
Quasi-static scheduling for concurrent architectures

Jordi Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

Alex Kondratyev
Cadence Berkeley Labs

Berkeley, USA

Luciano Lavagno
Politecnico di Torino

Torino, Italy

Yosinori Watanabe
Cadence Berkeley Labs

Berkeley, USA

Abstract

This paper presents a synthesis approach for reactive
systems that aims at minimizing the overhead introduced by
the operating system and the interaction among the concur-
rent tasks, while considering multiple concurrent execution
resources. A formal model based on the notion of schedul-
ing of Petri nets is used to perform the synthesis. We show
how the notion of projections of a schedule for the com-
plete system onto the components implemented on separate
resources is essential to define the correctness of the parti-
tioned schedule.

1 Introduction

Embedded systems use computers and electronics to per-
form some task, usually to control some physical system or
to communicate information, without being explicitly per-
ceived as a computer. Thanks to the ever-increasing perfor-
mance at an ever-decreasing cost they are a preferred means
to offer ever-improving services to a multitude of drivers,
callers, photographers, watchers, and so on. The phenom-
enal growth of complexity and breadth of use of embedded
systems can be managed only by providing designers with
efficient methods for hardware or software synthesis, from
formal models that explicitly represent the available con-
currency. Software is becoming particularly interesting as
an implementation option, due to the simultaneous growth
of mask costs, which makes Application-Specific Integrated
Circuits less appealing, and of CPU performance, which
makes software a feasible choice even in presence of tight
Real-Time constraints.

Concurrent specifications, such as dataflow net-
works [11], Kahn process networks [9], Communicating
Sequential Processes [8], synchronous languages [6], and
graphical state machines [7], are interesting because they

expose the inherent parallelism in the application. How-
ever, their mixed hardware-software implementation on
heterogeneous architectures requires to solve a fundamental
scheduling problem. We assume in the following that the
preliminary allocation problem of functional processes to
architectural resources has been solved, either by hand or
by some appropriate heuristic algorithm. The task of this
paper is to define and solve the scheduling problem for a
process-level concurrent functional specification allocated
to several computing resources, in particular processors.

Most embedded systems are reactive in nature, mean-
ing that they must process inputs from the environment at
the speed and with the delay dictated by the environment.
Scheduling of reactive systems thus is subject to two often
contradicting goals: (1) satisfying timing constraints and (2)
using the computing power without leaving the CPU idle for
too long.

1.1 Static and Quasi-Static Scheduling

Static scheduling techniques do most of the work at
compile-time, and are thus suitable for safety-critical appli-
cations, since the resulting software behavior is highly pre-
dictable [10] and the overhead due to task context switching
is minimized. They may also achieve very high CPU uti-
lization if the rate of arrival of inputs to be processed from
the environment has predictable regular rates that are rea-
sonably known at compile time.

Static scheduling, however, is limited to specifications
without choice (Marked Graphs or Static Dataflow [11]).
Researchers have recently started looking into ways of com-
puting a static execution order for operations as much as
possible, while leaving data-dependent choices at run-time.
This body of work is known as Quasi-Static Scheduling
(QSS) [2, 12, 13, 3, 14]. The QSS problem, i.e. the ex-
istence of a sequential order of execution that ensures no
buffer overflow, has been proven to be undecidable by [2]

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

for specifications with data-dependent choices. Our work
fits in the framework proposed by [3], in which Petri nets
(PNs) are used as an abstract model, that hides away cor-
relations among choices due to the value of data that are
being passed around. We improve over [3] because we now
consider several execution resources, and thus produce a
concurrent schedule that exploits the available parallelism
in both the specification and the implementation platform.

We use a game-theoretic intuitive formulation of the
schedulability problem, in which the scheduler must win,
by avoiding overflow of FIFO queues, against an adver-
sary who can choose the outcome of non-deterministic data-
dependent choices. The scheduler can resolve concurrency
in an arbitrary, resource-dependent, fashion using a policy
called “schedule” in the following, but it is not allowed to
“starve” any input by indefinitely refusing to service it.

With respect to classical real-time scheduling theory, we
focus on the control and data dependencies between pro-
cesses, and create tasks based on them. I.e., two fragments
of processes allocated to the same resource (e.g., a CPU)
and whose execution is triggered by the same input from
the environment are merged into the same task, in order
to reduce inter-process communication and synchronization
overhead. We allow splitting and duplication of process
code, in order to come up with an efficient grouping of code
fragments into tasks. Classical real-time scheduling theory
can then be used to coordinate these tasks at run-time.

Further work will need to be devoted to the issue of op-
timal allocation in order to satisfy real-time constraints. In
case inter-task scheduling is non-preemptive, the level of
granularity at which processes can be merged also affects
the overall schedulability.

1.2 Specification model

We consider a system to be specified as a set of con-
current processes. A set of input and output ports are
defined for each process, and point-to-point communica-
tion between processes occurs through uni-directional FIFO
queues between ports. Multi-rate communication is sup-
ported, i.e. the number of objects read or written by a pro-
cess at any given time may be an arbitrary constant.

Communication operations on ports, as well as internal
computation operations are modeled by transitions in the
corresponding Petri net, while places are used to represent
both sequencing within processes (a single token models
the program counter) and FIFO communication (the tokens
model the presence of the data items, while hiding their val-
ues).

Figure 1 depicts the specification of a concurrent sys-
tem with a single master and two slaves, where the Master
process reads an input from the port IN and then sends a
request to one of the Slave processes. For communication

S2

IN

S1

PROCESS Master (InPort IN,
 OutPort S1, OutPort S2) {

 }

 READ(IN, req, 1);
 if(req.id == 1) {
 WRITE(S1, req.data, 1);
 }
 else {
 WRITE(S2, req.data, 1);

}
 postcomp();

 while (1) {

 READ(S1, data, 1);
 change_mode(data);
}}

PROCESS Slave1 (InPort S1) {
 while (1) {
 standby();
 READ(S2, data, 1);
 change_mode(data);
}}

PROCESS Slave2 (InPort S2) {

 standby();

Figure 1. Specification for master-slave sys-
tem

f

y h

x z

b

d

a

c

e

standby();
READ(S2, data, 1); change_mode(data);

standby();

READ(S1, data, 1); change_mode(data);

x
y

z

h

d WRITE(S1, req.data, 1);

WRITE(S2, req.data, 1);

READ(IN, req, 1);a

Transition Operation

e

f postcomp();

Slave1Slave2

req.id==1

Master

(b)(a)

Figure 2. (a) Petri net model for the specifi-
cation of Figure 1 (b) Operations associated
with transitions

between processes, we support three types of operations:
READ, WRITE, and SELECT. READ(port, data,
rate) specifies an operation of reading data from the port
port to a variable data, where the number of items read
at a time is given by a constant integer rate. WRITE
is similar, while SELECT(port1, port2) supports
synchronization-dependent control, where it probes the
presence of objects at the ports and non-deterministically
selects one port with objects being available (See Fig-
ure 5(c) for example). Figure 2 shows a Petri net that mod-
els this specification.

2 Background

The following definitions introduce the nomenclature
used in the paper.

Definition 1 (Petri net) A Petri net is a 4-tuple N �
�P� T� F�M��, where P is the set of places, T is the set
of transitions, F � �P � T � � �T � P � � N is the flow
relation and M� � P � N is the initial marking. The set
of reachable markings of a Petri net is denoted by �M�i.
The fact that M � is reachable from M by firing transition t
is denoted by M �tiM �. The pre-set and post-set of a node
x � P � T are denoted by �x and x�, respectively.

2

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

Given a Petri net N with P � �p�� � � � � pn�,
the notation Pre�t� is used to represent the vector
�F �p�� t�� � � � � F �pn� t��. Given a set of nodes X , N n fXg
denotes the subnet of N obtained by removing the nodes in
X and their adjacent arcs from N . If for any node x in PN
N we have �x � x� � �, then N is called self-loop free.
M�p� denotes a number of tokens in place p under marking
M .

In this paper we use nets with source transitions, i.e. with
empty pre-sets. These transitions model the behavior of the
input stimuli to a reactive system.

Definition 2 (Source and non-source transitions) The
set of transitions of a Petri net is partitioned into two
subsets as follows:

TS � ft � T j �t � �g� TN � T n TS �

TS and TN are the sets of source and non-source transi-
tions, respectively. The set of source transitions TS is fur-
ther partitioned into controllable T c

S
and uncontrollable T u

S

(T u

S
� TS n T c

S
) transitions.

Informally, the decision on firing controllable transitions
belongs to the scheduler, while the firing of uncontrollable
transitions is governed by the environment and is out of
scheduler control. This aspect is elaborated in more detail
in Section 3, when we introduce the definition of schedule.

Definition 3 (Free-choice set) For non-source transitions
TN a Free-choice Set (FCS) is defined as a maximal subset
of transitions C such that

�t�� t� � C s.t. t� �� t� and t�� t� � TN �

Pre�t�� � Pre�t�� � ��t��
� � ��t��

��

Transitions from one FCS set are always enabled simul-
taneously. Firing of one of them disables the rest in case
of a safe net. This is a convenient mean to express a fully
non-deterministic behavior. We will call FCS�t� the set of
transitions that belong to the same FCS of t. Any conflict
inside a FCS is said to be free-choice. In Section 3 the
notion of FCS is further extended to source transitions.

Definition 4 (Transition system) A transition system is a
4-tuple A � �S����� sin�, where S is a set of states, � is
an alphabet of symbols, � � S � �� S is the transition
relation and sin is the initial state.

With an abuse of notation, we denote by s
e
� s�� s �

s�� s ��� s� � � �, different facts about the existence of a
transition with certain properties.

A path p in a transition system is a sequence of tran-
sitions s�

e�	�s�
e�	�s� �

 � sn

en	�sn��, such that

the target state of each transition is the source state of the
next transition and ei denote firing events. A path with mul-
tiple transitions can also be denoted by s

�
� s�, where � is

the sequence of symbols in the path.
For a finer look at the internal structure of TS it is helpful

to distinguish firing regions of TS events.

Definition 5 (Firing region) Given a transition system
A � �S����� sin�, the firing region of an event e � �,
denoted by FR�e�, is the set of states fs j s

e
�g.

Definition 6 (Entry border) The entry border of a set of
states S� is a subset of S� defined as follows:

EB�S�� � fs� � S� j �s �� S� � s� s�g�

The entry border of a firing region is the set of states by
which this region is entered in TS from outside.

In the suggested scheduling approach there is a close re-
lationship between modeling the original system by a PN
and a corresponding TS specifying the system schedule.

Definition 7 (TS conforming to a PN) Given a PN N �
�P� T� F�M�� a TS A � �S����� sin� is said to be con-
forming to N iff the following conditions are met:

1. � � T

2. There is a mapping � � S � �M�i, with ��sin� � M�.

3. If transition t is fireable in state s, with s
t
� s�, then

��s��ti��s�� in N .

Note that in the reachability graph of a PN there is no
distinction between fireability and enabling because accord-
ing to the PN semantics any enabled transition might fire.
A TS conforming to a PN is introduced as a subset of the
reachability graph in which the enabling of events coincides
with those in the PN (t is enabled in s when it is enabled
in ��s�) but their fireability might differ. This feature, as
shown in Section 3, allows a scheduler to control the fir-
ing of system transitions by delaying them to the benefit of
deriving an efficient schedule.

3 Sequential schedule

Scheduling of a PN imposes the existence of an addi-
tional control mechanism for the firing of enabled transi-
tions. For every marking, a scheduler defines the set of fire-
able transitions as a subset of the enabled transitions. The
composite system (PN+scheduler) proceeds from state to
state by firing fireable transitions.

The following definition is an extension of [4] to take
into account the difference between controllable and uncon-
trollable transitions.

3

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

Definition 8 (Sequential schedule) Given a Petri net N �
�P� T� F�M�� and a partition FC�T u

S
� � fT u

S
g,

a sequential schedule of N is a transition system
Sch � �S� T��� s�� with the following properties:

1. Sch is conforming to N and has a finite set of states
S.

2. If t� is fireable in s, then t� is fireable in s if and only
if t� � FCS�t��.

3. For each state s � S, there is a path s
�
��s�

t
� for

each t � T u

S
.

In order for this definition to be consistent, the notion
of FCS is extended to source transitions. We assume that
for controllable transitions FCSs are defined dynamically
by the scheduler. These transitions can be fired arbitrarily
(in conflict or not), because their firing is completely under
scheduler control. Formally, given the set S of states of a
schedule, the FCS for the set of controllable transitions T c

S

is defined as a mapping H � S � �T
c

S , such that for each
s � S, H�s� must be enabled ��s�.

For uncontrollable transitions, an FCS is defined as a
partition FC�T u

S
� � fT�� � � � � Tkg that is imposed on T u

S
.

In particular FC�T u

S
� could be the whole set of transitions

T u

S
. This partition is included in the system specification.
Property 1 of Definition 8 implies that the set of traces

of Sch is contained into that of N (any feasible trace in the
schedule is feasible in the original PN). Property 2 indicates
that one FCS is scheduled at each state. Finally, property 3
denotes the fact that any input event from the environment
will be eventually served.

Given a sequential schedule, a state s is said to be an
await state if all uncontrollable source transitions belong-
ing to an FCS are fireable in s. An await state models a
situation in which the system is “sleeping” and waiting for
the environment to produce an event.

Intuitively, scheduling can be deemed as a game between
the scheduler and the environment. The rules of the game
are the following:

� The environment makes a first move by firing any of
the source transitions.

� The scheduler might pick up any of the enabled transi-
tions to fire (property 2) with two exceptions:

(a) it has no control over choosing which of the
source transitions to fire and

(b) it cannot resolve choice for data-dependent con-
structs (which are described by free-choice sets).

In cases (a) and (b) the scheduler must explore all pos-
sible branches during the traversal of the reachability

ab

p2p3

a

p1

0

p2p1

p1p2 p2p2p1p1

a

a b

b

b

ba

a

c

p2

c

(b)

d b

c

0

(a) p2

c

p1

b

p3p2

p1p3

d

p3p3p2p2

a
a

p3

p1

p1p2

a

d

b

d

b

Figure 3. Non-schedulable PNs

p2p7p10

p4p6p7p10p4p6p7p10

Sch1

yh

p7

p8

p9

p10

y h

x z

p1p7p9

p3p7p9

p4p5p7p9

p2p7p9

p4p6p7p9

p6p7p10

f f

p4p5p8p9

(c)

p4p5p8p9

p2p7p9

p3p8p9

h y

(b)

ff

x

Sch2

x

z

ed

cb

(a)

p7p9

ep2

b

p9p8p5

a

b c

d

a
a

p9p8p5p6p7p10

p3p7p9

p1p7p9

p7p9

p6

d

z

p1

f

p4

Master (M) Slave (S)

p5

c

e

p3

Figure 4. Master-slave system.

space, i.e. fire all the transitions from the same FCS.
However it can decide the moment for serving the
source transitions or for resolving a free-choice, be-
cause it can finitely postpone these by choosing some
other enabled transitions to fire.

The goal of the game is to process any input from the
environment (property 3) while keeping the traversed space
finite (property 1). In case of success the result is to both
classify the original PN as schedulable and derive the set of
states (schedule) that the scheduler can visit while serving
an arbitrary mix of source transitions. Under the assumption
that the environment is sufficiently slow, the schedule is an
upper approximation of the set of states visited during real-
time operation.

The notion of sequential schedule is illustrated in Fig-
ures 3 and 4. Figure 3 shows two non-schedulable specifi-
cations and parts of their reachability spaces. The impossi-
bility to find a schedule for the PN in Fig. 3(a) stems from
the inability of a scheduler to control the firing of source
transitions. A cyclic behavior in this PN is possible only
with correlated input rates of transitions a and b. On the
other hand, the PN in Fig. 3(b) is non-schedulable because
of the lack of control on the outcome of free-choice resolu-
tion for the place p�.

Figure 4(a) presents an example of a master-slave sys-
tem in which the master is non-deterministically choosing
which one of the two slaves to trigger. The two possible
schedules for this specification are given in Fig. 4(b)(c).
These schedules show different interleavings of master and
slave transitions.

4

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

b c
p1

0
a

p2 p3

p4

ed

f

The resource for the master

 SELECT(S1, S2) {

}

while(1) {
Slaves {

}

 case S1:
 S1_standby();
 READ(S1, S1_data, 1);
 S1_change_mode(S1_data);
 break;

 case S2:
 S2_standby();
 READ(S2, S2_data, 1);
 S2_change_mode(S2_data);
 break;

p7p9

p5p7p9

p6p7p10 p5p8p9
y

d e

z x
p6p7p9

h

The resource for the two slaves Code generated from (b)
(a) (b) (c)

Figure 5. Schedules for the Master and the two
Slaves

4 Concurrent schedules

4.1 Problem Overview

To address the scheduling problem with multiple re-
sources for implementation, we assume that an allocation
has been already determined, and we take it as input in ad-
dition to the Petri net for the specification. Intuitively, an
allocation can be considered as a mapping from each transi-
tion to the resource that executes the operations represented
by the transition. For example, in the Petri net shown in Fig-
ure 2, all the operations of the two Slave processes may be
allocated to one resource, while those of the Master process
may be allocated to another resource. In practice, we em-
ploy some restrictions on allocations, as formally defined in
Section 4.2.

Given a Petri net and its allocation, the problem is to find
a sequential schedule for the operations allocated to each
resource. In the Master-Slave example, one may obtain the
schedules given in Figure 5(a) and (b) for the resources for
the Master and the two Slaves respectively. Figure 5(c) de-
picts the code generated from the schedule of Figure 5(b).

A naive approach for this scheduling problem is to com-
pute a sequential schedule for each resource independently.
However, this approach often results in a deadlock when
the schedules are executed altogether. This problem can be
illustrated as follows. In Master-Slave example, the allo-
cation given above defines two Petri net fragments, one for
the Master and the other for the two Slaves, as shown in
Figure 6(a) and (c) respectively. Note that the Petri net for
the Slaves has transitions d and e as source transitions, even
though their operations are allocated to the resource for the
Master. This is because the executions of these operations
need to be taken as input in order to define the behavior of
the Slaves.

The naive approach will take these Petri nets, and find a
sequential schedule for each. For the Petri net representing
the Slaves, one needs to decide whether the source transi-
tions d and e should be treated as controllable or uncontrol-
lable, without knowing the behavior of the Master process.
Treating them as uncontrollable is not good in general, since

(b)

f

ed

p4

Sch_M

p3p2

a

p2

b

d

a

Master (M)

c

e

p3

p1

p4

f

z

p6

d

h

0

p1

e x

cb

(a)

y

Sch_S

p7

p8

p9

p10

y h

x z

p5

e d

Slave (S)

(c)

(d)

p4, p6p7p9

b

p7p9 p7p10 p6p7p10

p7p9p8p9p5p8p9

z

c

c

a

a

z

(e)

0, p7p10

Sch_M || Sch_S

z
0, p7p9

p1, p7p9

p1, p7p10

p3, p7p10p2, p7p10

p2, p7p9 p3, p7p9

deadlock

Figure 6. Schedules whose interaction leads
to a deadlock

it works only when their operations are in conflict in the
Master. Once they are treated as controllable, one needs to
decide when and how they are fired in the schedule for the
Slaves. Suppose that the schedules shown in Figure 6(b)
and (d) have been obtained for the Master and the Slaves.
How these schedules interact when executed in the two re-
sources can be identified by taking the parallel composition
of the two, as partially shown in Figure 6(e). As shown in
the figure, a deadlock can result for these schedules, if for
example the resource for the Slaves executes the transition
z while the resource for the Master executes a and c. In
the original specification shown in Figure 2, if a and c are
executed, then transition e has to be executed. However, the
schedule for the Slaves treated e as a controllable source,
and it can be executed only after h, according to the sched-
ule of Figure 6(d). Since h requires d to be executed in the
specification and since d is in conflict with a, the deadlock
results. This kind of causality relation between the Mas-
ter and Slave processes cannot be identified when sched-
ules are computed independently for the resources, and thus
the naive approach works only when it by chance finds cor-
rect schedules for all the resources. In the next sections, we
show conditions under which schedules for the resources do
not cause this problem, and present a procedure that finds
schedules accounting for these conditions.

4.2 Allocation

In [3] it was shown that the main advantage of the im-
plementation obtained by sequential QSS with respect to
the one directly implementing a set of concurrent processes
is a drastic decrease of the communication overhead. For
the case of a single computational resource (e.g. a CPU),
sequential QSS gives an optimal solution. However when
several computational resources are available the sequen-
tial implementation might result in a significant perfor-
mance penalty. This motivates an investigation of concur-

5

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

rent schedules.
When several computational resources are available, the

actions of the original specification (PN transitions) must
be assigned to resources for implementation. In quasi-static
scheduling this assignment is done statically and is formal-
ized through the notion of allocation. A concurrent schedule
is defined with respect to a given allocation, and the prob-
lem of finding an optimal allocation is left to future work.

Definition 9 (Allocation) Given a Petri net N �
�P� T� F�M�� an allocation defines a partition of T ,
Alloc�T � � T � f�� �� � � � � ng (where each integer
between 1 and n denotes a resource) with the following
properties:

1. �p� �t�� t� � �p � Alloc�t�� � Alloc�t��

2. �p� �t�� t� � p� � Alloc�t�� � Alloc�t��

3. �p� ��t� � �p� � �t� � p�� �
Alloc�t�� �� Alloc�t��� � FCS�t�� � ft�g.

Transitions with the same allocation value are meant to
be implemented by a single resource. This uniquely de-
fines an FC partition of uncontrolled transitions: a source
partition is called allocation matching when �ti� tj � T u

S ,
ti� tj belongs to the same FCS if and only if Alloc�ti� �
Alloc�tj�.

Note that for non-source transitions allocation preserves
FCS partitioning because all the output transitions of the
same choice place must be put in the same allocation clus-
ter. The places between transitions with different allocation
values are interpreted as port places and are used for re-
source interfacing. Property 1 and 2 of allocation guarantee
that writing to (reading from) port places could be done by
transitions allocated to the same resource only, while Prop-
erty 3 tells that writing is always done in a deterministic way
that ensures a separation between making non-deterministic
choice and performing communication.

It is easy to see that for a PN derived from a set of con-
current processes (see Section 1) any allocation that re-
spects process boundaries (i.e. all transitions of the same
process are assigned the same allocation value) satisfies
Properties 1-2. To satisfy Property 3 one might need to in-
troduce silent transitions to decouple choice and communi-
cation. The latter is always possible and is known to be an
equivalent transformation.

In that way for the suggested specification style an allo-
cation could execute several processes on single resource,
but it never splits processes between several resources.

Definition 10 Given a Petri netN � �P� T� F�M�� with an
allocation Alloc�T �, an allocation cluster i is a PN subnet
defined by a subset of transitions Ta � Tinternal � Tinput,
where t � Tinternal �� Alloc�t� � i, while t �

Tinput �� �t � ����t��� � Alloc�t�� � i� and subset
of places Pa �� �Tinternal�.

I.e. a cluster contains transitions with the same allocation
value and their immediate predecessors and places that are
input to its internal transitions.

Figure 4(a) shows an allocation for the Master-Slave ex-
ample that naturally partitionsMaster and Slave function-
ality on different resources. It is easy to check that this al-
location satisfies Properties 1-3 of Definition 9.

The clusters for Master and Slave corresponding to the
allocation in Figure 4(a) are shown in Figure 6(a) and (c) re-
spectively. Note that clusters are overlapping by input tran-
sitions of port places (transitions d and e for Slave).

4.3 Definition of concurrent schedule

The game-theoretic interpretation of scheduling dis-
cussed in Section 1 can be extended to concurrent schedul-
ing. However, the rules of the game must be extended to
take care about the proper composition of distributed parts
of the scheduler implementation, since the global scheduler
is indeed a composition of one local scheduler per resource.

These extensions concern two main issues 1) the com-
mitment to decisions about transition fireability and 2) the
receptiveness to environment inputs.

Definition 11 (Persistent firing region) Given TS A �
�S����� sin� conforming to PN N , FR�t� is called per-

sistent in A if �s � FR�t� such that s
t�

� s�� s� �� FR�t�
either 1) t� � t or 2) t becomes disabled in s� or 3) transi-
tions t and t� belong to the same FCS.

Note that cases 2 and 3 are different. On one hand, tran-
sitions of non free-choice PNs can disable each other and
not be in the same FCS (i.e. Case 3 does not cover Case 2).
On the other hand, source transitions cannot be disabled,
but can belong to the same FCS (i.e. Case 2 does not cover
Case 3).

Informally, one can exit from a firing region for t either
by firing t or by disabling t through the firing of some other
transition t� which is in conflict with t. For source transi-
tions the disabling is interpreted in a broader sense as con-
tainment in the same FCS (see Condition 3).

Persistency helps to formulate the commitment of the
distributed scheduler to the decisions about transition fir-
ings and makes it impossible for a scheduler to “withdraw
its moves” when playing against the environment.

Another important requirement is the receptiveness of
a schedule. It describes the ability to make progress un-
der any input generated by the environment. Receptiveness
of a sequential schedule is guaranteed by forcing the fir-
ing of all source transitions once any of them becomes fire-
able (in await states). For a concurrent schedule it would

6

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

FR(t)

Figure 7. Receptive firing region.

be too restrictive to synchronize all source transition firings
in a single state. For efficient operation, processes imple-
mented by different resources must be able to move faster
or slower with respect to their neighbors. Therefore it is
possible that, due to the difference of speed among pro-
cesses, some source transitions become enabled earlier than
others. Then if the environment produces inputs for faster
processes at a faster rate, these processes might benefit from
that by not waiting for the rest of the system to catch up at a
common synchronization point. However, this is not a hard
requirement for the environment, which still behaves non-
deterministically and produces the inputs at will. In order
to guarantee progress for any input combination, the relaxed
receptiveness property below states that every time a source
transition t becomes enabled, it is still possible to reach an
await state through the firing of non-source transitions con-
currently fireable with t. This ensures that the schedules
cannot favor some of the uncontrollable input transitions
with respect to others.

Definition 12 (Receptive firing region) The firing region
FR�t� of source transition t is called receptive if for every
state s from the entry border of FR�t� any maximal trace 1

� � s
�
� not containing source transitions and not leaving

FR�t� ends up in an await state within FR�t�.

Definition 12 states that once a firing region of some
source transition t is entered and the firing of source tran-
sitions (including t) is postponed by the scheduler, then
sooner or later a state with all source transitions being fire-
able (await state) is reached (see Figure 7).

Allocation, receptiveness and persistency are the new
features (with respect to the sequential case) that one needs
to consider in defining concurrent schedules.

Definition 13 (Concurrent schedule) Given a Petri net
N � �P� T� F�M��, allocation Alloc�N� and partition
FC�T u

S
� matching it, a concurrent schedule of N is a tran-

sition system Sch � �S� T��� s�� with the following prop-
erties:

1. Sch is conforming to N and has a finite set of states
S.

1
� is maximal with respect to property P if for any trace �� extending

� (��
� �a), P is violated.

p6

p1

p3

e

p4p6p7p10

c

p5

Slave (S)Master (M)

p7

p8

p9

p10

y h

x zp4

a

f

d

b

p4p7p9

p2

(b)

FR(y)

p5p8p9

p1p6p7p10 p1p5p8p9
y

h
aa

f f

y

y

h

h

p3p7p9

(a)

p7p9

p1p7p9

p2p7p9

p4p6p7p9

p6p7p10

a

b c

d e

z x
p4p5p8p9

p4p5p7p9

Figure 8. Concurrent schedule for master-
slave specification.

2. If t� is fireable in s, then any t� � FCS�t�� is fireable
in s as well, while any t� �� FCS�t�� with Alloc�t�� �
Alloc�t�� is not fireable in s.

3. All firing regions are persistent.

4. All firing regions of uncontrollable transitions are re-
ceptive.

5. For each state s � S, there is a path s
�
��s�

t
� for

each t � T u

S
.

The need for Properties 3 and 4 in defining concurrent
schedules has been discussed already. Property 2 is an ex-
tension of the similar requirement in sequential schedules.
It tells that all transitions from the same FCS must be fire-
able simultaneously. Moreover it tells that at most one FCS
from a cluster can be fireable in a schedule state. This im-
plies that every cluster is implemented sequentially.

Figure 8(b) shows a concurrent schedule for the master-
slave example. One can easily check that it satisfies Prop-
erties 1- 5. The shadowed area corresponds to a persistent
firing region for transition y.

4.4 Construction of concurrent schedule

A concurrent schedule provides a global view on the be-
havior of all resources used in allocation. Ideally such a
view should be derived as a composition of local sched-
ules: one per resource (cluster). This strategy however
meets some difficulties that were discussed in Section 4.1.
It was shown there that an independent scheduling of each
allocation cluster does not ensure the consistency of fir-
ing read/write transitions that produce/consume data in port
places. To guarantee consistency, we suggest first to con-
struct a sequential schedule for the whole system. A se-
quential schedule provides a uniform starting point for de-
riving schedules for clusters. Cluster schedules are obtained
by projecting the global sequential schedule on the set of
cluster transitions. This design flow is illustrated in Fig-
ure 9.

7

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

 PN Concurrent
schedule

Allocation

...

Cluster_1

Cluster_k

Projecting Composition

Sequential QSS

Figure 9. Concurrent scheduling flow.

A schedule projection is defined as a sequence of trans-
formations of the underlying TS. The following notation is
introduced to describe them:

1. Pred�s� � fsi j si
e
� sg (set of immediate predeces-

sors of s)

2. Succ�s� � fsi j s
e
� sig (set of immediate successors

of s)

Definition 14 (State merge) Given a TS A � �S����
� sin� and a pair of states s�� s� � S, the merge of s�� s�
results in a new TS A� � �S�������� s�

in
� such that S� �

�S � fs��g� n fs�� s�g and Pred�s��� � �Pred�s�� �
Pred�s���nfs�� s�g, Succ�s��� � �Succ�s���Succ�s���n
fs�� s�g, while for the rest of states in A� the sets of their
predecessors and successors coincide with those in A.

Merging a pair of states s�� s� replaces these states by
a single state s�� which combines immediate predecessors
and successors from s� and s�.

Definition 15 (TS projection) Given a TS A � �S����
� sin� and a set of events E � �, the projection of A on E

is a TS obtained by merging every pair of states s�� s� such
that s�

e
� s� � �e �� E�.

Proposition 1 For a given TS A � �S����� sin� and set
of events E � �, the projection of A on E is unique.

The proof immediately follows from the commutativity
of the � operation.

Definition 16 (Deterministic TS) A TS A � �S����
� sin� is deterministic iff

1. �s
e�� s�� s

e�� s� � �e� � e� � s� � s��.
2. �s�

e�� s� s�
e�� s � �e� � e� � s� � s��.

Definition 17 (Determinization of TS) The determiniza-
tion of a TS A � �S����� sin� is the TS obtained from
A as the fixed point in applying state merging for every pair
of states s� �� s� such that either

1. �s� e j s
e
� s�� s

e
� s� or

2. �s� e j s�
e
� s� s�

e
� s

Proposition 2 The determinization of a TS is unique.

The proof follows from the fact that the set of immedi-
ate successors and predecessors is monotonically increasing
during state merging, and that the pre-conditions for merg-
ing are transitive. Therefore if a pair of states s� and s�
are merged into a single state s�� then any other state s�
that satisfies the conditions of determinization either in pair
with s� or in pair with s�, would clearly satisfy the deter-
minization conditions for the pair fs�� s��g.

Proposition 2 proves the soundness of Definition 17 as it
states the uniqueness of the fixed point during state merging.

Definition 18 (Schedule projection) Given a schedule
Sch � �S����� sin� and a set of events E � �, the
projection of Sch on E is the result of projection on E and
determinization of the underlying TS.

4.5 Consistent schedules

Definition 19 Given a Petri net N � �P� T� F�M�� and
clusters C�� � � � � Ck defined by allocationAlloc�N�, the set
of sequential schedules SchC�

� � � � � SchCk of C�� � � � � Ck is
called consistent if their parallel composition is isomorphic
to a concurrent schedule of N .

Projecting a sequential schedule of PN N onto subsets
of events of clusters C�� � � � � Ck is the constructive way in
which we would like to seek for a consistent set of sched-
ules. However projecting a sequential schedule onto a set
of events of a cluster does not always result in a valid se-
quential schedule for this cluster. To illustrate that, let us
return to the Master-Slave example and its sequential sched-
ule Sch� from Figure 4(c).

The clusters for Master and Slave are shown in Fig-
ure 6(a)(c). The result of projecting Sch� onto sets of
events TM and TS of these clusters is illustrated by Fig-
ure 10.

A closer look at the slave projection Proj�S� shows
that, because of merging of states labeled with transitions
a� b� c� f (these transitions do not belong to TS), both z

and x are fireable in the initial state of Proj�S�. How-
ever, in a sequential schedule only transitions from the same
FCS could be fireable in a particular state. But z and x do
not belong to the same FCS in the PN for Master-Slave.
Section 4.2 points out that allocation must preserve FCSs.
Therefore Proj�S� is not a valid sequential schedule for
Slave because it fires transitions from different FCSs in
the same marking.

The following Proposition gives a constructive way to
check whether projections of a sequential schedule of the
overall system result in a consistent set of schedules for its
clusters.

Proposition 3 Let C�� � � � � Ck be a set of clusters of PN
N � �P� T� F�M�� defined by allocation Alloc�N� and let

8

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

p7p9

p1p7p9

a

(a)

p2p7p9

p6p7p10

z

d

f

p3p7p9

p9p8p5

x

e

f

b c

h
y

(c)

Proj(S)

p7p9
z x

p7p10 p8p9

p6p7p10 p5p8p9
d e y

h

p2p7p10

p4p6p7p10

p3p8p9

p4p5p8p9

b c
p1

Proj(M)

0
a

p2 p3
d e

p4
f

(b)

Sch2

Figure 10. Inconsistent projections.

Sch1

p7p9

p1p7p9

a

(a)

p2p7p9

p6p7p10

f

p3p7p9

p9p8p5
f

b c

h
y

(c)

Proj_S

p7p9

p5p7p9

p6p7p10 p5p8p9
y

h

b c
p1

Proj_M

0
a

p2 p3

z x

d e ed

p4

d e

z x
p6p7p9

p4p6p7p10

p4p6p7p9

p4p5p8p9

p4p5p8p9
f

(b)

Figure 11. Consistent projections.

Sch be a sequential schedule of N . If the set of projections
PR � fProj�C��� � � � � P roj�Ck�g of Sch onto events of
C�� � � � � Ck gives sequential schedules for C�� � � � � Ck , then
PR is consistent.

See the Appendix for the proof.
One could construct many sequential schedules by the

very same PN, with different event interleavings (deciding
the order of event firing is the main part of a scheduler pol-
icy). Some of these schedules might serve better in deriving
a set of consistent projections.

To illustrate this let us explore another sequential sched-
ule Sch� for the Master-Slave example (Figure 11(a)).
Sch� differs from Sch� in Figure 10(a) by reversing the
order of concurrent transitions d� z and e� x. Projections of
Sch� onto clusters for Master and Slave (Figure 11(b)
and (c) respectively) give sequential schedules for these
clusters and therefore present a consistent set of schedules.
Contrary to Figure 10(c), in the initial state of Slave pro-
jection of Figure 11(c) only controllable transitions are fire-
able. This does not contradict the FCS relation because for
controllable transitions FCSs are defined dynamically.

The capability of a sequential schedule to produce a con-
sistent set of projections under the given allocation can be
taken into account during the construction of a schedule.
Let us assume for simplicity that the schedule is constructed
in such a way that no two states of a schedule get the same
marking. I.e., the schedule is minimized on the fly by merg-

ing the states with the same markings2. Let us associate
with every state of the schedule not only the corresponding
PN marking, but also the local markings for each alloca-
tion cluster, obtained as projections of PN markings onto
the subset of places defined by the cluster. Every time a
new schedule state s is generated (s �� M�m�� ����mn �,
where M is a PN marking and m�� ����mn are local mark-
ings for clusters 1,...,n) it must pass the consistency check
as follows:

� for each allocation cluster Ci� i � �� � � � � n do

– In the currently obtained set of schedule states
find the subset S�mi� in which all local mark-
ings for Ci coincide with mi (these states would
correspond to the same state in the projection for
cluster Ci)

– If the union of fireable transitions of states from
S�mi� is not in the same FCS then exit(failure)

� exit(success)

If the check for consistency of the state s returns “suc-
cess”, the schedule continues with s, while in case of failure
it backtracks and explores different ordering of transition
firings. In that way the consistency check serves as an addi-
tional condition for termination.

The above procedure illustrates that algorithms used to
generate a sequential schedule, e.g. the one in [3], need mi-
nor modifications to include that consistency check. It is
possible that backtracking in the generation process hap-
pens more often than in the sequential case. This problem
could be alleviated by developing heuristics and exploring
sufficient conditions that simplify the consistency analysis,
but this is left to future work.

5 Conclusions

This paper proposes a method that bridges the gap be-
tween specification and implementation of reactive sys-
tems. From a set of communicating processes, and by de-
riving an intermediate representation based on Petri nets,
a set of concurrent tasks that serve input events with mini-
mum communication effort is obtained. We extend previous
work by considering a more general definition of the con-
cept of schedule, considering concurrent implementations.
This considerably increases the applicability of the method,
but requires additional considerations in order to prove that
tasks scheduled on different resources interact correctly and
do not deadlock due to the partitioning.

2The case when several schedule states corresponds to the same mark-
ing could be treated in a similar way but requires some additional book-
keeping.

9

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

In the future, we would like to apply our technique to
realistic examples, and consider the problem of allocating
processes to resources in order to improve the performance
of the resulting schedules, under cost and real-time con-
straints.

Acknowledgment
This work has been partially funded by a grant from Ca-

dence Design Systems and CICYT TIC2001-2476.

References

[1] G. Arrigoni, L. Duchini, L. Lavagno, C. Passerone,
and Y. Watanabe. False path elimination in quasi-static
scheduling. In Proceedings of the Design Automation
and Test in Europe Conference, March 2002.

[2] J. Buck. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. PhD
thesis, U.C. Berkeley, 1993.

[3] J. Cortadella, A. Kondratyev, L. Lavagno, M. Mas-
sot, S. Moral, C. Passerone, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Task Generation and
Compile-Time Scheduling for Mixed Data-Control
Embedded Software. In Proceedings of the 37th De-
sign Automation Conference, June 2000.

[4] J. Cortadella, A. Kondratyev, L. Lavagno,
C. Passerone, and Y. Watanabe. Quasi-static
scheduling of independent tasks for reactive systems.
In Proceedings of the International Conference of
Appliaction and Theory of Petri Nets, 2002.

[5] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der
Wolf, J.-Y. Brunel, W.M. Kruijtzer, P. Lieverse, and
K.A. Vissers. YAPI: Application Modeling for Sin-
gal Processing Systems. In Proceedings of the ��th

Design Automation Conference, June 2000.

[6] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, 1993.

[7] D. Har’el, H. Lachover, A. Naamad, A. Pnueli, et al.
STATEMATE: a working environment for the devel-
opment of complex reactive systems. IEEE Transac-
tions on Software Engineering, 16(4), April 1990.

[8] C. A. R. Hoare. Communicating Sequential Processes.
International Series in Computer Science. Prentice-
Hall, 66 Wood Lane End, Hemel Hempstead, Hert-
fordshire, HP2 4RG, UK, 1985.

[9] G. Kahn. The semantics of a simple language for par-
allel programming. In Proceedings of IFIP Congress,
August 1974.

[10] H. Kopetz and G. Grunsteidl. TTP – A protocol
for fault-tolerant real-time systems. IEEE Computer,
27(1), January 1994.

[11] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow graphs for digital signal pro-
cessing. IEEE Transactions on Computers, January
1987.

[12] B. Lin. Software synthesis of process-based concur-
rent programs. In 35th ACM/IEEE Design Automation
Conference, June 1998.

[13] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Synthesis of em-
bedded software using free-choice Petri nets. In 36th
ACM/IEEE Design Automation Conference, June
1999.

[14] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and
et al. Scheduling hardware/software systems using
symbolic techniques. In International Workshop on
Hardware/Software Codesign, 1999.

6 Appendix

Before proving Proposition 3, let us introduce some ad-
ditional notions and show the validity of an intermediate
property.

Definition 20 (Projection image) Given a TS A� obtained
by projection and determinization of TS A � �S����
� sin� on events E � �, the image of a state s � A� is the
set of states in A that are merged into s (denoted by im�s�).

Property 1 Let Proj�C� be the projection of a sequen-
tial schedule Sch onto subset of events TC of an alloca-
tion cluster C � �PC � TC � FC �MC

�
�. Then for any state

s� � Proj�C� the projections of PN markings onto PC for
all Sch states in the image of s� coincide.

Proof: Let us consider the construction of Proj�C� in two
steps:

– Proj��C� as a result of state merging because of hid-
ing events from T n TC and

– Proj��C� as a result of determinization of Proj��C�.

Let s�� s� � Sch and s�
t
� s� where t �� TC . Then

s� and s� have the same image s� � Proj�C� because they
must be merged. Allocation defines a partition on the set of
places P of the original PN. From this follows that t cannot
change the marking of any of the place from PC and hence
projections of ��s�� and ��s�� onto PC coincide (projec-
tion of a marking ��s� on a subset of places PC results in
removing from ��s� all the places that are not in PC , this
projection will be called local marking of cluster C). From

10

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

this follows that all states of Sch in the image of any state
from Proj��C� have the same local markings.

Consider s�
t
� s�� and s�

t
� s�� in Proj��C�, where

t � TC . Then in Sch there exist two pairs of states s�
t
� s�

and s�
t
� s� such that s� and s� belong to the images of s�

and s��, and s� and s� belong to the images of s� and s��.
Since s� and s� have the same image, their local markings
coincide. From this follows that ��s�� and ��s�� have the
same local markings because they are obtained as a result
of the firing of the same transition t from the same local
marking. Hence ��s�� � ��s��. �

Note. For the schedules in which no two schedule state
have a same marking the projections could be derived by
simply projecting Sch markings onto local markings and
then merging all projection states that have the same local
markings.

Proposition 3. Let C�� � � � � Ck be a set of clusters of PN
N � �P� T� F�M�� defined by allocation Alloc�N� and
Sch be a sequential schedule of N . If the set of projections
PR � fProj�C��� � � � � P roj�Ck�g of Sch onto events of
C�� � � � � Ck gives sequential schedules for C�� � � � � Ck then
PR is consistent.
Proof: Let us show that the parallel composition of
C�� � � � � Ck (denoted by jjC��k) satisfies Definition 13 of
concurrent schedule.

�Conformance to PN and finiteness (Condition 1 of Def-
inition 13).

The set S of states of a parallel composition is finite be-
cause each of the projections is finite. To show the confor-
mance of jjC��k to PN N one needs to show the existence
of a mapping from states of the schedule to PN markings
and make sure that events are fired in a schedule state only
when they are enabled in the corresponding marking (see
Definition 7).

Let us construct the mapping � 	 S �
M�i, with
��s�� � M�. � is obtained through the union of
local markings for states from S, i.e. for any s �
S (s �� s�� ���� sk �, where s�� ���� sk are states of
Proj�C��� � � � � P roj�Ck�) the mapping � provides a mark-
ing ��s� which is obtained as a union of local markings of
s�� ���� sk. Let us show that ��s� corresponds to a PN mark-
ing in
M�i and any fireable transition in s is enabled in
��s�.

Let us apply induction on the length of the path from s�
to s.

��s�� � M� is trivial and directly follows from the rules
of projection. Let a be fireable in s. Then for every cluster
Ci such that a � Ci, transition amust be fireable in the local
state si (due to the rules of parallel composition). Alloca-
tion defines a partition and therefore the set of all clustersCi

such that a � Ci contains all input places of a in the original
PN (with each place having sufficient number of tokens for

enabling of a). Therefore if s
a
� then a is enabled in ��s�.

Moreover, the additivity of marking change implies that if
s

a
� s�, then ��s�� coincides with the marking obtained

from ��s� by the firing of a. Condition 1 is proved.

� FCS fireability (Condition 2 of Definition 13).
It t� fireable in a schedule state s of jjC��k then t� is

also fireable in a local state si of cluster Ci containing t�.
Allocation preserves FCS and therefore any t� � FCS�t��
is also fireable in si. Hence t� must be fireable in s as well.
From Proj�Ci� being a sequential schedule it follows that
only one FCS from clusterCi could be fireable in local state
si. Therefore in schedule state s at most one FCS from each
cluster is fireable.

� Persistency (Condition 3 of Definition 13).
Let us assume that persistency is violated in jjC��k, i.e.

s
a
� s�, s

b
� s� and a is not fireable in s�. Clusters do

not overlap on places and therefore events from different
clusters could not disable each other. Then there must ex-
ist a local state si with a� b � Ci such that the firing of b
disables a in Ci. Then b and a must be in the same FCS
in Proj�Ci�. Hence a and b are in the same FCS in the
original PN as well which satisfies persistency.

� Receptiveness (Condition 4 of Definition 13).
Let state s �� s�� ���� sk � in jjC��k belong to the entry

border of the firing region FR�t� of uncontrolled source
transition t and t � Ci. Then t is fireable in state si of
cluster Ci. According to projection rules the image of si in
Schseq contains an await state sa and all states from which
sa is reached by firing transitions that are not from Ci. Let
us take state s� � Schseq which is in the entry border of
im�si� (see Figure 12). From s� there exists a trace � into
await state sa which does not contain transitions fromCi or
from T u

S (� � ��� ��� �� in Figure 12). By � one can derive
a parallel run jj� which contains all possible permutations
of concurrent transitions in �. s� is chose in such a way that
s is in jj�. Therefore in jjC��k there exists a trace from s to
await state sa that is covered by the set of traces jj�. It is a
maximal trace because it cannot be extended beyond sa.

To prove that any maximal trace from s has the same
property let us consider traces ofSchseq whose parallel runs
correspond to maximal traces from s. Let them start from
s� but diverge with �. Any such trace � (� � ��� �� in Fig-
ure 12) either ends up in an await state (see Property 3 of
Definition 8) or it has a loop from non-source events (trace
w in Figure 12). In the latter case however the trace corre-
sponding to the loop is not maximal.

� Liveness with respect to uncontrollable transitions
(Condition 5 of Definition 13).

Instead of cyclic objects for the schedule and
its projections, let us consider their acyclic in-
finite representations in the form of unfoldings

11

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

as

s’

s ’a

im(s)i

ω

σ2

σ1

δ1

δ2

δ3

Figure 12. Proof of receptiveness.

Schuseq � P roj�C��
u� ���� P roj�Ck�

u� jjCu
��k. Suppose

that in jjCu
��k there exists a state s �� s�� ���� sk � from

which a source transition a is unreachable. Without loss
of generality one can assume a � C�. Let us consider the
composition jjC��k of projectionsProj�C��� ���� P roj�Ck�.

–Case 1. jjC��k is a concurrent schedule for the subnet
of the original PN N obtained by deleting transitions from
C� together with their output places.

Then the non-liveness of a stems from the inconsistency
of C��k and C�. Transition a is unreachable in jjCu

��k from
s �� s�� ���� sk �. However in Proj�C��

u there must be a

feasible sequence of fireable transitions b� c� ��� j s�
b
� s�

�

c
�

���s�i
a
� because according to conditions of Proposition 3,

Proj�C�� is a sequential schedule for C�. Let state s be
chosen in such a way that b is not fireable in s (if b is fireable

in s then we will consider state s� j s
b
� s� and the next

transition c in the sequence from s� to s�i). Then b is not
fireable in state s only if s contains local state sj j sj �
Proj�Cj�

u, where b � Cj and b is not fireable in sj .

– Case 1.1. b is not reachable in Proj�Cj�
u.

In Schuseq let us consider state sb � im�s�� j sb
b
�

and a set of states im�sj�. None of the states from im�sj�
can precede sb, otherwise b would be reachable from sj in
Proj�Cj�

u. State sb cannot precede states from im�sj� by
the choice of sj (otherwise b cannot be blocked in s). Let
us choose the last state sl in Schuseq such that sl

�
� sb and

�s � im�sj� j sl
�
� s (i.e. from any successor of sl it is

not possible to reach both sb and im�sj�. Then in state sl
at least two events c and d are fireable, where c is the first
event in �, while d is the first event in � (see Figure 13(a)).

Events c and d are from the same FCS and due to this
are internal for some cluster. Then they are non-observable
for at least one of the clusters Cj or C� (say Cj e.g.). Let
us consider events e and f� e� f�� Cj that are first met in �

and �. In the projection of Schuseq onto events from Cj the
corresponding states se and sf would be merged into sef
and e and f would be fireable from sef (see Figure 13(b)). e
and f are from the same FCS because otherwise Proj�Cj�
cannot be a valid sequential schedule. Then they both must
be fireable in states se and sf of Schuseq . Two cases are

jim(s)

s_b
j

js

im(s)

s_ef

j
s_b

jj

j
j

s

e f

y

...
... ...

... ...

(f)
s_b

j
js

j

jim(s)

x

s_ef

... ...

c d

...
... ...

s_e

(a)

s_b

f

s_f
e

s_l

...

e f

(b)

...

...

c d

...
...

e ef

... ...

s_e

(c)

s_b

s_f

f

s_ef
s_l

c d

ee
f

... ...

...
...

...

s_l

s_e s_f

f

s_b

(e)

e f

z yh

... ...

... ...

x

(d)

Figure 13. Proof of liveness.

possible:
a) sb and im�sj� are reachable by making different

choices for e and f (see Figure 13(c)) and
b) sb and im�sj� are reachable by making the same

choice for e and f (see Figure 13(e))
In case (a) due to the choice of sl none of the states from

im�sj� are reachable from state sf . Because of this in the
Proj�Cj�

u once event e is fired, there must exist another
forking point (denoted in Figure 13(d) by z and h) to make
im�sj� unreachable from sf . For z and h it is possible to
repeat the same consideration as for e and f , with the ex-
ception that these events are closer to sj . Finally we will ei-
ther arrive to the contradiction of keeping FCS relations in
projections (like in Figure 13(b)) or will exhaustively check
all the forks in � or � without distinguishing conditions on
reachability of im�sj� and sb. The latter also leads to con-
tradiction and proves that the assumption about the validity
of case (a) is wrong.

Case (b) (Figure 13(e)) reduces to case (a) because the
need to distinguish the reachability conditions for sb and
im�sj� requires to have a fork (denoted by x and y) after
the firing of f in Proj�Cj �

u. Thus Case 1.1 is proved.

–Case 1.2. b is reachable in Proj�Cj�
u from sj (i.e

sj
g
� ���s�j

b
�) but g is blocked in a state s of jjCu

��k by
C�

Then the considerations of Case 1.1 might be repeated
for the pair of Schuseq states sb and sg , where b is fireable in
sb, while g is fireable in sg .

–Case 2. C��k is not a concurrent schedule for the subnet
N n C� of the original PN N obtained by deleting from N

transitions in C�, together with their output places.
Then consistency violations are present in the parallel

compositions of clusters C�� ���� Ck and one can repeat the
proof for the PNNnC� and sequential scheduleSchseqnC�

which is obtained from the original Schseq by projecting on
C� � ��� � Ck.�

12

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

