecting concrete constant values for the
symbolic delays using integer linear programming [20]. The
circuit is analyzed with constant delays, and if a reachable fail-
ure is found, the constant delays are updated to make it un-
reachable using integer linear programming. A shortcoming
of this method is that the result is a set of metric timing con-
straints.

Our approach uses convex polyhedra as the abstraction to
represent sets of timed states in timed transition systems. Con-
vex polyhedra have also been used in the analysis of systems
with different semantics: sequential programs [8], real-time
systems [10], linear hybrid automata and synchronous pro-
grams with counters [11]. All these methods are approximate,
as some operations on polyhedra are approximate to preserve

closedness, For example, the union of convex polyhedra is not
necessarily convex, and as an overapproximation, the convex
hull is used instead.

1V. DEFINITIONS

The behavior of a timed circuit can be modeled as a timed
transition system (TTS). A TTS is a transition system where
each event has a lower and upper delay bounds. In the re-
mainder of the paper, the delay of an event ¢ will be denoted
by [de, De|. Intuitively, these delay bounds indicate that if
an event ¢ is fired ¢ time units after becoming enabled, then
d. < t < D.. The following definitions present the concepts
of transition system and TTS, together with the semantics of
these models, i.e. the concept of “run”. These definitions can
be easily extended to allow symbolic delays in addition to con-
stant delays.

Dedinition IV,1 /3] A transition system (TS) is a quadruple
A = {5 %, T, s;n), where S is a non-empty set of states, X is
a non-empty alphabet of events, T' C § x ¥ x § is q transition
relation, and s,y is the initial state. Transitions are denoted by
s 5 s'. An event e is enabled at state s if 35 5 ' € T. We
will denote the set of events enabled at state s by £(s).

Definition IV.2 Let A = ($,2,T,8;,) bea TS. Arun of A

. €1 €z
is a sequence s1 — S2 —* ...

Sig1 €T foralli > 1.

2

such that 81 = $inp and 5; —

Definition IV.3 (/2] A timed transition system (T7TS) is a
triple A = (A~ ,d, D) where A= = (3,5,T,8;) isa TS
called the underlying transition system, d : & — R* and D :
¥ — Rt |J{oo} respectively associate a minimal and @ max-
imal delay bounds to each event, such thatVe € T . d. < D,

Definition IV.4 []2] A timed state sequence is a pair p =
{o,t) such that o is a sequence of states and 1 is a sequence of
time stamps in BY | £y, 1o, 83, ... suchthatt; <ty <3< ...
(monotonic) and Yk € BRY : 3i £; > k (progress).

Definition IV.5 [I12]Let A= (A~,d,D) bea TTS. Arunof
A is a timed state sequence p = {o,t) such that ¢ is a run of
the underlying transition system A~ and:

€

e lowerbound: Ve € 8, > 0,7 > i:t; <t;+de.: (3; >
si+1 € 0) — (e € £(s;)).

e upperbound: Ve € £,i > 0: 35 > i :
egéé'(si)v(siisjﬂ EO’).

thti-i-De:

629

7C-1

Algorithrm Abstractinterpretation (R, Inv)

Input: A timed transition system R =
{{3, X, T, 8in),d, D) with an invariant Inv defining con-
straints on symbolic delays.

Output: The abstraction Time for al states.

foreach state s € § do Time(s) :=@; endfor
Time(sin) = Inv;
changed := {sin };
do
n ‘= state in changed with lowest DFS nuzmber;
changed := changed \ {n};
foreach transitionn = m € T
newTéme = trans fer(n,e, m);
if (newTime C Time(m)) continue;
newTime = newTime U Time(m);
if {eis a back edge)
Time(m) = (Time(m) V newTime) N Inv;
else
Time(m) := newT'irne N Inv,
changed := changed U {m}
while (changed # @)

Fig. 2. Abstract interpretation algorithm

V. TIMING REACHABILITY ALGORITHM
A, Overview

Events of a TTS can only be fired if their lower and upper
bound restrictions are satisfied. Intuitively, each event has an
associated event clock that stores the amount of time elapsed
since the transition became enabled. Each time an event is
fired, event clocks are updated accordingly. Analysis of the
values of event clocks can reveal whether an event can be fired
or not in a given state.

We present an algorithm that computes a conservative up-
per approximation of the event clock values, convex polyhedra.
Approximations will be propagated and combined using fix-
point techniques described in abstract interpretation [7]. The
following sections describe the different parts of the algorithm:
the abstract interpretation techniques (B); the operations on
convex polyhedra (C}; and finally, the function that updates
the clock values after firing an event (D).

B. Abstract interpretation

Abstract interpretation [7,8] is a framework of approximate
static analysis techniques which can be applied to many kinds
of analysis problems in different types of systems. In crder to
solve a specific problem, the framework of abstract interpreta-
tion has to be adapted to:

e the properties being studied: The state of a system may
contain information which is not necessary to check a
given property. Therefore, in ocur analysis we can work
with an abstraction, a simplification of the state that ig-
nores the irrelevant information.

o the semantics of the system: The behavior of a system can
be defined by identifying a set of locations where we re-
quire information about the state. The relations among the
state of the system in these locations establishes a system
of equations.

The system of equations is solved iteratively using fixpoint
techniques, yielding an abstraction that describes an upper ap-
proximation of the state in each location of the system,

For the problem of timing analysis of a TTS, a configuration
is a set of valid assignments of constant values to clocks and
symbolic delays. We will abstract the set of valid assignments
as a convex polyhedron that is an upper approximation of this
set, i.e. all valid assignments are included in the polyhedron.
The convex polyhedron will describe the linear constraints that
are satisfied among clock values and symbolic delays in ail
these valid assignments. The locations of interest of our tim-
ing analysis of will be the states of the TTS. We will note the
abstraction in a given state s as Time(s). This abstraction de-
scribes the values of clocks when a state is reached, i.e. the
precondition of the state.

In order to define the timing behavior of the system, we have
to build a system of equations that defines how time elapses.
When an state is reached, several events become enabled while
other events that were enabled previously continue to be en-
abled. These events have to be fired according to its lower
and upper delay bound, taking into account that some events
have already been enabled for some time. We have defined a
symbolic function called transfer (see section D) that advances
the clock values while satistying all upper and lower bounds.
The output of this function is the value of clocks after firing
an event, i.e. the postcondition of the transition being taken.
Using this function, the abstractions for states can be defined
as the following system of equations:

vme S n>meT : Time(m) = {Jtransfer(n, e, m)

Fig.2 describes an algorithm that computes a scluticn for
this system of equations using a increasing fixpoint. Each lo-
cation starts with an empty set of valid assignments to clocks
and values, i.e. an empty abstraction. The algorithm applies
the equations iteratively as long as they add new valid assign-
ments. The solution is reached when there is a fixpoint.

Termination, i.e. convergence of the system of equations, is
guaranteed by modifying the computation for loops. A widen-
ing operator [8] is used in the the equations of those states that
are the targets of back-edges, i.e edges closing loops. Intu-
itively, widening extrapolates the effect of iterating a loop an
unknown number of times. An in-depth discussion on termi-
nation of fixpoints and the necessity of widening can be found
in [7,8].

C. Convex polyhedra

Convex polyhedra [8, 11] can be represented as the set of
solutions of a conjunction of linear inegualities with rational
coefficients. Let P be a polyhedron over ", then it can be
represented as the solution to the system of m inequalities P =
{X|AX > B} where A € Q™" and B ¢ ™. Convex
polyhedra can also be represented in a polar representation,
called the system of generators, as a linear combination of a
set of vertices V' (points) and a set of rays R (vectors}.

The set of operations on convex polyhedra that are required
for timing analysis are the following:

¢ Test for inclusion (P C): P is included in) only if
the generators of I satisfy the constraints of (2, that is,
VoeV:Av> BandVre R: Ar > (.

630

)

Ply:=0] X

Fig. 3. Several operations on convex polyhedra: (a) intersection of polyhedra
, {b) union of polyhedra as the convex hull, (¢) widening of polyhedra and (d}
assignment of a linear expression or an undefined value.

» Union (P|J@Q)): The union of convex polyhedra is not
necessarily convex, and therefere an upper approximation
is used. This approximation is called convex hull, the least
convex polyhedron that includes P and . P () Q is de-
fined as the polyhedron with a system of generators that
is the union of those in P and Q.

o Intersection (P Q): P(\@ is defined as the polyhe-
dron with a system of linear inequalities that contains all
the inequalities in P and Q.

* Widening (PV(Q): Widening is the extrapolation opera-
tor used to gnarantee termination in loops. PVQ is de-
fined as the system of linear inequalities which are satis-
fied both by P and Q).

o Applying a linear assignment (P[d := Cz + DJ): Lin-
ear assignments to a dimension of the polyhedron trans-
form the vertices and the edges of the polyhedron as
V' ={Cv+DlveV}lad R = {Crlr € R}.

o Assigning an undefined value to a dimension (P[d :=
?])»: This operation is equivalent to an existential quan-
tification: it removes all constraints for a given dimen-
sion of the polyhedron, while keeping all the implicit con-
straints about the rest of dimensions intact. This opera-
tion is implemented using the Fourier-Motzkin elimina-
tion methed {9].

Fig.3 shows some examples of these operations on convex
polyhedra. It should be noted that the convex hull and the
widening operator are the only operators that lose precision.
All other operators are exact.

D. The clock transfer function

The core of the analysis is the clock transfer function that
computes symbolically the changes in clock values after firing
an event. Clock values are represented by a convex polyhe-
dron, with one dimension per event clock and one dimension
per symbolic delay. The restrictions of this polyhedron repre-
sent the restrictions on the clock values in a given state. Intu-
itively, the purpose of the transfer function is to make sure that
whenever an event e is fired, its delay bounds d. and D, are
taken into account and added to the restrictions on the clock
values.

7C-1

Function transfer(src, e, dst)
Input: An event src -~ dat.
Output : The postcondition of src - dst.

P = Time(src);
P =P A{step > 0}
P = P A{clocks + step > de);
P = P A(clock. + step < De);
foreachevent e’ # e: e € £(src)
P = P A(clocke + step < Do);
forcachevent ¢ # e: €' € {E(src)NE(dst)}
Plclock,s := clock,s + stepl; :
foreachevem ¢’ # e: &' € E(dst) A e’ ¢ E(sre)

Plclock.s :=0];

foreachevente' # e: ¢ € E(sreyAe’ ¢ E(dst)
P[clockef ::?l;

if (e € E(dst)) Plclock. := 0];

else Pldock. :=7];

P[step :=17];

return P;

Fig. 4. Clock transfer function

Event clocks for enabled events store the amount of time
elapsed since the event became enabled, while disabled clocks
are undefined. After firing an event, event clocks should be
updated to reflect the time elapsed between the firing of the
last event to the firing of current event. This time spent in the
state is called clock step, and it should satisfy the following
properties:

e Step should be > 0, i.e. no negative time increments.

e Step should be long enough to ensure that the firing of e
happens at least . time units after e was enabled. At the
same time, it should be short enough to ensure that e is
fired at most D, time units after becoming enabled.

o Step should be short enough to ensure that any transition
that is enabled before firing e is not forced to fire due to
its upper bound constraint.

When an event e is fired, the clocks of other events have to
be updated. The change in their clocks depends on whether
they are enabled or disabled before and after firing e. Events
that become newly enabled have their clock reset to zero, while
events that become disabled have their clock undefined. If an
event remains enabled before and after e, its clock is increased
by the clock step. Finally, if an event remains disabled, its
clock does not change.

Fig.4 describes the algorithm that computes the transfer
function using convex polyhedra operators. Fig.5 shows an
example of the computation that would be performed by the
algorithm. Events that are enabled before and after firing event
e have been increased by an amount in the interval [d., D),
i.e. the unknown clock step. Also, notice that some constraints
among the symbolic delays of different events have been dis-
covered. These constraints were imposed over the clock step
during the transfer, and implied several restrictions on the de-
lays that are made explicit when variable step is undefined.
For example, the restriction D, > d. means that event e can
be fired only if @ is not faster than e. This restriction is implied

631

7C-1

transfer(5. ¢, 52) =
P := Time {s1}
P = P A(step 20)
P:=PA{clock o+ step 2 dg)
Pi=PA(clockg+step < Dg)
P:=PA(clock+step € Dy)
P:=PA(clockp+step < Dy}
P [clock 5= clock 5+ step]
P [clock gi= 7]
P{ciock = 7)
Plelock ;= 0)
Pistep:= 7]

{P} = {(clock, = 0) A (clock, = 0} A (0 < clocky < 1)}
{Q} = {(clock, = 0) A (D, > clocky > de)A
(D = clocky > de) A{de +1 < D)}

Fig. 5. Example of the transfer function for an event e, with the postcondition
€ obtained from a precondition P.

by the constraints clock, + step < D, clock. + step > d.,
clock, = 0, clock. = 0.

E. Main algorithm

Timing analysis provides the required constraints for the
reachability of the states of the TTS. However, we are looking
for the complementary conditions, i.e. those that render fail-
ures unreachable. Therefore, an algorithm is needed on top of
timing analysis to extract selected constraints from those pro-
vided by abstract interpretation. This algorithm is presented in
Fig.6.

After computing the untimed state space using depth-first
reachability analysis, timing analysis can be performed on the
TTS. Interestingly, the polyhedra computed for failure states
describe the required costraints to reach the failures. If any of
these constraints is false, the failure state will be unreachable.
For example, if one polyhedron has the constraints (@ < b +
¢)A(e = f), then the constraint (a > b+ c) V (e < f) ensures
that the failure is unreachable.

The algorithm proceeds by choosing one of these linear con-
straints at a time and adding it to the invariant, Currently, this
choice is performed interactively, even though we have plans
to automate this procedure. Several simple heuristics can be
used, such as “choose the constraint that removes the highest
number of failures”. Backtracking might be required to recon-
sider bad choices, as in [20]. The verification continues until
all failures have become unreachable or the invarniant is false. A
false invariant means “cannot find a constraint that makes the
system correct”, It can happen if the system has an unavoid-
able failure or the algorithm cannot find sufficient constraints
due to approximation.

VI. EXPERIMENTAL RESULTS
We have implemented the algorithm presented in this paper
in a verification tool. In this section, we show some examples
that have been verified using this tool.

A. Asynchronous pipeline

We have verified an asynchronous pipeline with different
number of stages and an environment running at a fixed fre-
quency. The processing time required by each stage has differ-
ent min and max symbolic delays. The safety property being
verified in this case was “the environment will never have to

!
Algorithm Verification (S, F, I}
Input: A specification of a TTS 5, a predicate F' describ-
ing failure states and transitions, and a predicate I describing
known restrictions on the symbolic detays.
Output: A set of constraints on the symbolic delays that is
sufficient to avoid the failures defined by F.

R := ReachabilityAnalysis({S, F);
constraints = 1I:
do
AbstractInterpretation(R,constraints);
C = set of linear constraints required to reach a
failure that are not implied by constraints;
choose a linear constraint ¢ from C;
constraints .= constraints A ¢,
y while {any failure is reachable A constraints # false);
I {constraints = false — unavoidable failure}
| return constraints;

Fig. 6. Main algorithm for verification

wait before sending new data to the pipeline”. Fig.T shows the
pipeline, with an example of a correct and incorrect behavior.
The tool discovered that correct behavior can be ensured if:

diy > maz(Dy,... ,DN,DOUT)

where D; is the delay of stage 4, and dyy and Doy refer to
environment delays. Therefore, the pipelineg is correct if the
environment is slower than the slowest stage of the pipeline.
CPU time for the different lengths of pipeline can be found in
Fig.7.

B. Other examples

We have also verified a set of asynchronous circuits avail-
able in the literature, defined as a network of simple gates plus
a Signal Transition Graph (STG) [6] modeling the behavior of
the environment. In these circuits, correctness has been defined
as absence of hazards, i.e once an event becomes enabled, it
does not become disabled before being fired; an conformance,
i.e. all output events produced by the circuit are expected by
the environment. Table I shows the size of the circuits, STGs
and the computed TTSs, the number of symbolic delays, the
number of constraints required for correctness, and the CPU
time used for the verification.

VII. CONCLUSIONS

An algorithm for symbolic timing analysis of concurrent
systems has been presented. The cutput of the algorithm is
a conservative approximation of the values of clocks and sym-
bolic delays in the reachable states of the system. An appli-
cation has been shown by computing the constraints of gate
and input delays in asynchronous circuits that guarantee cor-
rect behavior. Remarkably, the approach works for more than
15 symbolic delays within a reasonable time.

The technique is well suited for analyzing small-sized timed
circuits such as asynchronous controllers. These circuits of-
ten operate at very high throughputs, and they heavily rely on
stringent timing constraints to ensure a correct behavior. Fu-
ture work will try to handle bigger circuits with more symbolic

632

7C-1

TABLE 1
EXPERIMENTAL RESULTS
Example Circuit STG TTS #of # of CPU Time
Signals | Gates | Piaces | Trans | States | Trans | symbols | constraints || (seconds)
nowick 10 7 19 14 60 119 10 2 0.5
gasp-fifo 9 7 10 8 66 209 12 10 8.1
sbuf-read-ctl 13 10 19 16 74 157 14 4 1.2
rev-setup 9 6 14 15 72 187 12 8 2.1
alloc-outbound 15 11 21 22 82 161 19 3 1.3
ebergen 11 9 16 14 83 188 13 5 1.3
mp-forward-pkt 13 10 24 16 194 574 12 6 1.9
chul33 12 9 17 14 288 1082 7 3 1.3
converta 4 12 16 14 366 1341 14 13 204
N req req raq ouT #of TTS #of CPU Time
@ ack ack ack stages || States | Trans | symbols (seconds)
2 36 83 3 0.6
o 0 |—|ol—|ol—(o]— R 1 T
4 324 1080 12 13.5
o @x(o—=] [—o[-{ |- 0 D N

Fig. 7. (a) Asynchronous pipeline with N=4 stages, (b) correct behavior of the pipeline and (c) incorrect behavior. Dots represent data elements. On the right,

the CPU times required to verify pipelines with different number of stages.

delays. We plan to use representations based on Binary Deci-
sion Diagrams to represent sets of states and timing constraints
symbolically.

ACKNOWLEDGEMENTS

This work has been partially funded by CICYT TIC2001-
2476, ACID-WG (IST-1999-291 19}, a distinction by the Gen-
eralitat de Catalunya and a travel grant from the DATE com-
munity and the EDAA association,

REFERENCES

[11 T. Amon, G. Borriello, T. Hu and J. Liu. “Symbolic timing verification
of timing diagrams using presburger formulas.” In Proc. of Design Au-
tomarion Conference, pp. 226-231, 1997,

[2] A.Annichini, E. Asarin and A, Bouajjani. “Symbolic techniques for para-
metric reasoning about counter and clock systems™. In Proc. of Computer
Aided Verification, pp. 419434, 2000.

[3] A. Arnold, Finite transition systems. Prentice Hall, 1994,

[4] W.J. Belluomini and C. J. Myers. “Timed circuit verification using TEL
structures.” IEEE Transactions on CAD, 20(1):129-146, 2001.

[5

8. Chakraborty, D. L. Dill, and K. Y. Yun, “Min-max timing analysis
and an application to asynchronous circuits,” Proceedings of the IEEE,
87(2):332~346, 1999,

[6] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
specifications. PhD thesis, MIT, June 1987.

7

P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points.” In ACM Symp. on Principles of Programming Languages, pp.
238-252. ACM Press, 1977,

[8] P Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program.” In ACM Symp. on Principles of Program-
ming Languages, pp. 84-97. ACM Press, 1978,

[91 G. Dantzig and B. Eaves. “Fourier-motzKin elimination and its dual”
Jowmal of combinatorial theory, 14:288-297, 1973,

[10] D.Dill and H. Wong-Toi. “Verification of real-time sysiems by succes-
sive over and under approximation.” In Proc. of Computer Aided Verifi-
cation, LNCS. Springer-Verlag, 1995.

{11] N. Halbwachs, Y-E. Proy and P, Roumanoff. “Verification of real-time
systems using linear relation analysis.” Formal Methods in System De-
sign, 11(2):157-185, 1997.

[12] T. A. Henzinger, Z. Manna and A. Pnueli. “Timed transition systems.”
in Proc. REX Workshop Real-Time: Theory in Practice, volume 600, pp.
226-251. LNCS, 1992,

T. Hune, J. Romijn, M, Stoclinga and F. W. Vaandrager. “Linear para-
mettic mode! checking of timed amomata.” In Tools and Algorithms for
Construction and Analysis of Systems, pp. 189-203, 2001.

13|

[14] N.Ishiura, Y. Deguchi and 5. Yajima. **‘Coded time-symbolic simulation
using shared binary decision diagram.” In Proc. of Design Automation
Conference, pp. 130-135, 1990,

[15] H. Kim, P. Beerel and K. Stevens. “Relative timing based verification
of timed circuits and systemns.” In Proc. 8th Int. Symp. on Asynchronous
Circuits and Systems, 2002

[16] L. Lavagno, K. Keutzer, and A. L, Sangiovanni-Vincentelli. “Synthesis
of hazard-free asynchronous circuits with bounded wire delays.” [EEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 14(1), 1995.

[17] M. A. Peiia, J. Cortadella, A. Kondratyev, and E. Pastor. “Formal ver-
ification of safety properties in timed circuits.” In Proc. Int. Symp. on
Advan-ced Research in Asynchronous Circuits and Systems, pp. 2-11,
2000.

[18] C. Piguet et al. Memory element of the master-slave latch type, con-
structed by CMOS technology. US Patent 5,748,522, 1998,

[19] 1 Sotherland and S. Fairbanks. *“GasP: A minimal FIFO control” In
Proc. Int. Symp. on Advanced Research in Asynchronous Circuits and
Systems, pp. 46-53, 2001.

[20] T. Yoneda, T. Kitai and C. Myers. “Automatic derivatton of timing con-
straints by failure analysis.” In Proc. of Computer Aided Verification, pp.
195-208, 2002,

633

	footer1:

