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Carmona for their great help not only in the research but also in the everyday life.

Many thanks to all administrative personal of the Departamento de Lenguajes y
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Preface

Elastic systems (ES) offer a simple and elegant approach to tolerate variability
in computation and communication delays. An ES is a set of computational nodes
interconnected by communication channels. The main property of the computational
nodes in an ES is that they synchronize their behavior by local hand-shake protocols.
That is, the behavior of a particular node depends only on its neighbors. If some
input data is not available, the node waits for it as long as necessary to perform a
computation.

Most computational systems one can imagine are elastic: a computer program,
a microprocessor (at the architectural level) or an asynchronous circuit are elastic
systems, while conventional synchronous sequential circuits are not. In synchronous
design it has to be guaranteed that all data are available at the end of the clock
period. If some node fails to finish the computation, the result of the operation can
be wrong. The advantage of the synchronous approach is that the design process is
significantly simplified.

However, as nano-technology continues to scale down, the uncertainty of the delays
increases and timing is becoming wire dominated. If a communication is required
between two nodes that are situated far apart on the chip, it can take a long time.
To meet the timing requirements for this communication, the cycle period may need
to be increased, degrading the performance of the circuit.

One solution for this problem of synchronous design is to substitute the global
clock signal by local hand-shakes, leading to asynchronous design. Asynchronous
design is elastic and does not lose performance because of the clock accommodation
for the worst case. However, contemporary Computer Aided Design (CAD) tools are
mostly oriented to the synchronous design since it has predominated for more than
twenty years.

A discrete version of the asynchronous design was recently proposed by several
research groups. This work refers to a such design as Synchronous Elastic Design.
Synchronous design is elasticized by associating a control information with the data
path of the circuit. The control information indicates the validity of the data that is
being transfered or computed and coordinates the flow of valid and non-valid data.

ESs accept a set of correct-by-construction transformations. Correct-by-construction
means that the high-level behavior of the system is unchanged. Usually, such trans-
formations can be performed in a totally automated way or with a minor intervention
of the user. For example, in the ES the long interconnection wires can be pipelined
with empty registers (bubbles), which is not an easy task in classical synchronous
design. Also pipelining of an ES can be a totally automated process.

There is a lot of investigation have been done in this area. However, most of



the work is focused either on design aspects or on a local transformation that can
potentially improve performance of an ES and there are quite few publications about
global performance optimization of ESs using proposed local transformations. The
main goal of this work is to show how performance of an ES can be estimated and
enhanced using a set of correct-by-construction transformations.

This work uses a simple abstract model to represent an ES. This model is a graph
with several properties attached to its vertices and edges. In the very beginning
the modeling was done with only synchronous systems in mind, but it looks like
asynchronous circuits would also benefit from the proposed optimization techniques.

The first contribution of this work combines retiming (a well known sequential
optimization technique) with recycling (insertion of bubbles) to optimize the perfor-
mance of ESs. An optimization technique is proposed based on mixed integer linear
programming. For this, the performance of ESs is modeled with a set of linear in-
equalities. The experimental results showed that the simultaneous application of both
techniques allows achieve better performance/area trade-offs that their sequential ap-
plication. However, the cycle time of the circuit could be hardly reduced beyond one
retiming achieves and never beyond the cycle time that clock skew optimization pro-
vides.

There are situations when a computational node of an ES may produce new valid
data having only some valid inputs. A classical example is a multiplexer which selects
only one branch depending on the value of the select signal, the other branches are
don’t care. A special evaluation rule which is called early evaluation may improve
the global performance of an ES when applied to multiplexer like nodes. The second
contribution extends the first to the ESs with early evaluation nodes. The exten-
sion is based on the marked graph model for systems with early evaluation nodes
(guarded marked graphs). The retiming and recycling applied to ESs with early eval-
uation nodes may improve its performance far beyond both retiming and clock skew
optimization techniques.

The third contribution can be viewed as a synthesis of slack matching and buffer
sizing. Slack matching is a well-known problem in asynchronous design. Slack match-
ing can be viewed as bubble insertion (recycling), but in the way the overall through-
put of an ES increases. Buffer sizing has been proposed for performance optimization
of synchronous elastic systems. Buffer sizing finds the minimal capacities of each
communication buffer of an ES, such that the overall performance does not degrade
because of backward stall event propagation. An abstract model of ES is used with-
out differentiating synchronous and asynchronous implementation. Moreover, the
first and the second contributions make an assumption that all buffers of the ES have
infinite capacity. The third contribution shows how the reasonable sizes for these
buffers can be found. Even, in general case, being NP-hard problems, slack-matching
and buffer sizing optimization techniques can be applied within a few seconds to the
major part of ESs.
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Chapter 1

Introduction

We were living in the continuous world when physicists discovered that the space and
the time are discrete and every physical object behaves both like a particle and like
a wave. Fortunately, the granularity of the discontinuity of the world has magnitude
of the Planck’s constant 1 that still makes us feel and think continuously.

The very first electronic digital devices appeared only in the second part of the
XX century. Usually, the conversion from continuous structure to discrete makes
systems more amenable for analysis, synthesis and verification, but we should bear
in mind the integer linear programming [81] which is NP-complete [83] while linear
programming has polynomial time solutions [62,64].

In the last few decades the tremendous progress in the technology of digital circuits
manufacturing shook the world. The supercomputer of the 60s is now the property
of everybody who have a mobile phone. Microprocessors appeared on the market in
the beginning of the 80s and during thirty years the Moore’s Law 2 has been holding
true so precisely that it makes us to suspect that it is a pure marketing trick of the
manufacturers.

Nowadays there is a huge industry of digital circuits manufacturing with a lot
of interesting and complex problems. This work is concentrated on some of them.
The main contributions of this work are formal methods for performance analysis
and optimization of elastic (a.k.a. latency insensitive) systems. Let us start outlining
famous problems of the nano-technology that motivate this research.

1h = 6.626068 · 10−34 m2·kg
s

2Microchips will gain a factor of two in speed and the number of transistors will increase by two
every 2 years
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1.1 Motivation

The very first digital circuits did not use the global synchronizing signal, also known
as clock. But it turn out that the introduction of clock simplifies design process
and still allows to produce good, from the performance point of view, circuits. This
observation resulted in a huge industry of the synchronous circuits manufacturing.
Every two years the manufactures would use the advances of the photo-lithography to
make circuits twice faster.

However, it is easy to observe that in the last years the clock period of the pop-
ular microprocessors has been decreasing at a much lower rate than in the previous
decades. New problems arise in the 65nm and deeper nano-technologies, namely:

• Interconnection delays [1]. The performance of the modern microprocessors is
becoming dominated by the interconnections (wires). The traditional assump-
tion that any two modules of the circuit may communicate in a negligible time
is no longer valid. The part of the chip that can be accessed from the given
cell of the circuit within one clock cycle is decreasing as technology continues
to scale [75]. The crosstalk and coupling capacitances of interconnections start
to play a significant role in the circuit timing. The inadmissibility of long wires
make clock tree synthesis more complicated since wires/gates sizing and buffers
insertion techniques must be applied at this step [44,69].

Another consequence of the performance being dominated by wires is the in-
creasing gap between timing estimation at the front and back ends of the design
process. A perfectly feasible design at the logical level may become infeasi-
ble after detailed physical. The delay of interconnections can be reduced by
interconnect optimization techniques such as wire/gates sizing [30], buffer in-
sertion [80, 100] and gate duplication [29, 103], but the gap between delays of
interconnects and devices continues to grow [35].

• Design variability [82]. It is one of the leading technical challenges that impede
continued technology scaling. There are two type of variability that are usually
deserving attention: variability between chips and variability within a chip. The
variability between chips appears because of imperfections in photo-lithography
technology. Some parameters can not be precisely controlled at nano-meter
nodes which makes different chips to have different timing and consequently,
different performance. On-chip variability (OCV) comes from the fact that a cell
behaves differently (has different timing) depending on the operating conditions
of the chip. The temperature, the level of the high voltage affect the timing
of the circuit. The only thing the traditional synchronous methodology can do
to cope with OCV is to increase the clock cycle, hence, loosing performance.
There are voltage scaling [85] techniques that allow to adapt circuit to operating
conditions of the chip, process workload etc.
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• Design complexity. Again, as the Moore’s law predicts the contemporaneous
microprocessors are approaching to billion transistors integrated on a die. To
build such complex systems withing strict time-to-market constraints designers
use pre-designed macro-blocks (a.k.a. IPs) [16]. Of course, such approach sim-
plifies the high level design process, but at the same time, the placer and the
router tools have less flexibility. Hence, it is more difficult to achieve a good
performance in such design methodology because good placement and routing
are one of the determine factors of the final circuit performance.

• Power consumption and dissipation. Microprocessor power has become a first-
order constraint at run-time. One of the consequences of the Moore’s law is that
transistor densities have increased exponentially over successive process tech-
nologies, but supply voltage has not decreased accordingly [88]. Even-though
the optimization techniques proposed in this work do not have power consump-
tion as a main optimization target the elastic design may help do build a more
power efficient circuits [38].

All these problems convert the reduction of the synchronous clock period into a dif-
ficult task.

CLK

bit

1

CLK

Valid

Sender ReceiverReceiverSender

0 0

Figure 1.1: Pipelining of a long wire with two registers.

Now let us outline when and how the concept of elasticity may be useful for
circuit designers. The low accuracy in the estimation of the delay of wires at the
behavioral synthesis stage may lead at later design stages to the situation depicted
in the left part of the Figure 1.1. The data item, represented as a solid dark dot, can
not be transmitted to the receiving part within one clock cycle. This might lead to
the malfunction of the circuit. A possible way to fix such a violation is to pipeline
the long wire with several extra registers. The problem is that in the conventional
synchronous design the insertion of new registers is a difficult task, since the insertion

3



of the registers without considering global consistency affects circuit functionality and
destroys the correctness of system behavior.

Here is where the elastic design may help, since it is always possible to insert
empty registers (bubbles) into any place of an elastic system (ES). The picture on
the right in Figure 1.1 illustrates this transformation. The valid bit is propagated
by the control logic together with the data item. When the valid bit reaches the
receiver, the receiver knows that the input register stores valid data and can start a
new computation. Thus, the transformation of the bubble insertion, also known as
recycling in the literature [16], allows to eliminate timing problems at later design
stages. Notice, that this transformation requires from the user only indication of the
place on the chip where the bubble should be located, the rest is a totally automatic
process.

However, things are not so easy as they might appear at the first glance. Inser-
tion of bubbles increases the latency of the circuit and decreases its throughput (the
number of valid data it produces per unit of time). The contributions of this work
show how this problem can be reduced or avoided.

Often a computational block can be optimized for a typical case. For example, the
addition of integer numbers with small significant bits does not require the carry bit to
be propagated to the highest bits [31]. Using this idea, variable latency or telescopic
blocks can be designed [3, 6]. The increasing OCV further motivates creation of
such blocks. In an ES such blocks can be handled gracefully, while in the classical
synchronous design a complicated scheduler is required.

The effective reuse of existing intellectual-property design components (also known
as IP cores) is essential to meet the challenges posed by nano-technologies and to
complete a reliable design within time-to-market constraints. An IP core can be as
complex as a CPU or an RAM. Using this approach a system-on-chip (SoC) can
be built. The simplicity of the approach at the behavior level leads to the timing
problems at the physical level of the design. Again elastic design rescues designers:
an arbitrary number of bubbles can be added to the long wires while preserving
sequential behavior of the circuit. This allows to break long interconnections between
IPs thus deriving a feasible design [16]. But, the throughput degradation may remove
all performance gains in timing. Chapters 4, 5 and 6 address this problem.

Today, pipelining is the key implementation technique to make fast CPUs. In a
pipelined system each instruction needs several pipeline stages to be executed, but
several instructions can be executed simultaneously. Pipelining may increase the
performance of the system. The unacceptability of long wires further motivates the
development of pipelined architectures. However, building a good pipeline from a
non-pipelined design is a challenging task [56](chapter 6), while the pipelining of the
elastic design can be automated [61]. All these potential benefits of the elastic design
motivated us to investigate it in depth using simple abstract models. On the other
hand, there are a lot of publications in the area of elastic design itself, but there are
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Figure 1.2: The path to silicon.

very few about the global performance optimization of elastic design.

1.2 The path to silicon

The manufacturing process of an integrated circuit (IC) is quite complex. Fortunately
a big part of this process is automated. There are a lot of computer aided design
(CAD) tools that aim at facilitating the design process. The following abstraction
levels usually are selected in this process.

• Behavioral Level. At this level the design is seen as a black box; the relations
between outputs and inputs are given without a reference to the implementation
of these relations. Here, the designer describes a circuit in high-level hardware
description languages (HDL) such as VHDL, Verilog [68] or SystemC [105].

• Logical (Structural) Level. At this level a circuit is seen as a composition
of sub-circuits. The description here gives information on the sub-circuits used
and the way they are interconnected. Usually this representation is called net-
list. Net-lists are constructed from gates. Logical synthesis includes sequential
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synthesis, combinational synthesis and technology mapping. As transistors size
decreases the optimizations at logical level without considering physical infor-
mation is becoming less accurate. There are a lot of good books about logical
synthesis, see for example [52,77].

• Physical Level. The physical synthesis translates the net-list to the physical
devices (transistors). The main steps in this stage are floor planning, power syn-
thesis, clock tree synthesis (if necessary), placement and routing. Usually, the
design process is not terminated at the first iteration. The final design may not
fulfill completely the initial specifications (cycle time) or physical specifications
(congestion, power consumption). Hence, previous stages must be repeated un-
til overall specifications are satisfied. The book [52] also address many aspects
of physical synthesis.

Figure 1.2 shows a basic design flow. Simulation and formal verification are two
important steps that can be applied at any stage.

The elastization of the synchronous design can be done at the behavioral level
or after the first iteration of the physical synthesis. The corresponding places are
marked with the letter E in the figure. To do so, the design must be partitioned
into blocks and a control logic automatically generated. After this, a set of correct-
by-construction transformations can be applied to explore different design trade-offs.
The main problem of applying elastic transformations at the behavioral level is that
the timing estimation may significantly differ from the timing of the final layout. But,
this is the problem of the most design methodologies.

The elastization after placement or routing does not have the problem of the first
approach. The timing characterization of the design is very close to the final timing.
At this point the designer may partition design to blocks, leaving long wires as inter-
connections between these blocks. Then, critical wires can be pipelined with special
sequential elements to meet the timing constraints. This approach is challenging be-
cause some constraints on the placement of the added elements must be satisfied.
More control logic needs more interconnections which may violate wire congestion
and make the whole circuit malfunctioning. These issues may be partially addressed
in the CAD tools. This discussion deserves a separate investigation and it is left
out of the scope of this work. Another drawback of the elastization at later design
stages is that not all transformations can be applied with placement and routing con-
straints. For example, to use variable latency blocks in the elastic design, only the
first approach is acceptable.

1.3 Objectives of the work.

The main objectives of the work are the following:

6
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Figure 1.3: Illustration of the retiming and recycling elastic transformations.

• Investigate potential performance benefits that can be achieved using the concept
of elasticity in the circuit design.

• Develop formal methods for performance analysis and optimization of elastic
systems.

• Adapt existing correct-by-construction transformations and techniques, such as
retiming, early evaluation/variable-latency nodes to elastic design.

This work models ESs as a weighted directed graph. The vertices and the edges of the
graph have several properties attached. In the most cases the strongly connectivity
of the graph is a natural assumption, but in the all proposed techniques this is not a
requirement.

We use Linear Programming [81], Markov chains [109] and Petri nets [79, 99] for
analysis and performance optimization of ESs. Chapter 2 provides a brief introduction
to these fields, more details on the background can be found in the referred literature.

1.4 Retiming and recycling

Elastic design accepts a set of correct-by-construction transformations. Let us exem-
plify retiming and recycling transformations, since Chapters 4 and 5 are devoted to
these optimization techniques.

Consider a simple elastic circuit depicted in Figure 1.3(a). The circuit has nine
gates and four registers. The gates are denoted with lower case letters, a, b, . . . , i
while the registers are labeled as R1, R2, R3, R4. Notice, that all registers are marked
with a black dot. This means that all of them store some valid data. This dot helps
to distinguish valid data (tokens) from non-valid (bubbles). Each gate is labeled
with the corresponding combinational delay. The control module of the circuit is
not shown in the figure, since we are interested only in its data-path. The longest
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combinational path of the circuit (critical path) is formed by the nodes c, d, e and a
(c→ d→ e→ a); its total delay is equal to 4 + 4 + 4 + 9 = 21 units of time. Thus,
21 can be used to estimate the performance of the circuit.

Retiming, a classical optimization technique of synchronous design, can also be
applied to elastic design. Retiming moves registers across combinational nodes of
the circuit, changing its critical paths while preserving sequential behavior. In the
example, one can move register R1 backward across node a. This leads to the config-
uration with two registers R1a and R1b, as it shows Figure 1.3(b). The critical path
of this configuration would be formed by the nodes c, f, g, thus providing performance
measure of 18 units of time.

Figure 1.3(b) shows an optimized version of the circuit after applying both re-
timing and recycling transformations. The following transformations were performed
on the original circuit: retiming register R1 backward across combinational block a
and placed to the inputs of this node, resulting in registers R1a and R1b; putting a
bubble, denoted as B, to further break long combinational paths. It can be verified
that now the critical path has delay of 12 units of time. There are two paths with
such delay: a→ b and c→ d→ e. On the other hand, the resulting circuit contains
a bubble and can not always produce valid data. The highest rate the valid data
can be provided at is equal to 4/5, because the bottom most directed cycle has five
registers and four tokens. Thus, the throughput of this circuit can be estimated as
4/5.

The question to answer is how the performance of the initial and optimized circuits
can be compared? The initial circuit has a critical path with a delay of 21 units of
time but can produce valid data at the rate of one. The optimized circuit has a
critical path with a delay of 12 units of time. Does it mean that this circuit is twice
better than the original one? No, it is not. To obtain a correct performance metrics
we should divide the delay of the critical path by the circuit throughput. This value
is called effective cycle time and it is used as the main metrics for evaluating the
performance of elastic circuits. Thus, the effective cycle time of the optimized circuit
is equal to 12/0.8 = 15 units of time, 29% performance improvement comparing with
the effective cycle time of the original circuit, remember (21).

One of the main contributions of this work is an algorithm to apply retiming and
recycling to achieve the best possible performance of elastic circuit. The proposed
method concentrates on the data-path of the circuit and ignores details of the im-
plementation. Thus, it is independent on the control module and can be potentially
applied to different implementations. Chapters 4 and 5 are devoted to this optimiza-
tion technique.
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1.5 Organization of the document

This document is organized as follows:

• Chapter 2 provides a basic overview of the sequential circuits and the mathe-
matical concepts that are used in this work. They are: linear and mixed integer
linear programming, Markov chains and Petri nets. Even though the reader
might be familiar with all these concepts it is a good idea to browse this chap-
ter to become familiar with the notation used in this work and to refresh the
basic definitions.

• Chapter 3 inspects the fields of investigation this work is based on or related
to. They are: retiming, a classical sequential optimization technique; latency
insensitive design; buffer sizing and slack matching optimization techniques;
static scheduling of discrete event systems.

• Chapter 4 presents a general model for sequential performance optimization.
This model combines retiming with recycling and also can be used for c-slow
retiming. It can be also extended to handle early evaluation and variable latency
nodes.

• Chapter 5 extends the optimization model from the previous chapter to handle
early evaluation. In this chapter a multi-guarded Petri net model is constructed
to estimate the throughput of the ESs with both late and early evaluation nodes.

• Chapter 6 is about optimal sizes of buffers of the control module of an ES. The
retiming and recycling optimization technique relies on the fact that these sizes
do not constrain the performance of an ES. Thus, after applying retiming and
recycling the sizes of the buffers have to be calculated by using the technique
proposed in this chapter.

• Chapter 7 makes final conclusions and indicates possible directions for the
future investigations.

9
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Chapter 2

Preliminaries

This chapter starts with an introduction to elastic circuits. The main differences
between synchronous and asynchronous implementations are outlined. Next, linear
and mixed integer linear programming optimization techniques are introduced. Linear
programming (LP) is a power optimization method. There are efficient algorithms
to solve large scale LP problems. This work extensively uses LP for performance
analysis and optimization of ESs.

Afterwards, the LP framework for a directed graph cycle ratio problem is pre-
sented. The cycle ratio problem is closely related to the performance evaluation of
ESs and provides a convenient framework for the optimization. The three contribu-
tions of this work use this framework.

Finally in this chapter, an introduction to Petri nets follows. Marked graphs is
an important sub-class of Petri nets. It is widely used for the modeling of discrete
concurrent systems. An ES is an example of such a system. A multi guarded Petri
net model is an extension of Petri net to model computations with early evaluation.
Chapter 5 uses this model to optimize the performance of ESs with early evaluation
nodes.

2.1 Elastic circuits

This section provides a brief overview of basic concepts related to synchronous and
asynchronous elastic circuits. Please, refer to [20] for more details. Elastic circuits
are sequential circuits, hence let us first introduce them.

2.1.1 Sequential circuits

A sequential circuit is a net of registers and gates interconnected via wires. In a
sequential circuit the output at any given time depends not only on the input at that

11
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Figure 2.1: Synchronous, asynchronous and synchronous elastic circuits
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Figure 2.2: Sequential circuits. Timing.

time but also on inputs at previous moments of time. A sequential circuit can be
synchronous, if it depends on the global synchronizing clock signal, or asynchronous,
if its data are locally synchronizing by means of hand-shake control signals.

Synchronous design

The synchronous approach significantly simplifies design tasks as it enables the use
of zero delay abstractions for computation and communication delays. As we already
know, one of the drawbacks of the synchronous approach is that the performance of
the circuit, global clock cycle, is determined by its slowest part.

Figure 2.1(a) gives an example of a synchronous sequential circuit with two com-
binational blocks, denoted as CL and three registers, drawn as rectangles. The global
synchronizing signal, denoted as CLK, arrives at all registers. Every time the clock
signal is enabled, the registers capture their input data. Thus, the result computed
by the first combinational block during the previous clock cycle becomes an input for
the second combinational block when the clock signal arrives again. The amount of
time between two consecutive clock events (cycle time) must allow each combinational
block to recalculate its output value.

Figure 2.2(a) shows a possible sequence of values of the output signal Dout during
three clock cycles. The width of each rectangle is a constant value and it is equal to
the time separations between two consecutive clocks arriving.

Asynchronous design

In this section a very short overview of the asynchronous design is provided, since the
performance optimization methods presented in Chapters 4, 5, and 6 can be applica-
ble to asynchronous circuits as well. There are several books devoted to asynchronous
design, see, for example [5, 40,102].

Asynchronous circuits were first studied in the 50’s of the previous century [78,
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107]. Actually, the very first digital circuits were asynchronous and not synchronous.
Asynchronous circuits have no global synchronizing clock, instead, the computational
blocks are locally synchronized with their neighbors using a pair of handshake sig-
nals, usually being referred as request/acknowledge. The request signal is used by
the sender to initiate an action. When the action is completed, the corresponding
acknowledge signal is asserted by the receiver. These handshake signals are inde-
pendent of any global system timing and are only concerned with the local relative
temporal relationships between two subsystems sharing a common interface [43].

Figure 2.1(b) illustrates three stages of the asynchronous implementation of the
same pipeline. When input environment provides valid input Din it sets input re-
quest (Ri) signal to one. Then, the pipeline starts its computation and when the
computation is finished, the output request signal Ro is set to one as well. The el-
lipses dR and dA represent delay lines. Delay lines are combinational blocks of the
control logic which mimics the timing behavior of the data path.

Figure 2.2(b) shows the values of the output signal Dout of the asynchronous im-
plementation. One may observe that the first two output values are calculated faster
than in the synchronous version and only for the third value the circuit takes longer.
It took even longer to calculate third value than the cycle time of the synchronous
version.

Not everything is so cloudless in the asynchronous methodology. The most famous
issues are the following:

• Design complexity (and therefore area) increases. The control logic for the
computational asynchronous blocks waste power and occupies area.

• Standard CAD tools cannot always be used in the design process. The combi-
national loops that are used in the asynchronous controllers make static timing
analysis more difficult. Formal verification and testing of asynchronous design
is also more challenging.

• Asynchronous blocks should be interfaced with the rest of the system modules
which may or may not be asynchronous. Thus, a special communication queues
are required for such interfaces. These queues even been highly optimized tend
to increase latency of the system, degrading the performance.

The problem of the asynchronous design complexity has been gradually alleviating.
In [39] a tool to generate asynchronous controllers from a high-level concurrent speci-
fication is described. Also the methods for de-synchronization (automatically convert
synchronous specification into asynchronous) are proposed [41]. Several asynchronous
clones of synchronous microprocessors have been fabricated and tested [47,74].

The control of asynchronous circuits can be often modeled with marked graphs,
a sub-class of Petri nets [79]. Using marked graph model the performance of asyn-
chronous circuit can be estimated [91,92] and enhanced [4, 90].
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2.1.2 Synchronous elastic circuits

Recently, a bridge between asynchronous and synchronous methodologies has been
proposed [16, 38]. This work refers to this approach as synchronous elastic design.
The term elastic system, ES, refers to both synchronous and asynchronous imple-
mentations. Synchronous elastic circuits can be seen as a discrete version of the
asynchronous ones. The global clock is preserved, but each computational block does
not have to provide valid data each clock cycle. It may stall [16] an arbitrary number
of clock cycles, producing a bubble when not all the inputs are available. Figure 2.1(c)
illustrates the synchronous elastic version of the synchronous circuit depicted in Fig-
ure 2.1(a). The clock signal does not directly affect the data path registers. Instead,
first it is processed by the control module. Observe, that all three implementations
depicted in Figure 2.1 have the same data-path. The only difference is the way the
clock signal for the registers is generated.

To implement the control logic of the synchronous elastic design a pair of signals
are associated with the data path. Generally they are referred to as valid and stop
bits. The valid bit (Vi,Vo in the figure) indicates if a register stores valid data (token)
or not (bubble). The stop bit (Si, So) is set when the new data can not be accepted.
A simple control logic is introduced to control valid/stop bits flow. A register with
associated valid and stop bit is called relay-station [16] or elastic buffer [38]. This
work adopts the term Elastic Buffer, EB.

Figure 2.3 provides more details about the control logic of synchronous elastic cir-
cuits. The ES has three computational nodes, N1, N2, N3, and three EBs, R1, R2, R3.
The EBs are drawn as rectangles. As usual, a rectangle with a dot inside represents
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an EB with token, as R2 and R3 do, while R1 stores a bubble; its valid bit is equal to
zero. The dashed rectangle right before R2 represents an extra buffer of the control
logic. Extra buffers are required when the output node does not accept the current
token while some of the input nodes provide new ones. The size of this buffer is an
important parameter, since the performance of an ES directly depends on it. Chap-
ter 6 contributes on how the optimal size of each EB of an ES can be calculated. In
Figure 2.3 the node N3 can not produce a token because of its input EB R1 does not
have valid data. Hence, node N3 sets output valid bit to zero, produces a bubble.
Also N3 informs the input R2 that its valid data should be hold for some time. The
backward communication is done by means of the stop bit. It can be said that R2 is
under back-pressure [18].

The main advantage of elastic design is that it accepts a set of correct-by-construction
transformations. For example, a bubble may be inserted into any place of the circuit.
Figure 2.2(c) shows the possible output a synchronous elastic circuit may produce
during four clock cycles. Symbol τ inside a rectangle indicates that a bubble will be
produced at this clock cycle. The contributions of this works explore some of the
elastic transformations to enhance the performance of elastic circuits. The applica-
tion for synchronous design is more evident. Possibly with small modifications, they
can be useful for asynchronous design as well.

2.2 Linear Programming

This section provides a very brief overview of the topic, since a lot of excellent liter-
ature exist, see for example [81]. The canonical formulation of an LP problem is as
simple as follows:

maximize :
n∑

i=1

cixi,

subject to:
Ax ≤ b,
x ≥ 0.

(2.1)

Where:

• c = (c1, . . . , cn) is an n-dimensional vector of real numbers,

• x = (x1, . . . , xn) is an n-dimensional vector of real variables,

• A ∈ Rm×n is a matrix of real numbers with m rows and n columns. The ith
row of A has elements ai1, . . . , ain. Each row of A represents one constraint of
the model, while each column represents a variable.

• b = (b1, . . . , bm) is an m-dimensional vector of real numbers.
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The problem is to find an assignment for variables x1, . . . , xn that satisfies all the

constraints and maximizes the value of expression
n∑

i=1

cixi (the objective function).

This maximal value is called optimal value of the LP. If an assignment satisfies all
the constraints it is called feasible solution otherwise it is called infeasible.

It can be observed that the canonical formulation contains only ”less than” con-
straints. The constraints: ≥, = can be easily transformed into the canonical form.
The reader may do it by himself as an exercise or refer to aforementioned literature.

Notice that if for some m-dimensional vector y ≥ 0 it is verified that
m∑

j=1

aijyj ≥ ci,

then the sum
m∑

j=1

yjbj provides an upper bound on the value of objective function

in (2.1). Indeed, since if x is a feasible solution of (2.1) then

n∑
i=1

xici ≤
n∑

i=1

xi

m∑
j=1

aijyj =
m∑

j=1

yj

n∑
i=1

aijxj ≤
m∑

j=1

yjbj.

The minimal upper bound for the objective function in (2.1) can be found by solving
the following LP:

minimize :
m∑

j=1

biyi,

subject to:
AT y ≥ c,
y ≥ 0.

(2.2)

This LP is called dual LP for the LP (2.1). The LP (2.1) is called primal for the
LP (2.2). It can be proved that if (2.1) is feasible then both (2.1) and (2.2) have
equal optimal values [81].

LP problem is a particular case of the convex optimization [8]. There are efficient
methods to solve LP problems. The most famous, probably, is simplex algorithm.
Both commercial [58] and free [54] implementation of this and another algorithms
exist.

2.2.1 Mixed Integer Linear Programming

If some of the variables in an LP model are constrained to have only integer values
such type of optimization is called mixed integer linear programming, MILP. MILP
is an NP-complete [51] problem but also has higher expressive power than LP. For
example, if it is desired that only one of the two groups of the constraints are being
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satisfied in (2.1) we can achieve this introducing one integer variable into the model:

maximize :
n∑

i=1

cixi,

subject to:
A1x ≤ b1 + α · Amax,
A2x ≤ b2 + (1− α) · Amax,
x ≥ 0, α ∈ {0, 1}.

(2.3)

Where Amax is a big enough constant to guarantee that
n∑

j=1

aijxj ≤ bi + Amax for each

row i and any feasible solution of (2.1). Usually such constant is easy to find. If the
value of the α is equal to zero, then the second group of the constraints is ”disabled”
and vice-versa.

The naive way to solve a general MILP problem is a branch-and-bound method.
At each node of the search tree an LP relaxation is solved. This process can be
greatly sped up. For example, one can add extra constraints to MILP that preserve
the optimal solution while increase the number of integer values in the solutions of
LP relaxations. For a special type of the matrix A (totally unimodular matrix ) the
simplex algorithm always finds integer solutions.

If all integer variables of the MILP are constrained to be equal to zero or one, then
such type of MILP is called mixed binary linear programming. The complexity of a
MILP problem greatly depends on the structure of the constraints. The CPLEX [58]
solver can deal with MILP problems with thousands integer variables.

2.3 Cycle ratio of a directed graph

This section gives a formal overview for the minimal cycle ratio problem of a directed
weighted graph. This formulation is the basis of the contribution presented in the
Chapter 6 and also is used in Chapters 5 and 4. It is assumed that the reader is familiar
with the basic graph nomenclature. An excellent introduction to algorithms [36]
contains a chapter devoted to graphs.

Let G = (V, E, W1, W2) be a bi-weighted directed multi-graph, where V is a set
of vertices, E ⊆ V × V is a multi-set of edges, W1, W2 : E → R are real edge labels
(weights),

∑
e∈c

W2(e) > 0 for each directed cycle c of G. Figure 2.4 provides an example

of such a graph. The vertices are drawn as cycles and the edges as arrows. For
example, the arrow that goes from vertex s to vertex d means that graph has edge
(s, d). Vertices b and c are connected by two edges, thus the multi-set E contains
two equal elements (b, c). The value of the first and second weight of each edge is
drawn as W1/W2 label in the figure. For example, for edge (f, s), W1((f, s)) = 0 and
W2((f, s)) = 4.
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Figure 2.4: A directed bi-weighted graph

Definition 2.3.1 (Cycle ratio) Define cycle ratio of a directed cycle c as following:∑
e∈c

W1(e)∑
e∈c

W2(e)

For example, in Figure 2.4 the cycle ratio of the directed cycle d→ e→ f → d is
equal to 1.

Definition 2.3.2 (Maximum cycle ratio) The maximum cycle ratio of a graph
G, maxcr(G), is defined as follows:

maxcr(G) = max
c∈C

∑
e∈c

W1(e)∑
e∈c

W2(e)
,

where C is a set of all directed cycles of G.

Those directed cycles for which their cycle ratio is equal to the maxcr(G) are called
critical. Similarly, the minimum cycle ratio is defined. The maximum cycle ratio
of the graph from the example is equal to 2. The critical cycle consist of the edges
(a, b), (b, c) and (c, a), taking bottom most edge (b, c). The minimum cycle ratio
of this graph is equal to 2/3; there are two cycles with the minimal ratio, they are
s→ d→ e→ f → s and a→ b→ c→ a, but now the top most edge (b, c) must be
taken. The following classical theorem allows to reduce the maximum cycle ratio
problem to an LP problem.

Theorem 2.3.1 (Maximum cycle ratio) The maximum cycle ratio of graph G is
less than or equal to Θ if and only if there exist a function d : V → R such that
W1(e)−Θ ·W2(e) ≤ d(v)− d(u) for each edge e = (u, v).
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Proof: ⇒ Let d be such a function, then for each directed cycle c we have:∑
e∈c

W1∑
e∈c

W2

=

∑
e∈c

W1 −
∑
e∈c

Θ ·W2 +
∑
e∈c

Θ ·W2∑
e∈c

W2

≤

∑
e∈c

(d(v)− d(u))∑
e∈c

W2

+ Θ = Θ.

We used the fact that
∑

e=(u,v)∈c

(d(v)− d(u)) is equal to zero for a cycle c.

⇐ Let us assume that maxcr(G) ≤ Θ. Consider the following weighted directed
graph G = (V ′, E ′, W ), where V ′ = V ∪ s, E ′ = E ∪ {(s, v)|v ∈ V },

W (e) =

{
W1(e)−Θ ·W2(e), e ∈ E,
0, e = (s, v)

Basically, the source vertex s has been introduced to G. Notice, that no cycles in G′

pass through the vertex s, thus the sets of all directed cycles of G′ and G are equal.
Then, for each directed cycle c of G′ we have

∑
e∈c

W (e) =
∑
e∈c

(W1(e)−Θ ·W2(e)) =

P
e∈c

(W1(e)−Θ·W2(e))P
e∈c

W2(e)
·
∑
e∈c

W2(e) =

= (

P
e∈c

W1(e)P
e∈c

W2(e)
−Θ) ·

∑
e∈c

W2(e) ≤ 0.

The last inequality in the chain is true since maxcr(G) ≤ Θ and
∑
e∈c

W2(e) > 0. The

weight of each cycle of G′ is non-positive, then a longest path problem is well defined
for G′. Let d(v) be a weight of the longest path from the source vertex s to v, then
by definition of the longest path for each edge e = (u, v) we have

d(v) ≥ d(u) + w(e)

or equivalently
W1(e)−Θ ·W2(e) ≤ d(v)− d(u).

�
The proof is a repetition of the proof of Theorem 1 [71] substituting w(e) − Θ by
W1(e) − Θ ·W2(e). In turn, Theorem 1 [71] is a well known fact; it is used in [42]
without proof. A similar idea is used in the proof of Karp’s theorem [63]. Similarly,
the minimum cycle ratio theorem can be proved.

Theorem 2.3.2 (Minimum cycle ratio) The minimum cycle ratio of a graph G
is greater than or equal to Θ if and only if there exist a function d : V → R such that
W1(e)−Θ ·W2(e) ≥ d(v)− d(u) for each edge e = (u, v).
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Using Theorem 2.3.2 the minimum cycle ratio of a graph G can be found as the
optimal value of the following LP:

maximize : Θ,
subject to:

W1(e)−Θ ·W2(e) ≥ d(v)− d(u), e = (u, v).
(2.4)

The LP (2.4) finds the maximal value for Θ such that the shortest path problem is well
defined for the corresponding graph G′. Efficient solutions for this LP exist [13, 32],
as well as another efficient algorithms for the cycle ratio problem [42].

2.4 Petri nets

The Petri net (PN) is a mathematical model of a discrete system. It was introduced
by professor Carl Adam Petri in his Ph.D. Thesis [86, 87]. This section gives basic
definitions and introduces some Petri net nomenclature. This section provides a brief
overview of Petri Nets. More details about PN can be found in excellent surveys [79,
99].

A Petri net has two components: a net and an initial marking. A net is a directed
graph with two sort of nodes such that there is no edge between two nodes of the
same sort. The graph of a PN is said to be two colorable or bi-partite. The two sort
of nodes are called places and transitions. Figure 2.5 shows an example of Petri net.
It is widely acceptable to draw places as circles, and transitions as boxes. Places can
store tokens, represented by black dots. A distribution of tokens on the places of a
net is called a marking, and correspond to the ’state’ of the PN. For example, place
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Figure 2.6: A Petri net before and after the firing of the transition

p3 has one token. A transition of a net is enabled at a marking if all its input places
(the places from which some edges leads to it) contain at least one token1. In the
example, the enabled transitions are t2 and t3. An enabled transition can fire, and
its firing changes the marking of the net: it removes one token from each of the input
places of the transition, and adds one token to each of its output places2. Figure 2.6
shows on the left a PN containing an enabled transition, whose firing changes the
marking to the one shown on the right.

Definition 2.4.1 (PN) A Petri Net (PN) is a tuple N = (P, T, F, m0), where:

• P is a finite set of places

• T is a finite set of transitions

• F ⊂ (T × P )
⋃

(P × T ) is the flow relation

• m : P → Z+ is the initial marking that assigns a non negative integer m(p) to
each place p.

Usually we will refer to a particular place of a PN as p, and to a transition as t.
Let us define the preset and the postset of a transition as •t = {p|(p, t) ∈ F} and
t• = {p|(t, p) ∈ F}, respectively. Firing a transition changes the current marking m
to a new marking m′:

m′(p) =


m(p)− 1 p ∈ •t− t•

m(p) + 1 p ∈ t• − •t
m(p) otherwise

1There exist more general models called weighted PN. Each edge of a weighted net has an
associated integer weight. Then a transition is enabled if the number of tokens in all its input places
is at least the weight of the edge from this place to the transition.

2In weighted net a transition removes w(p, t) tokens from each input places, w(p, t) is a weight
of the corresponding edge and adds w(t, p) tokens to each output place.
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let us denote this as m
t→ m′. Notice that the firing rule of the Petri Net is the exact

model for the valid bit propagation in ESs (a node produce new valid data when all
its inputs are valid). This allows us to model ESs with PNs.

Definition 2.4.2 (Reachability) A marking m′ is said to be reachable from mark-

ing m if there is a firingr sequence m
t1→ m1

t2→ m2 . . .
tk→ m′

Definition 2.4.3 (Liveness) A PN is said to be live if every transition can eventu-
ally fire from any reachable marking.

2.4.1 Marking equation

The structure of the PN can be described by its incidence matrix.

Definition 2.4.4 (Incidence matrix) Let N be a PN (P, T, F, m0), |P | = n, |T | =
m. The incidence matrix C ∈ {0, 1,−1}n×m of N is defined by

C[pi, tj] =


−1 pi ∈ •tj − t•j

1 pi ∈ t•j − •tj
0 otherwise

For example, the Petri net from the Figure 2.5 has the following incidence matrix:

t1 t2 t3 t4
p1 : 1 −1 0 0
p2 : 1 −1 −1 0
p3 : 1 0 −1 0
p4 : 0 1 0 −1
p5 : 0 0 1 −1
p6 : −1 0 0 1

Definition 2.4.5 (Firing count vector) Let (P, T, F, m0) be a PN and let σ =
(t1, . . . , tk) be a finite sequence of transitions. The integer firing count vector σ ∈ Z+|T |

of σ maps every transition t to the number of fires of t in σ.

The new state of a PN after firing some transitions can be calculated usin the following
lemma.

Lemma 2.4.1 (Marking Equation) For any finite firing sequence m
σ→ m′ of a

PN the following Marking Equation holds:

m′ = m + C · σ (2.5)
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For example, the marking of the Petri net from Figure 2.5 can be represented as

m0 = (1, 2, 1, 0, 1, 0)T .

The new marking m after the enabled transitions t2 and t3 fire can be calculated as
follows:

m =


1
2
1
0
1
0

 +


1 −1 0 0
1 −1 −1 0
1 0 −1 0
0 1 0 −1
0 0 1 −1
−1 0 0 1

 ·


0
1
1
0

 =


0
0
0
1
2
0

 .

The marking equation (2.5) provides a necessary condition for a given marking m′

to be reachable from m. Next section states that for marked graphs it is also the
sufficient condition.

2.5 Marked graphs

Definition 2.5.1 (Marked Graph) A Marked Graph (MG) is a special class of
Petri nets where places have exactly one input and one output transition. That is
|•p| = |p•| = 1, p ∈ P .

An MG can also be defined as a directed weighted multi-graph (N, E, m0), where N
is a set of nodes (transitions), E is a set of edges (places), m0 is an initial marking.
Conventionally an MG is represented as a graph with tokens placed on the edges.
Figure 2.7 shows two equivalent representations of the same MG, the first draws it as
a general PN, the second one as a directed graph, where each edge represents a place.
Next, we will use notation (ti, tj) to refer to the place of an MG. For example, edge
(t2, t3) refers to the place p3 of the MG. For the sake of notation, the total number of
tokens in a subset φ ⊆ P at a given marking m is denoted by m(φ) =

∑
p∈φ

m(p).

An MG is strongly connected if its underlined graph is strongly connected. Some
useful properties of strongly connected MGs [79] are:

Property 2.5.1 (Liveness) A MG is live iff every directed cycle c is marked posi-
tively at m0, i.e., m0(c) > 0.

Property 2.5.2 (Reachability) A marking m is reachable iff m(c) = m0(c) for
every directed cycle c of the MG.

The retiming interpretation of these properties allows easy to prove that for a strongly
connected retiming graph any registers assignment that preserves the number of reg-
isters at each directed cycle of the graph is a valid retiming configuration that can be
achieved only with forward retiming (see Section 4.3).
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Figure 2.7: Two representations of the same marked graph. The left most — as a
general Petri Net, the right most — as a directed graph, where edges represent places.

2.5.1 Timed marked graph

To use MGs for performance estimation a timing information should be added into
them. There are two ways of introducing a time information in an MG, namely
associating delays with transitions or with places. It can be proved that the both
ways are equivalent [98]. In this section the delays are associated with the transitions,
since this is more widespread in the literature.

Definition 2.5.2 A Timed Marked Graph (TMG) is a tuple (N, E, m0, δ), where
(N, E, m0) is an MG, and δ : N → R+ ∪ {0} assigns a non-negative delay to every
transition.

In a TMG, a transition t fires δ(t) time units after becoming enabled. When the
enabling degree of a transition is greater than one, two different firing semantics can
be considered:

• Single server semantics. No multiple instances of the same transition can fire
simultaneously.

• Infinite server semantics. An arbitrary number of instances of the same transi-
tion can fire simultaneously.

The single server semantics is a particular case of infinite server semantics: the addi-
tion of a self-loop place with one token, i.e., a place p such that p• = •p and m0(p) = 1,
around each transition guarantees single server semantics [15]. Henceforth, if it is not
stated explicitly, the infinite server semantics will be assumed.

The average marking of a place p, denoted as m(p), represents the average occu-
pancy of the place in an infinite execution. Formally the average marking vector for
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all places is defined as:

m = lim
τ→∞

1

τ

∫ τ

0

m(ξ)dξ

where ξ is a time variable. For marked graphs the average marking is always well-
defined [15].

2.5.2 Performance evaluation

Let us now formally define the throughput of a TMG. Then, TMGs can be used for
the performance estimation of ESs.

Definition 2.5.3 (Throughput) The throughput of a transition t of a TMG, Θ(t),
is the average number of times t fires per time unit, in the infinitely long execution
of the system.

Θ(t) = lim
τ→∞

σ(τ)

τ

All transitions of a strongly connected component of a TMG have the same through-
put. It can be proved that the throughput of a TMG is equal to its minimal cycle
ratio tokens/delay [92]. For example, assuming that all transitions of the MG de-
picted in Figure 2.7 have unit delay, its throughput is equal to 1/3. The critical cycle
is (t1 → t2 → t3 → t1), it has one token and its total delay is equal to three units of
time.

From Theorem 2.3.2 the following LP model can be derived to calculate the
throughput of a TMG:

maximize : Θ,
subject to:

δ(t) ·Θ ≤ m̂(p), p ∈ •t
m̂ = m0 + C · σ.

(2.6)

In this formulation, a firing count vector σ is a vector of real variables. The provided
LP can be easily rewritten in the form of (2.4). Another way to obtain the same LP
is using the theory of queues and Little’s law [76], see for example [15]. If a TMG
is not strongly connected, then (2.6) returns minimal throughput of all its strongly
connected components. The performance of an ES with only late evaluation nodes
can be estimated as the throughput of the corresponding MG [92].

2.5.3 Early evaluation

In order to model ESs with early evaluation nodes, a classical MG model was ex-
tended with multi-guarded transitions [59]. A guard g(t) of the transition t is a
subset of input places g(t) ⊂ •t. Each transition t has a set of guards associated
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G(t) = {g1(t), . . . , gk(t)}, such that
k⋃

i=1

gi(t) = •t. At a given moment only one partic-

ular guard of each transition can be active. Transition t is enabled if the active guard
is gi(t) and all places of gi(t) are marked. The firing of an enabled transition changes
the marking in the same way a classical transition does. After firing the transition a
new active guard is selected non-deterministically. In order to model non-determinism

each guard gi(t) of transition t has associated a probability γi(t),
k∑

i=1

γi(t) = 1. The

selection of a guard is assumed to be a memoryless process. That is, the probability
to be selected does not depend on another guards that were selected before. Notice,
that the firing of an early enabled transition may lead to a negative marking. For
example, consider early evaluation transition m depicted in Figure 2.8(a). Assume
that m has two one-element guards: g1(m) = {P1}, g2(m) = {P2}, with the associated
probabilities γ(g1) = α, γ(g2) = 1− α. Assume that at the given moment the guard
g2 is selected, then m is enabled and fires in according with the Petri net firing rule,
producing negative marking in the place P1 (Figure 2.8(b)).

The marked graph with multi-guarded transitions is called guarded marked graph
(GMG), Figure 2.9 shows examples of GMGs. The only multi-guarded transition, m,
is drawn differently. The usual graphical representation of multiplexer is used to
select the muli-guarded transition. This is because, in ESs multiplexers are the main
candidates to be early evaluation. Transition m has two guards associated

g1(m) = {(t2, m), (s, m)}, γ(g1(m)) = 1− α

and
g2(m) = {(t3, m), (s, m)}, γ(g2(m)) = α.
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Definition 2.5.4 (Timed Guarded Marked Graph [59]) A Timed Guarded Marked
Graph (TGMG) is a tuple (N, E, G, m0, δ, γ), where (N, E, m0, δ) is a TMG, G assigns
to each transition a set of guards, γ assigns a probability to each guard to be selected.

A transition t is called singleton if all its guards have exactly one place. A TGMG
is called singleton if all its multi-guarded transitions are singleton. A transition is
called simple (late evaluation) if it has one guard associated.

The steady state throughput of a given transition of a TGMG is defined as the
average number of firings per unit of time, the same way as for classical MGs (Defi-
nition 2.5.3).

Definition 2.5.5 (Steady state throughput) The throughput, Θ(t), of a given
transition t of a TGMG is defined by the following equation:

Θ(t) = lim
τ→∞

σ(τ)

τ
.

All transitions of a strongly connected TGMG have the same throughput [59].
The throughput of a TGMG can be calculated by analyzing a corresponding

Markov chain [59,109]. Each state of such a chain is defined by a reachable marking
of the TGMG. Let us give an example how this works, since the throughput of ESs
with early evaluation nodes can be calculated in the same way.

2.5.4 Calculating throughput using Markov chains

To construct a Markov chain that models the behavior of a TGMG a kind of exact
simulation should be performed. At each step of this simulation the set of enabled
transitions is identified and the next state (marking) is calculated by firing all enabled
transitions. If the enabling of some transitions depends on the guards that will be
selected, two or more possible markings are considered for this transition for all
possible firings. First, the new markings are searched among those that have been
already found so far. If the search is unsuccessful a new state is created, otherwise a
loop has been found and the simulation is terminated.

Let us again consider a TGMG depicted in Figure 2.9(a). It has five transitions
t1, t2, t3, m, s; on the top of each transition its delay is drawn, for example, the delays
of the transitions t1, t2 and s are equal to one unit of time. Transition m has two
guards g1 and g2; the rest of the transitions are simple. The throughput of this
TGMG without m being early evaluation is equal to 1/2. The delay of critical cycle
(m→ t1 → t2 → m) is equal to two and there is one token on it.

Now, let us calculate the throughput of this TGMG based only on Definition 2.5.5,
using Markov chain analysis. Let us assume that from the initial state, transition
t3 fired for the first time at the time stamp 1. In general, any assumption about
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Figure 2.9: Timed multi-guarded marked graphs.

initial state can be done without altering the throughput. On the other hand, such
assumptions may simplify the Markov chain by reducing the number of states.

Figure 2.10(a) depicts the Markov chain of the TGMG from Figure 2.9(a). The
initial marking of the TGMG corresponds to the state S0 of the Markov chain in
the Figure 2.10(a). Here we just draw the number of tokens in each place, trying
to preserve respective positions of the places. For example, the first column corre-
sponds to the places (t1, t3), (t3, m), (t2, m), (t1, t2), from top to bottom; the following
corresponds to the places (s, m), (m, s) and finally (m, t1) follows. The notation 1(d)

means that the processing of the token will be finished in d units of time. We use this
notation only for the place (t1, t3), since the delay of the transition t3 is greater than
one and the duration of each state in the Markov chain 2.10(a) is one unit of time.
Figure 2.11 shows detailed version of the Markov chain. The anti-token of the state
S1 is drawn as unfilled dot with the sign of minus inside. As before, the notation (d)
means that the given token will be processed within d unit of time.

From the initial state S0 after one unit of time the TGMG may go to the state S1

or to the state S3 depending on the guard that will be selected. If the guard g2(m)
is selected, then transitions t1, t3, m, s will fire, resulting marking S1, otherwise the
state is changed to S3 and only three transitions t1, t3 and s fire. Each arc in the
figure is marked with the transitions that fire. Transition s is not drawn on the arcs
to make pictures cleaner. Thus, from the state S0 the TGMG can go to the state
S1 with the probability α or to the state S3 with the probability 1− α. Repeating
the same procedure for the states S1 and S3 we will find only one new state, S2. In
the state S3 the guard is already selected and the only thing we can do is to fire all
enabled transitions resulting initial state S0. In the state S2 the place (t1, t3) has two
tokens, one will be processed within one unit of time, another within two units of
time.

Each directed cycle of a Markov chain corresponds to a particular behavior of the
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Figure 2.10: Throughput calculation of TGMG with Markov chains.

TGMG. For example, the directed cycle (S0 → S3 → S0) corresponds to the behavior
when guard g1 is always selected. At this cycle all the transitions fire exactly once,
hence the throughput of this behavior is equal to 1/2. Similarly the throughput of
the behavior (S0 → S1 → S2 → S0) can be calculated and it is equal to 2/3. One
could make a guess that the throughput of the TGMG is equal to the average of the
throughputs of these two behaviors, that is: α · 1/2 + (1− α) · 2/3. However, this is
not true, for example, if α = 0.5 then, as we will see in short, the throughput is equal
to 3/5, while the value of the aforementioned expression is equal to 7/12 ≈ 0.583.

To find the throughput of the TGMG we should resolve the Markov chain. That
means, for each state Si, i = 0, . . . , 3 find a probability, p(Si), for the TGMG to be in
this state. Then, for any transition t we can find a probability of being enabled as
the following sum [59]:

p(enab(t)) =
∑

t enabled in Si

p(Si).

It can be proved [59] that the throughput of t is equal to p(enab(t))/δ(t).
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To find p(Si) in our simple example it is enough to carefully look at the Markov
chain in Figure 2.10(a). Then

p(S1) = α · p(S0), p(S2) = p(S1) = α · p(S0), and p(S3) = (1− α) · p(S0).

Since, the sum of the all probabilities must be equal to one, we have the following
equation

p(S0)[1 + α + α + 1− α] = 1,

from which it follows that p(S0) = 1/(2 + α). Now let us observe that transition t1 is
enabled only in the states S0 and S1, hence the throughput of this TGMG is equal to

1

2 + α
+

α

2 + α
=

1 + α

2 + α
.

Remember, that the throughput of all transitions must be the same. If α = 0, then
the throughput is equal to 1/2 which correspond to the late evaluation throughput.
If α = 1, then the throughput is equal to 2/3, for α = 0.5 the throughput is equal to
3/5.

One may ask if the loop (m, s) has impact on the throughput of the TGMG. In this
example it does not, removing this loop does not change the throughput of the TGMG.
To construct an example were this loop makes the difference let us add one token to
the place (t3, m), resulting TGMG depicted in Figure 2.9(b). The Markov chain of
this TGMG is shown in Figure 2.10(b). Resolving this chain, the following expression
for the throughput is obtained 1/(2 − α). It can be observed that the throughput
grows from 1/2 to 1 when α grows from zero to one. The throughput is equal to 2/3
for α = 0.5. Now let us remove transition s from the TGMG. The Markov chain of
the result TGMG is quite big, so to find a throughput for α = 0.5 we used a simple
simulator which fire each transition many times and calculates the throughput directly
by its definition. The value that simulator returns is 0.75, more than 10% greater
then the throughput of the same TGMG with the transition s (0.666). Thus, provided
example is interesting because a cycle with the ratio tokens/delay greater than the
throughput has been removed from the TGMG but this leaded to the throughput
increasing.

2.5.5 Calculating a throughput upper bound with LP

The Markov chain analysis is a general way to calculate the throughput of a TGMG.
However, the number of states in the Markov chain grows exponentially both with the
number of tokens in the TGMG and with the number of places. Thus, such analysis can
be unpractical for large TGMGs. From the other hand, Markov chain analysis is not
very convenient tool at the time of building algorithms for performance optimization.
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Figure 2.12: Transformation of non-singleton transition to singleton that preserves
the throughput of a TGMG

Next, we will overview an LP based approach to estimate the throughput of a singleton
TGMG. This approach was proposed in [59].

Let T1 be a set of simple transitions, T2 a set of multi-guarded transitions of a
singleton TGMG (T1 ∪ T2, E, G, m0, δ, γ). Then, the throughput upper bound of the
TGMG is the optimal value of the following LP:

maximize : Θ,
subject to:

δ(t) ·Θ ≤
∑

p∈•t
γ(p) · m̂(p), t ∈ T2

δ(t) ·Θ ≤ m̂(p), p ∈ •t, t ∈ T1

m̂ = m0 + C · σ.

(2.7)

The notation γ(p) is used since each guard of a multi-guarded transition consists on
only one place. Comparing with the LP (2.6), the only difference is special constraints
for each multi-guarded transition.

A TGMG always can be transformed to a singleton TGMG with the same through-
put [59]. Figure 2.12 illustrates this transformation. Originally, transition m in
Figure 2.12(a) has two guards with two places in each one: {(t1, m)(t2, m)} and
{(t3, m), (t2, m)}. After transformation, m is singleton transition with two guards.
Figure 2.12(b) shows the result TGMG. The delays of transitions t′1 and t′3 are equal
to zero. After this transformation the throughput upper bound of an arbitrary TGMG
can be calculated with LP (2.7).

In Chapter 5 we will construct a TGMG model for ESs with early evaluation nodes.
The model will allow the analysis and optimization of the performance of ESs with
early evaluation nodes.

33



34



Chapter 3

State of the art

This chapter starts with a formal review of the retiming optimization technique, since
the first and second contributions combine retiming with recycling to optimize the
performance of ESs. Afterward, the overview of synchronous elastic designs, proposed
in the literature, follows. After this, the buffer sizing and buffer insertion (slack
matching) optimization techniques are introduced. The last contribution combines
these techniques to optimize the performance of ESs. Finally, it is illustrated how the
synchronous elastic system can be built using static scheduling.

3.1 Retiming

Retiming [66] is a classical technique for sequential optimization. Retiming represents
a sequential circuit as a weighted directed multi-graph G = (V, E, d,R), (retiming
graph), where V is a set of vertices that represent combinational nodes, E is a set of
edges that represent interconnections between combinational nodes, d : V → R+ is a
non-negative real function that represents a propagation delay for each combinational
node, R : E → Z+ represents the number of registers on the edge. If R(e) = 0 for
edge e ∈ E then e represents a wire. A retiming graph G has a well-defined structure
as a circuit if the following property holds: in any directed cycle of G, there is some
edge which is not a wire. For the corresponding sequential circuit this property is
equivalent to the absense of combinational cycles.

Figure 3.1(a) shows a retiming graph of the elastic circuit depicted in Figure 1.3(a).
The nodes (cycles) are labeled with their delays. The edges are labeled with the cor-
responding number of registers, unlabeled edges have no registers. The combinational
delay of the path c→ f → g is equal to 18 units of time. For the path c→ d→ e→ a
it is equal to 21 units of time. There no path with the delay greater than 21 exist,
hence, 21 is the cycle time of the circuit.

Formally, retiming is defined in [66] as an integer function r : V → Z that trans-
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Figure 3.1: (a)Example of a retiming graph. (b) Min-delay retiming configuration.

forms the number of registers for each edge e, R(e) to R′(e) as follows:

R′(e) = R(e) + r(v)− r(u), R′(e) ≥ 0.

Let us apply the following retiming on graph in Figure 3.1(a): r(a) = 1, r(c) = −1,
r is zero for the rest of the nodes. In order to apply r(a) = 1 it is enough to remove
one register from each output edge of node a and add one register to each input edge
of it; r(c) = −1 moves register across node c in the opposite direction. Figure 3.1(b)
shows the result graph. The combinational path with the greatest delay is a→ b→ c,
the cycle time is equal to 9 + 3 + 4 = 16 units of time.

Retiming may change the cycle time and the number of registers in the circuit
while preserving its sequential behavior [65]. With the decreased cycle time the
number of registers (area) in the example has been increased. There are two general
formulations of the retiming problem:

• Min-delay retiming. The optimization target is the cycle time of the circuit.

• Min-area retiming. The optimization target is the area (number of registers)
under cycle time constraints.

Min-delay retiming can be solved in polynomial time [66,96,97]. The min-area retim-
ing is an NP complete [66] problem but some instances of it can be solved fast [57].
The exact algorithm for min-area retiming tend to be based on integer linear pro-
gramming.

A more accurate model for min-area retiming takes into account fan out registers
sharing. For example, in Figure 3.1(b) the output of the node c is driven to the nodes:
d and f . Both edges (c, d) and (c, f) have a register, thus, the physical implementation
of such circuit requires only one register. Registers sharing can be incorporated to
retiming by introducing a fake fork node with zero delay [66,95]. Figure 3.2 illustrates
the idea for the node c.
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In [84] it is shown that the cycle time retiming can achieve is lower bounded by
the following expression

max
c∈C

∑
v∈c

d(v)∑
e∈c

R(e)
, (3.1)

where C is the set of all directed cycles of the retiming graph. For example, for the
retiming graph depicted in Figure 3.1 the lower bound (3.1) is equal to

max(12/2, 49/4) = 12.25.

Retiming changes the initial state of the circuit. After applying retiming the
equivalent initial state should be calculated. It is always possible if the retiming
graph is strongly connected. In general, finding an equivalent initial state of the
retimed circuit is not always possible [106].

Retiming is applicable to ESs as well. The only extra constraint is that only the
equally initialized EBs (tokens or bubbles) can be moved across computational nodes.

3.1.1 C-slow retiming

The main limitation of the retiming is that it preserves the number of registers at
each directed cycle of the retiming graph [84]. C-slow transformation overcome this
limitation making c copies of each register. By c-slowing a circuit, the throughput
(number of input data processed per cycle) is reduced to 1/c but a circuit can be
made feasible for a very small clock period.

Figure 3.3(a) shows a 2-slow version of the circuit from Figure 3.1(a). Applying
to it the retiming: r(a) = 1, r(b) = 0, r(c) = −1, r(d) = −1, r(e) = 0, r(f) =
1, r(g) = 2, r(h) = 1, r(i) = 0 leads to the circuit depicted in Figure 3.3(b). The
result circuit has cycle time of 10 units of time but processes every input data during
two clock cycles (its throughput is equal to 0.5). The performance of this circuit can
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Figure 3.3: (a) 2-slow version of the circuit from Figure 3.1(a), (b) 2-slow and retiming

be estimated as the cycle time of a sequential circuit with cycle time of 20 units of
time, 10/0.5 = 20, which is worse than its min-delay retiming cycle time.

3.1.2 Retiming and clock skew

Retiming has a strong analogy with the clock skew [46] optimization technique. Clock
skew is the difference between the time moments the clock signal arrives at different
registers of a circuit. It can be shown that retiming of a node n r(n) = 1 can be
achieved by increasing clock skew of the corresponding registers [46, 96]. In general,
clock skew and retiming can be viewed as continuous and discrete optimizations with
the same effect.

Since clock skew is a continuous optimization, it can provide performance beyond
the min-delay retiming cycle time. For example, consider a simple circuit depicted
in Figure 3.4(a) with two registers R1, R2 and two combinational nodes a, b. The
nodes are labeled with their combinational delays. The cycle time of this circuit is
equal to 60 units of time and retiming can not improve this value. However, the lower
bound (3.1) for the cycle time time is equal to 100/2 = 50 units of time. The diagram
underneath the circuit reflects the fact that clock signal arrives simultaneously at
both registers and the clock period is equal to 60 units of time. Now, let us postpone
the clock for R1 by ten units of time as it is shown in Figure 3.4(b). With such
configuration the circuit can work with cycle time of 50 units of time. The timing
diagram is shown in the bottom of the Figure 3.4(b). Observe, that node b has 40
units of time to recalculate its value, while node a still has 60 units of time.

The analogy between the skew optimization and the retiming problems has been
exploited to propose efficient algorithms for retiming of large circuits [96].
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3.2 Synchronous elastic circuits

3.2.1 Latency insensitive design

Latency insensitive design (LID) [16, 17] was one of the first paradigms proposed in
the literature to elasticize synchronous design while preserving global clock and hence
standard synchronous design flow.

In [16] some registers of a synchronous circuit are converted to relay-stations by
associating a void bit with each of them. When the void bit associated with a register
is asserted, the data stored in the register is assumed to be non-informative and should
be ignored. If some of the input channels provide valid data while another does not
the node must be able to freeze its state (stall) and also to inform channels to resend
the same valid data until all inputs become valid. This logic is implemented by
a shell which is added to each computational block of the design. Computational
blocks are some big sequential blocks of the circuit. Figure 3.6 shows the illustrative
implementation that was presented in [18]. While one of the inputs does not provide
valid data (a voidIn is set) or one of the outputs cannot accept new data (a stopIn is
set) the clock signal is disabled for the whole block making it to freez.

The registers with void/stop bit and the control logic is called a relay station,
they are marked with shadowed rectangles in the figure. In [18] an implementation
of relay station is also presented. Unfortunately, the control logic is left as a black
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box. In the next section an alternative implementation is presented with the details
of the implementation of EB.

Different schemes of relaxation the strict firing semantics of computational blocks
were later proposed [25, 67]. These schemes aid at improving the performance of the
LID.

Recycling

LID enables the automatic insertion of bubbles. In [16] such transformation was called
recycling.

Figure 3.5 shows how the critical combinational path of the retiming graph from
the Figure 3.1(b) can be broken by putting a bubble on the edge (b, c). The bubble is
drawn as a star symbol. The cycle time of the result graph is equal to 14 units of time.
Remember that min-delay retiming achieves cycle time of 16 units. However, recycling
does not come for free. The insertion of bubbles decreases the throughput of the ES.
The throughput is defined as the average number of valid data that circuit produces
each clock cycle. As an example, the throughput of the circuit in Figure 3.5(b) is
equal to 2/3 because the upper-most directed cycle (a, b, c, d, e) has latency equal to
three but only two valid data. The throughput of LID can be statically analyzed and
improved [18].

In [19] it was proposed to combine recycling with retiming to optimize the per-
formance of ESs. The first and second contributions of this work further develop a
similar idea.

3.2.2 Synchronous elastic flow

In [38] an alternative implementation to LID has been proposed. To implement an
EB a flip-flop is decoupled into master and slave latches and the slave latch is used as
a buffer for the control logic [89]. The automated design flow, Synchronous Elastic

41



Flow (SELF), has been proposed for converting synchronous design to elastic.
Figure 3.7 depicts the logic of the EB implementation in SELF. A node may have

several inputs (join node) and several outputs (fork node). In order to handle such
nodes EB controllers should be connected by join/fork controllers. Their implemen-
tations are also proposed in [38]. The variable latency nodes can be easily handled
in this design. Later, SELF was extended to handle early evaluation nodes and anti-
tokens counterflow [37], also it was formally verified.

In [26] a detailed comparative analysis of SELF and LID has been done. In the
experiments that are presented in Chapter 5 the Verilog simulation uses SELF based
design.

There are several other implementations of synchronous elastic protocol have been
proposed [27,70]. The paper [104] provides a framework for formal verification of dif-
ferent implementations of latency insensitive protocols. For example, it is shown how
the property of sequential equivalence can be verified. Two systems are sequentially
equivalent if their valid traces (traces with all bubbles removed) are equal.

3.2.3 Early evaluation

Conventional ESs are based on late evaluation: the computation is initiated only
when all inputs are available. Sometimes, this requirement is too strict; for example,
once a multiplexer received a select signal, it is sufficient to wait for the selected
data channel to produce a token, the other data channels are “don’t care”. Early
evaluation, EE, takes an advantage of this flexibility to improve the performance of
ESs.

Figure 3.8 exemplifies the idea; Figure 3.8(a) represents a simple ES with four
computational nodes, a, b, c and m. Node m represents a multiplexer (mux). The
select signal of the multiplexer is omitted for simplicity. The one and zero branches
of the mux are labeled with 1 and 0 respectively. As before, rectangles with dots
represent initialized EBs, while empty rectangles represent bubbles. Assume that the
select signal of the mux in Figure 3.8(a) is equal to zero, then, all required data are
available for m to produce a new token. Figure 3.8(b) shows the configuration that
is produce when m fires, dashed lines show the movements of the tokens. Notice,
that a negative token (anti-token), represented as a circle with the sign of a minus
inside, has been generated in one branch of the mux. This anti-token is stored in a
special buffer of the control logic [37]. The forward delay of such a buffer is equal to
zero. The goal of the anti-token is to remember that the input data that will arrive
later must be discarded. In our example this happens in the next clock cycle, as it
is shown in Figure 3.8(c). Notice, that the total number of tokens at each directed
cycle is always constant. The directed cycle (a→ m→ c→ a) has one token and the
directed cycle (b→ m→ c→ b) has two tokens.

Anti-tokens can be passive, waiting for the token to arrive (as in Figure 3.8), or
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active, traveling backwards through the control until they meet a token. Recently, dif-
ferent schemes to handle EE have been proposed [2,9,24,25,37,67,93,101]. But, to the
best of our knowledge, there were not formal methods for performance optimization
using concept of EE.

How the performance of an ES with EE can be evaluated? The late evaluation
throughput of the ES depicted in Figure 3.8(a) is equal to 1/2. This is because the
directed cycle (a→ m→ c→ a) has one token and two EBs. Let us assume that the
select signal of the mux m is always available and selects zero branch of m with the
probability 0 ≤ α ≤ 1. Consequently, the branch one is selected with the probability
1 − α. The behavior of ESs with early evaluation can be modeled using Markov
chains [109] (see Chapter 5 for examples). The Markov chain analysis allows to
calculate exactly the throughput of an ES with EE nodes under assumption that each
branch selection is independent on the previously selected branches. Whether such
assumption impose big restrictions on the performance evaluation is out of the scope
of this work. In our example the throughput is equal to:

(1 + α)/(2 + α).

One may suppose that the throughput of the ES in Figure 3.8(a) is equal to the
average of the throughputs of two directed cycles, that is

1/2 · (1− α) + 2/3 · α.

But as it can be seen, this value is not equal to the throughput of the ES.
Markov chain analysis provides exact value of the throughput of an ES with EE

nodes and memoryless branch selections. The problem is that the number of the states
in the Markov chain grows exponentially with the number of EBs in the ES. On the
other hand, Markov chain analysis is not a very convenient tool for building algorithms
for the performance optimization. In [59] marked graphs with early evaluation nodes
are introduced and an LP model is provided to estimate the throughput of such
marked graphs. Chapter 5 uses the results of [59] to optimize the performance of ES
with EE nodes.

3.2.4 Slack matching and buffer sizing

There is a phenomena that may degrade the performance of ES. The performance
degradation happens when stall event is propagated backward. The main source of
this problem are unbalanced fork-join paths [4] or re-convergent paths [23, 34] in an
ES.

Let us exemplify the problem using the ES depicted in Figure 3.9(a). Here we use a
marked graph model of ES. For more details about marked graphs refer to Section 2.5,
for our purposes marked graphs can be treated as usual directed weighted graphs.
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The vertices of the graph represent the computational blocks of ES (rectangles in
the picture). Each EB is represented as a pair of edges: the forward edge and the
backward edge. Forward edges are continuous lines, they model the data propagation.
The number of black dots on a forward edge corresponds to the number of tokens in
the EB. Backward edges are dashed lines, they model the back-pressure propagation.
The number of tokens on a backward edge corresponds to the number of free registers
in the buffer of the control logic. For example, EB (a, b) has no tokens (it is a bubble)
and has two free registers.

The sum of the tokens at the forward and backward edge of each EB is a constant.
In our example, it is always equal to two. This value represents the capacity of the EB.
Capacity gives the maximum number of valid data an EB may store before the stop
bit for its input will be asserted. Two is the minimal capacity an EB must have: one
register is for usual operation and the one register to store the input token if the output
asserts the stop bit. Without the extra register it is not always possible to guarantee
the correct behavior of ESs. Using the marked graph model, the performance of the
ES can be calculated as the minimal cycle ratio tokens/delay [92].

Let us assume that the delay of forward and backward edges of each EB in Fig-
ure 3.9(a) is equal to one. Such a model corresponds to a synchronous ES. The
minimal delay of data propagation from input of an EB to its output is equal to
one clock cycle. The same is true for stop bit propagation. Then, for example, the
directed cycle (a→ b→ c→ d→ e→ f → a) has four tokens and its total delay is
equal to six. The total delay is calculated as the sum of the delays of each edge of
the cycle. Thus, the ratio tokens/delay for this cycle is equal to 4/6 = 2/3. The
minimal cycle ratio tokens/delay in our example is provided by the directed cycle
(a→ b→ c→ d→ a) and it is equal to 1/2. Thus, the throughput of the ES can
be estimated as 1/2. This means, that in infinite execution the ES will produce one
valid data every two time units, on average. The cycle, that has minimal cycle ra-
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tio token/delay is called critical cycle. Notice, that the critical cycle in the example
contains the backward edge (d, a).

Let us assume that the capacities of all EBs in the example are equal to infin-
ity. In the terms of the marked graph model this means that the weights of the all
backward edges are equal to infinity. Then, it can be verified that the minimal ratio
tokens/delay of the marked graph depicted in Figure 3.9(a) is equal to 2/3 ant the
critical cycle is (a→ b→ c→ d→ e→ f → a). This provides 33% performance im-
provement comparing with the original throughput. However, the same throughput
can be achieved by setting only the capacity of the EB (a, d) be equal to three and
leaving the rest of the EBs unchanged. Figure 3.9(b) shows the result marked graph.

One may try to find a minimal capacity that is sufficient to add for each EB to
remove all backward edges from the critical cycles of the ES. This problem is known
as buffer sizing problem. It can be shown that the buffer sizing is NP-complete (see,
for example, Theorem 6.5.1). Still, most of the instances of this problem can be solved
very fast because in practice a very few EBs should be resized to achieve maximal
throughput.

Re-convergent paths can be balanced by inserting bubbles into short (fast) branches.
This technique is well known in the area of asynchronous design [73, 108] where it
is called slack matching. In this work we refer to this transformation as buffer in-
sertion. Figure 3.9(c) illustrates the buffer insertion transformation applied to the
marked graph from Figure 3.9(a). The bubble (a, r) has been inserted between the
computational nodes a and d. Again, the throughput of the result ES has been
increased to 2/3.

Often, buffer insertion allows to achieve the same throughput as buffer sizing. The
third contribution of this work provides an example of a marked graph when buffer
insertion is unable to achieve the same throughput as buffer sizing does. After this, a
general formulation which combines buffer sizing and buffer insertion for throughput
optimization of ESs is proposed.

The main advantage of the buffer insertion with respect to buffer sizing is that
the control logic of EB remains as simple as shows Figure 3.7. While the implemen-
tation of EBs with capacity greater than two requires extra effort. For example, it
can be obtained by combination the implementations proposed in [70] and [28]. A
weakness of buffer insertion is that it increases the forward latency of the ES and
may achieve less throughput than the buffer sizing. Since a lot of research devoted to
these transformations have been done, a short overview of some publications follows
next.

Related work

Buffer sizing was proposed as a technique for optimization of synchronous elastic
systems in [71]. In [71] a mixed integer linear programming model is proposed to
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maximize the throughput of ESs by using buffer sizing. In [34], a polynomial time
heuristics for buffer sizing is proposed. Moreover, it was observed that the throughput
achievable with the simultaneous use of buffer sizing and buffer insertion may be
greater than the throughput achievable only with buffer insertion.

Buffer insertion has a long history in the area of asynchronous design, where it is
usually called slack matching. In [108], it is shown that the performance of a self-timed
ring is maximized when it is balanced with respect to the ratio tokens/bubbles, and
a quantitative approach to calculate such an optimal balance is presented. In [14], a
precise linear approximation for the performance analysis of iterative computations in
self-timed rings is presented. The model is based on event-rule systems and it is closely
related to previous models based on Petri nets [91,92]. In [45], an iterative algorithm
for slack matching in asynchronous systems is presented. The algorithm does not
guarantee the minimal number of extra registers will be used to achieve maximal
throughput. In [4, 90], algorithms for buffer insertion in choice-free asynchronous
systems are proposed, the algorithms are based on linear programming. The marked
graph model of ESs that is presented in this section is used in the most of the papers
about slack matching of asynchronous design.

3.2.5 Scheduling elastic designs

In the infinite execution the behavior of an ES with only late evaluation nodes is
periodic [7,23]. Thus, if one would find such a period for each node, then the control
logic for the ES can be reduced to a simple ring of appropriately initialized registers.
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This, in turn, removes the necessity of routing of extra wires that elastic protocol
adds. It is important, since high wire congestion can make the design malfunctional.
The drawback of the approach is that the schedule itself can be long, which introduces
area overhead. It is very likely that many of the nodes will have the same or shifted
scheduling. Thus, one may share such schedulings to reduce the area overhead [21].
However, only scheduling of the nodes that are located close to each other on the
chip can be shared, otherwise, routability problems may again appear [21]. A more
substantial drawback of the scheduling follows from the fact that scheduling does not
exist for ESs with early evaluation nodes. The behavior of such ESs is not periodic.
On other hand, without early evaluation the performance of an ESs may hardly be
improved compared with the original circuit (see Chapter 4).

Let us illustrate the idea of the scheduling with an example. Figure 3.10 shows
a simple ES with four computational blocks and six EBs. Only two EBs are not
initialized, the rest have a token. Let us simulate the behavior of this ES assuming
synchronous model. In the first clock cycle all nodes have valid inputs except node
a. Node a produces a bubble in this cycle. This corresponds to the first line of the
table in the right part of the figure. In the second clock cycle node b produces a
bubble, since both its input EBs have no token. Then, bubble is propagated as it is
shown in the table. After four cycles the circuit is in the initial state. Thus, in the
next four clock cycles the behavior shown in the table will be repeated. Each node
produces three valid data at each period which gives throughput of 3/4. The reader
may verify that this value is equal to the ratio tokens/latency of the directed cycles
(d→ b→ c→ d) and (d→ a→ b→ c→ d).

The actual implementation of this ES does not need valid and stop bits at all. The
only thing we should remember is the order in which node b produces valid data, i.e.,
its schedule. The schedule of the node b is an automaton computing the following
sequence: (1 0 1 1)∗. Such automaton can be implemented as a ring of four registers
with initial state (1 0 1 1) respectively, as it is shown in the figure. In general, finding
a static scheduling is not always so easy, as in the example. Sometimes EBs with
rational capacities are required [7].

3.3 Conclusions

Synchronous elastic design is a relatively new field, but a lot of work has been already
done here. However, the most part of this work is focused on the design aspects and
local transformations that might improve the performance of ESs and a very few
algorithms for the global performance optimization of ESs are provided.
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Chapter 4

Retiming and Recycling

This chapter presents the first contribution of this dissertation. It is a general formu-
lation that combines retiming and recycling for performance optimization of ESs. It
can also cover C-slow retiming as a particular case. The proposed model is based on
mixed integer linear programming. A set of experiments has been designed to show
the benefits that can be obtained by combining retiming and recycling with respect to
applying these two techniques separately. The contribution presented in this chapter
has been published in [11].

The model can be extended to handle several other transformations of ESs. Some
of these extensions are discussed in the next chapter.

4.1 Introductory example

In this chapter an ES is modeled as a retiming and recycling graph (RRG). The model
is an extension of a retiming graph model and it can handle early evaluation, retiming
of Elastic Buffers (EBs) and insertion of empty EBs (recycling). This chapter focuses
only on the ESs with late evaluation nodes.

Figure 4.1(a) shows an RRG for the retiming graph depicted in the Figure 3.1(a).
As before, vertices represent combinational nodes and are annotated with their com-
binational delays. The rectangles with dots inside represent initialized EBs. In tradi-
tional synchronous design all registers have to be initialized, but in an ES this is not
a requirement, bubbles may appear in the initial configuration.

In order to distinguish initialized EBs from bubbles, one more edge property is
introduced to the RRG compared with the retiming graph. In an RRG each edge has
two weights: the number of tokens and the number of EBs assigned. For example,
the edge (a, b) in Figure 4.1(a) has one EB and one token. The combinational path
of RRG is defined similar to the combinational path of retiming graph (section 3.1)
substituting the registers by the EBs.
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Figure 4.2: Separate application of retiming and recycling.
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Let us exemplify how retiming and recycling transformations can be combined to
optimize the performance of ESs. Consider the RRG depicted in Figure 4.1(a) and let
us apply only retiming transformation first. This results in the min-delay retiming
configuration depicted in Figure 4.1(b). The dashed arrows show the movement of
the EBs. The cycle time of the min-delay retiming configuration is equal to 16 units
of time with the critical combinational path a→ b→ c. Now let us break the critical
combinational path by putting a bubble on the edge (a, b). This leads to the cycle time
of 14 with the critical path f → g. Figure 4.2(a) shows the result RRG, the bubble is
represented by an empty rectangle. Remember, the resulting circuit does not produce
a valid data at each clock cycle. The directed cycle a→ b→ c→ d→ e→ a has three
EBs and two tokens. Thus, it may produce two tokens every three clock cycles in the
best case. The throughput of this RRG is equal to 2/3.

The main metrics of the RRG performance is its effective cycle time, which is
defined as the ratio of cycle time by the throughput. The effective cycle time of the
RRG in Figure 4.2(a) is equal to 14/0.667 = 21 units of time. This means, that the
corresponding ES produces new valid data every 21 units of time, which is worse
than the effective cycle time of the min-delay retiming configuration. The effective
cycle time of a conventional synchronous circuit is equal to its cycle time, since its
throughput is always equal to one.

Let us continue the recycling of the first example and put a new bubble on the
edge (f, g), resulting in the RRG depicted in Figure 4.2(b). The cycle time of this
configuration is equal to 10 units of time. The throughput is still 2/3, because the
directed cycle a→ b→ c→ d→ f → g → h→ i→ a has four tokens and five EBs.
The cycle with minimal token to EB ratio (critical cycle) is still the topmost cycle
a→ b→ c→ d→ e→ a. The effective cycle time of this RRG is equal to 10/0.667 =
15 units of time. This is better than the min-delay retiming cycle time. No more
bubbles can decrease the cycle time since node i has combinational delay of 10 units
of time.

Can we achieve the same performance with only one bubble insertion? Yes, we
can. Starting from the RRG depicted in Figure 4.1(a) we put a bubble on the edge
(f, g) and retime node c by one. The result in configuration with the cycle time of
12 units of time depicted in Figure 4.3. There are two critical combinational paths
in this configuration, they are a→ b and c→ d→ e. The throughput is equal to 4/5,
the critical cycle has four tokens and five EBs. The effective cycle time is equal to
12/0.8 = 15, the same as for the RRG 4.2(b). But this configuration has fewer tokens
and EBs, which, in turn, would lead to the implementation with less area.

In this simple example, the separate application of retiming and recycling (Fig-
ures 4.1 and 4.2) leads to the RRG with the minimal effective cycle time (Fig-
ure 4.2(b)). However, the combination of these two techniques might achieve a better
performance than their separate application. In the experiments that were performed
to validate this contribution it happened in half of the test cases. Unfortunately, it is
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Figure 4.3: Retiming and recycling solution.

difficult to find a small RRG with such properties to be used as introductory example.
The main contribution of this chapter is an MILP-based model to find mini-

mal effective cycle time of an RRG by using retiming and recycling transformations.
Henceforth and for the sake of brevity we will refer to the retiming and recycling
transformation as R&R.

4.2 Basic definitions

This section formalizes basic concepts by giving formal definitions of RRG and its
cycle time and throughput.

Definition 4.2.1 (RRG) A Retiming and Recycling Graph (RRG) is a tuple (S, β, T, R),
where

• S = (N, E) is the underlying multi-graph of the ES, N is the set of nodes and
E is the set of edges.

• β : N → R+ assigns combinational delay to each node.

• T : E → Z+ is the number of the tokens on each edge in the initial state.

• R : E → Z+ is the number of EBs on each edge. The condition R ≥ T must
hold.

We have already seen plenty of RRGs. For example, the edge (b, c) of the RRG depicted
in Figure 4.3 has one token, T (b, c) = 1, and one EB, R(b, c) = 1; combinational delays
of nodes b and c are equal to three and four units of time, respectively; that is β(b) = 3
and β(c) = 4. Notice that any retiming graph is also an RRG, with R = T for all edges.
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Definition 4.2.2 (Retiming and recycling configuration (RC)) Given an RRG,
a retiming and recycling configuration, (RC), is a pair of vectors T and R.

Notice, that R&R of an RRG changes only its RC.

Definition 4.2.3 (Retiming vector) A retiming vector r ∈ Z|N | is a function V →
Z such that for every edge e = (u, v) of an RRG transforms T (e) to T ′(e) as follows:

T ′(e) = T (e) + r(v)− r(u).

After applying retiming to RRG the number of EBs on each edge must be adjusted
such that the inequality R ≥ T holds. A way to achieve this is by applying the
same retiming r to R that has been applied to T . It might seem that it is more
convenient to define retiming of an RRG as a transformation that modifies both T
and R simultaneously. However, the proposed definition is more convenient for our
purposes since it helps to separate retiming from recycling.

The recycling on edge e can be achieved by incrementing R(e). Let us notice that
it is never worthwhile to increment R(e) if T (e) is positive; such transformation does
not modify the cycle time of the RRG, but may decrease its throughput. Hence, the
only candidates for recycling are edges without EBs (wires).

We now define some concepts related to timing and performance in RRGs.

Definition 4.2.4 (Combinational paths and cycle time.) Given an RRG, a com-

binational path P is a sequence of edges n0
e1−→ n1

e1−→ · · · ek−→ nk such that R(ei) = 0
for all edges in the path. The delay of the combinational path is

β(P ) =
∑
ni∈P

β(ni).

The cycle time of RRG, τ , is the maximum delay of all combinational paths.

Now let us formally define the throughput of an RRG.

Definition 4.2.5 (Throughput) Given an RRG, and a directed cycle c, the cycle
ratio (ratio) tokens/EBs of c, Θc, is defined as

Θc =

∑
e∈c

T (e)∑
e∈c

R(e)

The throughput Θ of an RRG is the minimum ratio tokens/EBs over all cycles in the
RRG, that is,

Θ = min
for all cycles c

Θc.
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At the first glance it is not evident why this definition corresponds to the real behavior
of ESs. A couple of papers are devoted to the formal demonstration of this fact both
in asynchronous [92] and synchronous [72] domains.

The throughput is the number of tokens that can be processed by a node per
cycle. Since R&R modifies only RC of an RRG, next we will write τ(RC) and Θ(RC)
to refer to the cycle time and the throughput of a given RC.

If an RC has no bubbles, then Θ(RC) = 1, as in Figure 4.1(a). The RRG depicted
in Figure 4.3 has cycle time equal to 12 units of time. The cycle ratios tokens/EBs
for the top and bottom cycles are equal to 1 and 4/5, respectively, therefore Θ(RC) =
4/5. In general, retiming always produces RCs with Θ(RC) = 1, whereas recycling
produces RCs with Θ(RC) < 1. In case of c-slow retiming, the RCs with Θ(RC) = 1/c
are produced. We now define the main performance metrics for an RC.

Definition 4.2.6 (Effective cycle time) The effective cycle time of an RC is de-
fined as

ξ(RC) = τ(RC)/Θ(RC).

The effective cycle time of an RC can be treated as a cycle time of the classical
synchronous circuit that could process data at the same rate as its elastic version. The
effective cycle time of the RRG depicted in Figure 4.3, is equal to ξ = 12·5/4 = 15. The
main contribution of this chapter is a method to find an RC with the minimal effective
cycle time by using R&R. The next result reduces the margins for improvement for
RRGs with only late evaluation nodes.

4.2.1 The lower bound on the effective cycle time

By using only the definition of the effective cycle time, the following lemma can
be proved. It is a negative result since it reduces the margin for the performance
improvement of R&R.

Lemma 4.2.1 (The lower bound on effective cycle time ) For each RC the fol-
lowing inequality holds:

ξ(RC) ≥ max
c∈C

∑
v∈c

β(v)∑
e∈c

T (e)
,

where C is the set of all directed cycles of the corresponding RRG.

Proof: A known result from [84] indicates that for any cycle c

τ(RC) ≥

∑
v∈c

β(v)∑
e∈c

R(e)
(4.1)
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To see this, assume that a directed cycle c contains k EBs which break the cycle into k
combinational parts p1, p2, . . . , pk. The local cycle time is provided by the longest com-
binational path, hence τ(RC) ≥ β(pi), i = 1, . . . , k and consequently τ(RC) ≥ pmax,
where pmax = max

i
β(pi). Now for the cycle c we have the following chain of inequal-

ities: ∑
v∈c

β(v)∑
e∈c

R(e)
=

k∑
i=1

β(pi)

k
≤ pmax ≤ τ(RC).

which proves (4.1).
By Definition 4.2.5 of the throughput we have:

Θ(RC) ≤ Θc =

∑
e∈c

T (e)∑
e∈c

R(e)
(4.2)

Gathering (4.1) and (4.2) together we have:

ξ(RC) =
τ(RC)

Θ(RC)
≥

∑
v∈c

β(v)∑
e∈c

T (e)

for each directed cycle c, which completes the proof. �

Thus, the lower bound for the effective cycle time coincides with the lower bound
for min-delay retiming [84]. However, R&R offers more opportunities than retiming
to approach this bound. For example, the lower bound on ξ in RRG depicted in
Figure 4.1(a) is equal to 12.25 units of time. With retiming, the cycle time of 16
units of time can be achieved, while R&R can find an RC with effective cycle time
equal to ξ = 15. In [84] an upper bound for min-delay retiming cycle time is also
provided:

τ ≤ max
c∈C

∑
v∈c

β(v)∑
e∈c

T (e)
+ βmax, βmax = max

n∈N
β(n).

Thus, the margin for the improvement for R&R is within βmax. If an RRG has well-
balanced delays, then for R&R it is difficult to improve the min-delay retiming cycle
time. Also let us notice, without a formal proof, that the upper bound on the perfor-
mance gain that can be obtained with R&R with respect to the min-delay retiming
cycle time is equal to 50%. This is because by inserting a bubble the best we can
do is to decrease the cycle time twice and preserve the throughput. In the experi-
ments that were done to verify the proposed optimization technique, retiming always
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Figure 4.4: Analogy between retiming graph and marked graph.

provided a configuration with minimal effective cycle time. Another observation that
directly follows from the Lemma 4.2.1 is that clock skew optimization always provides
the same or better performance than R&R. Fortunately, all these restrictions do not
apply to RRGs with early evaluation nodes.

4.3 Retiming and marked graphs

Retiming has a strong analogy with the firing rule of marked graphs (MG). Please,
refer to Section 2.4 if you are not familiar with MGs. Some of the results in the theory
of MGs can be reused in the context of retiming, thus providing an essential support
to make a new contribution in the area of the retiming.

The analogy between MG and retiming is the following:

• The retiming graph of a circuit is isomorphic to a marked graph: each combi-
national block corresponds to a node (transition); each connection corresponds
to an edge (place).

• The registers in the retiming graph are represented by tokens in the MG.

• The firing rules of a MG coincide with the backward retiming rules: each time
a node is retimed, registers are removed from the input edges and added to the
output edges.

Figure 4.4(a) shows retiming graph from Figure 4.1(a); Figure 4.4(b) shows the corre-
sponding MG. We next give a retiming interpretation of the liveness and reachability
properties of MGs.
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Retiming interpretation of liveness (Property 2.5.1). ”An MG is live iff
every directed cycle c is marked positively at given marking m0”. Every cycle should
have at least one register to avoid combinational cycles in the circuit net-list.

Retiming interpretation of reachability (Property 2.5.2) . This property
has two directions. One direction: ”if a marking m is reachable then m(c) = m0(c)
for every directed cycle of the MG”, corresponds to a well-known result in retiming:
a valid retiming preserves the number of registers at each cycle. The other direction:
”if for given marking m and every directed cycle c of MG it hold that m(c) = m0(c)
then m is a reachable marking” provides a new result for the theory of retiming: if
an assignment of registers has the same number of registers at each cycle as the initial
circuit, then the assignment can be achieved by the retiming.

Thus, using Property 2.5.2 and the analogy between MGs and retiming we obtain
the following:

Theorem 4.3.1 In a strongly connected retiming graph:

• a registers assignment T ′ can be achieved by retiming if and only if T ′ preserves
the number of registers at each directed cycle of the retiming graph.

• any retiming configuration can be achieved with only forward retiming moves.

Proof: The first part of the Theorem is a direct application of the reachability
property. The demonstration of the second part follows from the observation that a
firing vector is non-negative (see Definition 2.4.5). �

For example, in the retiming graph from Figure 4.4(a) the backward retiming
r(a) = 1, r(v) = 0, v 6= a is equivalent to the forward retiming r(a) = 0, r(v) = −1, v 6= a.

The result of this section is standalone and does not have any relationship with
the rest of this chapter. Next we will continue the developing of the algorithm to find
an RC with the minimal effective cycle time for a given RRG.

4.4 Basic MIP model for retiming and recycling

First, we will show how the cycle time and throughput of an RC can be modeled
with linear inequalities. This, in turn, allows us to derive a mixed integer non-linear
programming (MIP) model to find an RC with the minimal effective cycle time that
can be achieved with the R&R. The obtained MIP is difficult to solve with available
solvers. Fortunately, the special structure of the problem allows to solve it by solving
just a few MILP problems. Several variations and improvements of the proposed
models are also discussed.
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4.4.1 Combinational path constraints

In order for an RC to meet a cycle time τ , all combinational paths of the RRG must
have delay less than or equal to τ . In the retiming problem, these constraints are
formulated by using the matrices W (minimum latency) and D (maximum delay) [66].
Unfortunately, this formulation is not valid for the R&R problem, since the number
of EBs between any pair of nodes can be changed by inserting arbitrary number
of bubbles. Next, a different set of linear inequalities is proposed to formulate the
combinational path constraints. These constraints are based on the concept of arrival
time of each node of an RRG.

For every node n and every edge e of an RRG, the variables tin(n) and tout(e) are
defined. The variable tin(n) represents the longest delay from any EB to the node n,
including the delay of the node n. The variable tout(e) represents the longest delay
from any EB to the exit of edge e. If e has no EBs, then tout(e) = tin(u), where u is
the source node of edge e, otherwise tout(e) = 0, since the exit of edge e represents the
beginning of a combinational path. This definition of tin and tout can be represented
by the following constraints:

tin(n) ≥ tout(e) + β(n) ∀e = (w, n) (4.3)

tout(e) ≥ tin(w)− τ ∗R(e) ∀e = (w, n) (4.4)

tout(e) ≥ 0 ∀e, (4.5)

tin(n) ≤ τ ∀n. (4.6)

The constraint (4.3) indicates that the delay of the longest path arriving at the
node n is at least equal to the delay of the path terminating at the node w plus the
delay of the node n. The constraint (4.4) transfers the length of the path to the exit
of the edge. In case the edge has some EB (R(e) > 0), a new combinational path
starts at edge e and tout(e) = 0. τ ∗ is a constant large enough to guarantee its value
to be larger than any possible value of τ . It is sufficient for τ ∗ to take the value of
the cycle time of the original RC. For example, the node a of the RRG depicted in
Figure 4.1(a) has the following cycle time constraints:

tin(a) ≥ tout(e, a) + 9,
tout(e, a) ≥ tin(e)− 21 · 0,
tin(a) ≥ tout(i, a) + 9,
tout(i, a) ≥ tin(e)− 21 · 0,
tout(i, a) ≥ 0, tout(e, a) ≥ 0,
tin(a) ≤ 21.

Here, the letter e refers to the node of the RRG, 21 is the cycle time of the RRG.
With τ ∗ being constant, all the inequalities are linear. Inequalities (4.4) and (4.5)
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is a standard trick of mixed integer linear programming to model the OR relation
between two groups of the constraints. In this case the following relation has been
modeled:

tout(e) ≥
{

tin(u), ifR(e) ≥ 1,
0, otherwise.

EB combinational delays. The previous constraints can be modified to account
for the extra combinational delays that introduce EBs. If we call βR the extra com-
binational delay of an EB, we can add βR to the delay of each combinational path by
assigning this delay to the beginning of the path. This is achieved by simply adding
the constraint tout(e) ≥ βR, for all edges of the RRG. Henceforth, the set of con-
straints (4.3)-(4.5) for a given RC and cycle time τ will be represented by a predicate
Path Constr(RC, τ).

Lemma 4.4.1 For a strongly connected synchronous RRG the cycle time, τ(RC), is
less than or equal to a given constant τ iff Path Constr(RC, τ) are feasible.

Proof: ⇒ Assume that τ(RC) = τ . For each node n and each edge e = (w, n) ∈ E,
we define tin(n) and tout(e) as follows:

tin(n) = δ(n) + delay of the longest combinational path arriving at n,

tout(e) =

{
tin(w) if R(e) = 0,

0 otherwise.

It is easy to check that the inequalities (4.3)-(4.5) hold.
⇐ Assume that the constraints (4.3)-(4.5) have a feasible solution

(tin1 , . . . , tinq , tout
1 , . . . , tout

m )

for some τ , q and m are equal to the number of nodes and edges in the RRG respec-
tively. Let P = v1, v2, . . . , vk−1, vk be a combinational path with total delay equal to
β(P ). Then the following chain of inequalities holds:

tin(v1) ≥ β(v1) (constraint (4.3))
tout(v1, v2) ≥ tin(v1) ≥ β(v1) (constraint (4.4))
tin(v2) ≥ tout(v1, v2) + β(v2) ≥ β(v1) + β(v2) (constraint (4.3))

. . .

tin(vk) ≥
k∑

i=1

β(vi) = β(P ).

To start the chain of inequalities we use the fact that in a strongly connected graph
there are no vertices with input degree equal to zero (source vertices). Since tin(n) ≤
τ , for any node n, we can conclude that β(P ) ≤ τ for any combinational path P . �

To handle non-strongly connected RRGs, extra constraints should be added to
Path Constr(RC, τ) for each source vertex s: tin(s) ≥ β(s).

59



4.4.2 Throughput constraints

We next present a set of constraints to guarantee that a specific RC has a throughput
greater than or equal to a given constant Θ. The throughput constraints are the

following:

R(e) ≤ x ·R0(e) + σ(u)− σ(v), ∀e = (u, v) (4.7)

Lemma 4.4.2 There is a real vector σ that fulfills inequality (4.7) iff Θ(RC) ≥ 1/x.

Proof:
⇒
Assume that Θ(RC) ≥ 1/x then, from throughput definition we have

min
c∈C

∑
e∈c

T (e)∑
e∈c

R(e)
≥ 1/x,

or equivalently

max
c∈C

∑
e∈c

T (e)∑
e∈c

R(e)
≤ x.

Applying Theorem 2.3.1, the necessary σ is obtained. Similarly other direction can
be proved. �
In a similar way as for the cycle time constraints, let us introduce a predicate
Throughput Constr(RC, Θ) for a given RC and constant Θ. The constraints are
verified if and only if the throughput of an RC is greater than or equal to Θ.

4.4.3 Basic MIP model

Having cycle time and throughput constraints one can find an RC with the minimal
effective cycle time as a solution of the following quadratic programming optimization
problem:

minimize : τ · x,
subject to:

R′
0(e) = R0(e) + r(v)− r(u), ∀e = (u, v)

R ≥ R′
0 ≥ 0,

Path Constr(RC, τ),
Throughput Constr(RC, Θ),
r(n) ∈ Z, ∀n ∈ N
R(e) ∈ Z, ∀e ∈ E
Θ ≥ 0.

(4.8)
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In this formulation, r and R are vectors of integer variables. The model is not
linear because of the objective function. The objective function is not convex, thus
discarding a possibility to use convex optimization methods to solve it. The current
formulation, to the best of our knowledge, can not be solved exactly by any existing
solver. Next, it will be shown how the optimization problem (4.8) can be solved by
solving just a few MILPs.

4.5 Iterative approach for R&R

Fixing the cycle time or throughput variable in (4.8) the two subproblems can be
solved with mixed integer linear programming. Namely, maximizing throughput un-
der a given cycle time constraint, that means the cycle time is upper bounded by
a given constant or minimizing cycle time under given throughput constraint, that
means the throughput is lower bounded by a given constant. We will construct an
iterative procedure that makes use of these subproblems to solve (4.8). Henceforth,
we will use RR(τ, Θ) to denote all the constraints in (4.8). This notation will also be
used to denote a function that returns an RC, RC := RR(τ, Θ).

4.5.1 Min-cycle-time R&R

The min-cycle-time R&R problem can be formulated as follows:

Given an RRG and a throughput Θ > 0, find an RC with the minimal
cycle time such that Θ(RC) ≥ Θ.

By fixing variable Θ in (4.8), it immediately follows that such an RC is the solution
of the following MILP, where Θ is a constant:

MIN CYC(Θ) ≡ minimize : τ,
subject to: RR(τ, Θ).

(4.9)

Similarly as before, MIN CYC(Θ) denotes a function that returns the RC with the
minimum cycle time from all those that have throughput greater than or equal to Θ.

4.5.2 Max-throughput R&R

The formulation of the problem is as follows:

Given an RRG and a cycle time τ > 0, find an RC with maximal through-
put such that τ(RC) ≤ τ .
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Fixing variable τ in (4.8) the following mixed integer optimization problem is obtained
to find an RC with the maximal throughput:

MAX THR(τ) ≡ minimize : x,
subject to: RR(τ, Θ).

(4.10)

4.5.3 Min-area R&R

Fixing both cycle time and throughput variables in (4.8) an RC with the minimal
number of the EBs can be found with the following MILP:

minimize :
∑
e∈E

R(e),

subject to: RR(τ, Θ).
(4.11)

4.5.4 Minimum effective cycle time

Now we are ready to formulate the main problem. The formulation is as simple as
follows:

Given an RRG, find a configuration RCmin that can be achieved by R&R
such that the effective cycle time ξ(RCmin) is minimal.

We will show how the MILP models MIN CYC(Θ) and MAX THR(τ) can be combined
to find RCmin. We first start by a preliminary result required to make the search
efficient.

Algorithm 1: function MIN EFF CYC STEP(Θ)

RC1 ← MIN CYC(Θ)1

RC2 ← MAX THR(τ(RC1))2

return RC23

Lemma 4.5.1 Θ(RCmin) ≥ βmax

τrt
and τ(RCmin) ≥ βmax, where βmax is the maximum

delay of a node and τrt is the cycle time obtained by min-delay retiming.

Proof: Every retiming configuration is also an RC. Therefore ξ(RCmin) ≤ τrt. By
Definition 4.2.6 of ξ, and using the fact that τ(RCmin) ≥ βmax,

Θ(RCmin) =
τ(RCmin)

ξ(RCmin)
≥ βmax

τrt

.

�
Then, the search for the optimal ξ can be performed by interleaving MIN CYC(Θ) and
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Figure 4.5: Search for minimum effective cycle time.

MAX THR(τ) as Algorithm 1 does. The intuition behind this strategy is the following.
Given a target Θ, an RC1 with minimum cycle time is obtained by MIN CYC(Θ).
RC1 has a throughput not smaller than Θ. After that, another RC2 maximizing the
throughput is obtained by MAX THR(τ(RC1)). RC2 is guaranteed to have a cycle time
not greater than τ(RC1). This process can be iteratively executed until the retiming
solution is found (Θ = 1, τ = τrt). For every explored RC, the effective cycle time
ξ(RC) can be calculated. At the end of the process, the solution with minimum ξ is
returned. Formally, the procedure to find ξ(RCmin) is described by the Algorithm 2.
The maximal number of iterations the function MIN EFF CYC may perform is equal to
(|T |+ |E|)2. In our experiments this search never did more than ten iterations.

Figure 4.5 illustrates the search for the optimum ξ through a diagram that repre-
sents Θ in the x-axis and τ in the y-axis. The MC and MT labels indicate the progress
performed by MIN CYC(Θ) and MAX THR(τ), respectively. The search terminates when
the retiming solution is found. In some cases, MAX THR(τ) does not make any progress
(e.g., see the loop with label MT in the diagram). In those cases, the ε increase
guarantees the termination.

Let us prove that the search does not miss any solution that could provide a better
effective cycle time. The proof uses the notion of non-dominated RC. We will show
that the proposed procedure finds all non-dominated RCs and the RCmin must be
non-dominated. Let us start from the definition of non-dominated RC.

Definition 4.5.1 (Non-dominated RC) Given an RRG and its two configurations
RC1 and RC2, we say that RC1 dominates RC2 if Θ(RC1) > Θ(RC2) and τ(RC1) ≤
τ(RC2). An RC is called non-dominated if there is no other RC that dominates it.
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Algorithm 2: function MIN EFF CYC(RRG)

input : an RRG
output: RCmin an RC with the minimal ξ
ξ ← τrt1

ε← 1
(|T |+|E|)2 /* Lemma 4.5.2 */2

Θ← βmax

τrt
/* Lemma 4.5.1 */3

while Θ < 1 do4

RC← MIN EFF CYC STEP(Θ)5

store nondominated configuration(RC)6

if ξ(RC) < ξ then7

ξ ← ξ(RC)8

end9

Θ← Θ(R) + ε10

end11

return ξ12

Each non-dominated RC can be considered as a Pareto-point which explores different
cycle time/throughput trade-off1. The following property directly follows from this
definition:

Property 4.5.1 If RC1 dominates RC2 then ξ(RC1) ≤ ξ(RC2).

Notice that RCmin must be non-dominated. Another non-dominated RC is min-delay
retiming configuration. The MIN EFF CYC STEP always returns a non-dominated RC.
Let us formally prove this.

Theorem 4.5.1 Let RC1 be a solution of MIN CYC(Θ) and RC2 the configuration
obtained by MAX THR(τ(RC1)). Then, RC2 is non-dominated.

Proof: By contradiction. Assume that exists RC′ that dominates RC2. Then,
τ(RC′) ≤ τ(RC2) ≤ τ(RC1). The first inequality is due to the definition of non-
dominated RC, the second one is due to the fact that MAX THR(τ) provides RCs with
cycle time less than or equal to τ . Now, since τ(RC′) ≤ τ(RC1) it follows that
Θ(RC′) ≤ Θ(RC2), because RC2 has the maximal throughput from the all RCs with
cycle time at most τ(RC1). Hence RC′ does not dominate RC2 that contradicts to
the original assumption, hence, RC2 is non-dominated. �
Therefore, the RCs obtained by calling MIN EFF CYC STEP are the candidates to be
RCmin. They correspond to the black circles in Figure 4.5. The last thing to show
is that by summing up ε to the throughput of a non-dominated RC in line 10 of

1Strictly speaking Pareto-points are formed by the pairs (Θ(RC),−τ(RC))
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Algorithm 2 we do not lose any non-dominated RC. This can be done with the
following:

Lemma 4.5.2 Let ΘL and ΘU be two possible values of the throughput for two non-
dominated RCs such that ΘL 6= ΘU . Then,

|ΘL −ΘU | ≥
1

(|T |+ |E|)2

where |T | represents the number of tokens and |E| is the number of edges in the RRG.

Proof: The throughput of an RC is always a rational number. This directly
follows from Definition 4.2.5. Let n1

m1
and n2

m2
be two different rational numbers with

denominators not greater than m. Then, the following inequality holds:

∣∣∣∣ n1

m1

− n2

m2

∣∣∣∣ =

∣∣∣∣n1m2 − n2m1

m1m2

∣∣∣∣ ≥ 1

m2
. (4.12)

The maximum number of EBs a directed cycle can have is not greater than the number
of tokens in this cycle plus the number of edges in this cycle. Since putting more than
one bubble in an edge degrades the throughput without improving the cycle time.
For this reason, non-dominated RCs can have at most one bubble per edge. Hence,
the denominators of the throughput expression of such RCs are less than or equal
to |T |+ |E|. The proof of the lemma immediately follows from this observation and
inequality (4.12). �

A tighter bound could be used by observing that there is always a critical cy-
cle without repeated vertices. Thus, the minimal difference between two different
throughputs is lower bounded by the 1

(|T |+|N |)2 . Finding the longest simple cycle
in the graph might still improve this lower bound. However, this problem itself is
NP-hard [83].

By combining Lemmas 4.5.2, 4.5.1 and Theorem 4.5.1 we have proved that Algo-
rithm 2 finds all non-dominated RCs.

4.5.5 C-slow retiming

To demonstrate that the proposed model is general, let us show how c-slow retiming
can be modeled with the developed framework. See Section 3.1 for the details about
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C-slow retiming.

minimize : αc +
∑
e∈E

R(e)

subject to:
R(e) = c · T (e) + r(u)− r(v) ≥ 0, ∀e = (u, v)
Path Constr(RC, τ),
c ≥ 1,
r(n) ∈ Z, ∀n ∈ N
c ∈ Z.

(4.13)

The initial number of tokens is T ′ = cT . This is because each initialized EB in the
original circuit is substituted by c EBs (one token and c−1 bubbles). The cost function
minimizes c assuming that α is a large constant, thus maximizing the throughput.
Therefore, the number of the EBs is minimized.

To conclude, let us show how the minimal effective cycle time can be found using
only binary decision variables.

4.5.6 Mixed binary linear programming

The minimal effective cycle time R&R may achieve can be found using binary variables
for R, instead of integers. Potentially this decreases the complexity of the model. The
reduction is based on the observation that has been already used throughout this work.
See, for example, the demonstration of Lemma 4.5.2. Namely, a non-dominated RC
can have at most one bubble on each edge. Putting several bubbles on an edge does
not break any combinational path and only degrades the throughput of the RRG.
Thus, vector R can be represented as follows: R(e) = T (e) + B(e), B(e) ∈ {0, 1}.
Then, the throughput constraints have the following form:

T (e) + B(e) ≤ x · T (e) + σ(u)− σ(v), ∀e = (u, v).

The second inequality in cycle time constraints (4.4) is transformed into:

tout(e) ≥ tin(u)− τ ∗(T ′(e) + B(e)), ∀e = (u, v).

Finally, the MIP (4.8) to find the minimal effective cycle time has the same form,
except that the vector B is constrained to have only binary values. In the experimental
results, this modification provided twice average speed up. But for some cases no
significant improvement in CPU time was observed.

4.6 Experimental results

A set of experiments has been performed to verify the optimization power of R&R
and analyze the performance/area advantages that can be obtained by combining
both techniques.

66



The first consideration for R&R is that it will mostly be applied to coarse levels of
granularity, e.g., at the level of 16-, 32- or 64-bit registers in medium and large systems
having few dozens or hundreds of computational blocks. Unfortunately, there is no
set of benchmarks usable by academia that keep hierarchical information and can
be effectively used for realistic experiments. For this reason, we designed synthetic
experiments based on the underlying graphs of the sequential ISCAS89 circuits. To
obtain an RRG for every circuit, the following transformations were performed:

• The original latches were removed, and every gate was considered to be a large
combinational block. Each combinational block was assigned a delay generated
randomly from a uniform distribution in the interval (0, 20].

• The largest strongly connected component of the circuit graph was kept in the
RRG. The rest of nodes and edges were removed. Even though the proposed
techniques do not require an RRG to be strongly connected this transformation
reduced the number of edges in the graph, thus reducing the complexity of
MILP models to solve.

• Each channel (edge) was assigned a token with a certain probability. The prob-
ability was chosen to be 0.5. Thus, about half of the edges were assigned a
token, whereas the other half were just wires.

For each example, several solutions were obtained using the optimization techniques
presented in Section 4.5.4. In the all test cases retiming always provided configura-
tions with the minimal effective cycle time 2. The reason for these results is easy to
explain. The only potential margin for improvement is the difference τrt − ξ∗ (see
Table 4.1), which was usually small in our examples. Even with the existence of the
margin, the degradation in throughput produced by the insertion of bubbles reduces
the chances for improvement significantly.

Therefore, to compare simultaneous application of retiming and recycling with
their separate application (first retiming and then recycling) a target cycle time was
imposed for each RRG. The cycle time was set to 0.75 · τrt, where τrt is the min-delay
retiming cycle time. To meet this constraint bubbles must be inserted into the RRG.
After satisfying the performance constraints of the model, the area of the all solutions
was minimized.

Table 4.1 reports the results. The “Initial” columns report the parameters of the
original RRG: the number of nodes, the number of edges, the initial number of the
registers and the cycle time. The fifth column, ξ∗, shows the lower bound on the
effective cycle time (see Lemma 4.2.1). The results obtained by min-delay retiming

2In paper [11] we failed to obtain exact solutions for some min-delay retiming problems within 5
minutes and the obtained approximations were used instead. Later, with a newer version of MILP
solver, the exact solutions were obtained for the all test cases.
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Table 4.1: Experimental results.

Initial Retiming Recycling (τ ≤ 0.75τrt) Retiming+Recycling (τ ≤ 0.75τrt)
|N | |E| T τ ξ∗ T ′ τrt R τ Θ ξ R τ Θ ξ CPU

s27 14 24 14 58.20 58.20 5 58.20 12 30.32 0.50 60.64 12 30.32 0.50 60.64 00:00:01
s208 8 9 2 87.58 87.58 2 87.58 3 51.00 0.50 102.00 3 49.86 0.50 99.72 00:00:01
s344 135 176 76 72.52 39.75 72 41.53 106 26.15 0.50 52.30 101 23.90 0.50 47.80 00:00:16
s349 135 176 76 134.70 46.25 78 48.64 114 27.46 0.50 54.92 95 27.46 0.50 54.92 00:12:00
s382 42 60 23 66.00 38.14 29 41.32 41 24.39 0.50 48.78 34 24.39 0.50 48.78 00:00:02
s386 48 131 64 49.30 43.75 40 46.02 84 25.12 0.50 50.24 76 25.12 0.50 50.24 00:00:04
s400 46 66 29 66.24 50.42 34 52.43 42 33.24 0.50 66.48 39 24.88 0.43 58.05 00:21:26
s420 8 9 2 76.70 76.70 2 76.70 3 40.59 0.50 81.18 3 40.59 0.50 81.18 00:00:01
s444 58 82 41 80.47 52.69 35 55.02 44 31.37 0.50 62.74 38 39.73 0.67 59.60 00:00:09
s510 103 407 197 69.72 64.48 36 64.48 145 34.65 0.50 69.30 132 34.65 0.50 69.30 00:26:27
s526 50 71 31 80.66 80.66 23 80.66 29 45.38 0.50 90.76 30 41.44 0.50 82.88 00:00:01
s641 221 270 133 123.09 40.85 117 43.97 178 25.83 0.50 51.66 137 30.90 0.67 46.35 00:05:19
s713 256 341 158 171.65 40.21 143 47.82 252 23.57 0.42 56.57 240 36.72 0.75 48.96 00:18:25
s820 110 424 205 53.61 53.23 283 53.46 288 31.04 0.50 62.08 122 31.04 0.50 62.08 00:10:09
s832 117 462 226 61.84 49.04 329 50.39 354 30.45 0.50 60.90 231 27.40 0.50 54.80 00:21:42
s838 8 9 2 68.40 68.40 2 68.40 4 38.33 0.50 76.66 3 35.03 0.50 70.06 00:00:01
s953 268 371 172 90.93 50.69 131 53.26 234 25.99 0.40 64.98 158 35.88 0.67 53.82 01:29:40
s1488 133 572 284 72.52 58.05 123 63.39 194 37.05 0.50 74.10 196 36.01 0.50 72.02 00:03:58
s1494 136 572 275 71.10 58.22 306 60.29 393 33.13 0.50 66.26 231 33.13 0.50 66.26 01:48:08

are reported in the next two columns; first goes the number of registers and then the
min-delay cycle time.

The configurations for “Recycling” and “Retiming and Recycling” were obtained
by imposing the constraint τ ≤ 0.75τrt. As an example, the target cycle time for s27
was defined to be τ ≤ 0.75 · 58.20 = 43.65. The obtained results had the optimum
effective cycle time (ξ) satisfying the cycle time constraint.

The “Recycling” solution was obtained by only inserting bubbles in the RRG and
not modifying the location of registers defined by the min-delay retiming3. You can
observe that the cycle time is often smaller than the target cycle time 0.75τrt. The
increase in number of EBs is strictly associated to the bubbles inserted by recycling.

The R&R solutions (“Retiming+Recycling” columns) were obtained by MIN EFF CYC,
as explained in Section 4.5.4. The only modification is that the search was finished
when the cycle time of a non-dominated RC became greater than 0.75·τrt. The results
show the benefits in performance and area when combining retiming and recycling in
the same model. In some cases, the reduction of the effective cycle time is significant
e.g., s526, s641 and s953. In other cases, the performance improvement is not so
relevant but the reduction in area is important, e.g., s820, s832 and s1494. An in-
teresting case is s400, in which the throughput of the R&R solution (0.43) is smaller
than the one of the recycling solution (0.50). However, the reduction in cycle time
(from 33.24 to 24.88) results in a superior performance. This is a clear example of

3This was achieved by adding constraint r = 0 to the model (4.8)
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the diversity of solutions that can be explored by R&R.
The CPU time (hh:mm:ss) is only reported for the R&R solutions, which cor-

responds to the most complex optimization model. CPLEX [58] was used as MILP
solver. To make the computations affordable, a timeout of 600 seconds was defined for
each MILP model. It is important to recall that in the iterative approach MIN EFF CYC

generates two MILP models at each iteration of the while loop of the algorithm. Even
with this limitation of CPU time, the results show that significant improvements in
performance can still be obtained, even without guaranteeing optimality. In fact, in
the most of the examples the exact solution was obtained. The maximal number of
the iterations that was performed in the while loop of the function MIN EFF CYC (see
Algorithm 2) is equal to ten.

Results from 2-slow retiming were also obtained, for completeness. All of them
had worse performance than the R&R configurations. Given their irrelevance for the
main conclusions of this chapter, they are not shown in the table.

4.7 Conclusions and future work

The main conclusions from this chapter is that R&R transformation will hardly im-
prove the performance of ES with only late evaluation nodes with respect to min-delay
retiming. Another result is that combination of both techniques allows to find better
configurations than those obtained by applying retiming and recycling independently.

We do not know whether a polynomial time algorithm exist for the minimal ef-
fective cycle time problem. We believe that this problem is NP-hard, but this fact
requires a formal proof.

Later, the same experiments were performed using the MBLP approach of Sec-
tion 4.5.6. All experiments were completed within two hours and the exact solutions
were obtained for all MBLPs. The run time speed up was observed only with the
CPLEX solver. With the non-commercial MILP solvers, such as GLPK or LP SOLVE,
binary programming hardly reduces the CPU time, sometimes it even significantly
increases it.

As a positive thing to conclude, the developed framework can be extended to
handle early evaluation nodes. The performance of RRGs with early evaluation nodes
can be improved compared to min-delay retiming cycle time at least at this level
of abstraction. Chapter 5 analyzes the performance advantages the early evaluation
introduces and this analysis is based on the results of this chapter.
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Chapter 5

Retiming and Recycling with Early
Evaluation

This chapter extends the R&R model from the previous chapter to optimize ESs
with early evaluation nodes. To handle early evaluation semantics of a node, a multi
guarded marked graph model of an ES is constructed. Then, the throughput con-
straints in (4.8) can be modified for early evaluation nodes. This allows to use an ap-
proach based on non-dominated RCs, described in the previous chapter, to solve (4.8).
The derived throughput constraints provide an upper bound for the actual through-
put of an ES. Hence, the solution of (4.8) is not necessarily the one with the minimal
effective cycle time but, as experimental results show, it is a good approximation.

Let us start with an example that demonstrates early evaluation increases the
diversity of non-dominated RCs and consequently, the complexity of the application
retiming and recycling (R&R) optimization technique.

5.1 Introductory example

m

0

1

F1 F2 F3

f

Figure 5.1: A retiming and recycling graph with a multiplexer

Let us show how early evaluation (EE) may help to R&R finding better RCs.
Remember that an ES might implement passive or active anti-tokens. An anti-token
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(a) First non-dominated RC
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(b) Second non-dominated RC

Figure 5.2: Non-dominated RCs of the RRG from Figure 5.1.

is passive if it is waiting for a positive token to come and cancel it. The active anti-
token may travel backward through the control logic, looking for a corresponding
positive token. Let us, for the moment, focus only on the passive anti-tokens.

Consider the RRG depicted in Figure 5.1 with combinational nodes F1, F2, F3, f
and m. The node m is drawn differently to represent a multiplexer. The select
signal of m is omitted to simplify the picture. Here we assume that the select sig-
nal is not critical. Assume that the delay of the nodes F1, F2, F3 is equal to one
unit of time and the delay of nodes f and m is equal to zero. Then, the cycle
time of the RRG is equal to three units of time. The critical combinational path,
F1 → F2 → F3 → f → m, is marked with a bold line in the figure. The directed cy-
cle (F1 → F2 → F3 → f → m→ F1), has only one EB. Since retiming preserves the
number of EBs at each directed cycle (see Section 3.1), three is the min-delay retiming
cycle time and the depicted configuration is a min-delay retiming configuration.

For the moment let us ignore early evaluation and assume all nodes of the RRG
depicted in the figure be late evaluation. R&R finds two more non-dominated RCs
for this RRG. Remember that the min-delay retiming configuration is also non-
dominated.1 Figure 5.2(a) shows the non-dominated RC with the smallest throughput
and cycle time. The cycle time is equal to one, the throughput is equal to 1/3. The
effective cycle time is equal to three units of time, which is equal to the min-delay
retiming cycle time. Figure 5.2(b) shows the second non-dominated RC. The cycle
time is equal to two units of time, the throughput is equal to 1/2. The effective cycle
time of this RC is equal to four units of time, which is worth than the min-delay
retiming cycle time. Finally, we can conclude that three is the minimal effective cycle
time the R&R achieves for this RRG.

Now let us assume that the select signal of the node m always chooses its zero
branch with probability α, and the one branch with probability (1−α). The through-
put of the first non-dominated RC in Figure 5.2(a) can be found by resolving the
corresponding Markov chain, similarly, as it is done in Section 2.5.3. The interested
reader may browse Section 5.2 for the details of using Markov chains for perfor-
mance analysis. Here we just use the final results. The throughput of the first
non-dominated RC is equal to 0.491 for α = 0.5. Hence, the effective cycle time is

1See Section 4.5.4 for the definition of non-dominated configuration.
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equal to 1/0.491 ≈ 2.037 units of time. For α = 0.9 the throughput is higher and it
is equal to 0.719 and the effective cycle time is approximately equal to 1.39 units of
time, which is more than twice less than the effective cycle time of the min-delay re-
timing configuration. Similarly, the second non-dominated RC can be analyzed. The
interested reader is welcomed to verify that its throughput is approximately equal to
0.774 when α is equal to 0.9.

It may appear that EE does not change the set of non-dominated RCs. If it were
like this, then, to use EE in R&R we may first execute R&R treating all nodes as
late evaluation. After this, we recalculate the throughput of each non-dominated
RC using the EE information and select the one with the minimal effective cycle
time. The RC depicted in the Figure 5.3 shows that this is not always the case.
This RC has anti-tokens which are drawn as a rhombus with ”-2” inside. The late

−2

mα

1−α

0

1

F1 F2 F3

f

Figure 5.3: Configuration with minimal effective cycle time

evaluation throughput of this configuration is still equal to 1/3. But with m being
EE the throughput is higher. It is even higher than the throughput of the RC with
the EE mux in Figure 5.2(a). To see this, it is enough to note that the non-critical
cycle has a ratio tokens/delay equal to 4/5 in the first case and 1 in the second case.
The analysis of the Markov chain of this RC gives the following expression for the
throughput: 1/(3 − 2α). For α = 0.9, the throughput is equal to 5

6
≈ 0.833 that is

16% better than the throughput of the RC in Figure 5.2(a) (0.719). Notice, that the
Markov chain in Figure 5.4 has no states with two anti-tokens. This example shows
that the trivial version of R&R with early evaluation does not always find the best
possible solution.

5.2 Calculating throughput using Markov chains

This section shows how the throughput of the RC depicted in Figure 5.2(a) can be cal-
culated exactly with Markov chain analysis2. This example illustrates the complexity
of having an exact estimation of the throughput.

Figure 5.4 shows the Markov chain that corresponds to the behavior of the non-
dominated RC depicted in Figure 5.2(a). Remember, that the probabilities for zero

2Assuming memoryless of branch selection. See also Section 3.2.3
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Figure 5.4: Markov chain for the RRG from Figure 5.2(a).
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and one branches of the EE mux are equal to α and 1− α respectively. Initially, the
RC is in the state S0 and no branch of the mux is selected. The duration of each
state is supposed to be one clock cycle. If zero branch of m is selected, nodes F2 and
m produce tokens and RC goes from state S0 to state S1. Otherwise, the one branch
is selected and only node F2 produces a token. This corresponds to the arc S0 → S10.
Observe, that in the state S10 the last EB of the zero branch (f, m) stores two tokens.
The second token is stored in the buffer of the control logic of the synchronous elastic
design. In the state S11 this EB stores three tokens. Remember, that this chapter
assumes that all EBs have infinite capacitances and hence, they never assert stop bit.

The process of the construction of the Markov chain for RC is similar to the one,
described in Section 2.5.4. The arcs of the state transitions are marked with the
probabilities of the corresponding transitions. If an arc is unmarked, as for example
S5 → S7, then its probability is equal to one. The unmarked arcs always go out
from the states where all branches of the EE nodes are selected. State S10 is another
example for such cases, since in S10 the one branch of the mux is already selected.

The states S4 and S6 have the same markings, the only difference between them
is that in the state S6 the one branch of the multiplexer has been selected, while in
the state S4 the select signal is unknown and both values are possible. This is why
the state S4 has two output edges, while S6 has only one output edge. Some states
contain an anti-token, for example, state S1. The anti-token is represented as a cycle
with the sign ”minus” inside. Anti-tokens are produced when the zero branch of the
mux is selected and there is no valid data in another input EB of the mux, as in the
transition S0 → S1. When an anti-token meets the token they are mutually canceled,
as in the transition S3 → S4. State S3 has an anti-token which is canceled in the next
state by the token that has been produced by node F3.

If α is equal to one, then the only reachable states are represented by the cycle
(S0 → S1 → S2 → S3 → S4 → S0). The reader may verify that all computational
nodes produce exactly four tokens during this cycle. Given that the duration of each
state is equal to one clock cycle it can be concluded that the throughput of the RC is
equal to 4/5 when α = 1. Notice, that this value is equal to the tokens to EB ratio of
the top most cycle of the RC. Another corner behavior corresponds to the case when
α is equal to zero. In this case, the behavior of the RC is limited to the directed cycle
(S11 → S8 → S12 → S11). Notice, that for this case the initial state S0 is not a part
of steady-state behavior. All steady states must be at a directed cycle of the Markov
chain. The throughput of this behavior is equal to 1/3. The cycle has three states
and all the nodes produce exactly one token during this cycle.

Resolving Markov chain the following expression for the throughput is obtained:

1 + α + α2 + α3

3 + α + α2 + α3 − α4
.

To obtain this value it should be realized that the throughput of an ES is equal to the
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probability of any EB having a token. In the example, the EB between nodes F1 and
F2 has a token in the states S0, S1, S2, S3, S8 and S9. Thus, the throughput of the RC
is equal to the sum of the probabilities of all these states. Now let us start from the
state S2, the probability of the state S3 is equal to αS2 since the only possible way
to go to S3 is from the state S2. Similarly,

S4 = S3 = αS2, S0 = αS4 = α2S2, S1 = α3S2,

etc. Doing in this way, the probabilities of all the states can be expressed in terms
of the probability of the state S2. After this, the probability S2 can be found using
the condition that the sum of the all probabilities is equal to one. Finally, summing
up the probabilities of the states where the EB on the edge (F1, F2) has a token the
expression for the throughput is obtained.

The Markov chain analysis is a general way to calculate the throughput of any RC
with early evaluation nodes. But the number of states of a Markov chain increases
exponentially with increasing the number of edges and the number of initial tokens
in an RC. Now it will be shown how the throughput of RCs with EE nodes can be
estimated in a more efficient way. This estimation is based on multi-guarded marked
graph model of an ES. See Section 2.5.3 for more details about multi-guarded marked
graphs.

5.3 RRG with early evaluation nodes

First of all, let us formally introduce early evaluation into the RRG. From this moment
all RRGs are allowed to have EE nodes and we can reuse the abbreviation RRG for
referring to RRGs with EE nodes.

Definition 5.3.1 (RRG with EE nodes) A Retiming and Recycling Graph with
EE nodes (RRG) is a tuple (S, β, T, R, γ), where:

• S = (N, E) is the underlying multi-graph of the ES, N is the set of nodes and
E is the set of edges. The set N is partitioned into NL and NE: NL includes
the nodes with late evaluation and NE the early evaluation nodes.

• β : N → R+ assigns a combinational delay to each node.

• T : E → Z is the number of tokens in each EB at the initial state. If negative,
the absolute value of T, (|T |), provides the number of anti-tokens. To ensure
absence of dead-locks the sum of tokens on each directed cycle of S must be
positive.

• R : E → Z+ is the number of EBs on each edge. The condition R ≥ T must
hold.
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• γ : E → R+ is the branch selection probability of the input edges of early
evaluation nodes n ∈ NE. The sum of the probabilities for all inputs of an early
evaluation node n ∈ NE is equal to one:∑

e=(ni,n)∈E

γ(e) = 1.

EE nodes produce tokens according to the following semantics. An EE node produces
a new token if the selected branch has a token, otherwise the EE node waits until a
token in the selected branch appears. Another branch can not be selected until the
previous computation has been completed. In other words, EE nodes have finite-server
semantics. If an EE node produces a token and some of its input edges have no tokens,
then an anti-token is generated for each of these edge.

Figures 5.2 and 5.3 provide examples of RRGs, where the set NE contains only one
element, the multiplexer m. The definitions of the cycle time and throughput are
inherited from Section 4.2. The cycle time constraints Path Constr(RC, τ) (see
Lemma 4.4.1) are unchanged. Similarly, the analog of the Lemma 4.2.1 for RRGs
with EE nodes can be proved.

Lemma 5.3.1 (Lower bound for the effective cycle time) For each RC the fol-
lowing inequality holds:

ξ(RC) ≥ min
c∈C

∑
v∈c

β(v)∑
e∈c

T (e)
,

where C is the set of all directed cycles of the RRG.

Proof: Similarly to Lemma 4.2.1, the following inequality holds:

τ(RC) ≥

∑
n∈c

β(n)∑
e∈c

R(e)
,

for each c ∈ C.

Let Θle(c) =

P
e∈c

T (e)P
e∈c

R(e)
be the late evaluation throughput of the directed cycle c.

Then the following chain of inequalities holds:

τ(RC)

Θle(c)
≥

∑
n∈c

β(n)∑
e∈c

R(e)
·

∑
e∈c

R(e)∑
e∈c

T (e)
=

∑
n∈c

β(n)∑
e∈c

T (e)
.
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This inequality can be rewritten as follows: Θle(c) ≤ τ(RC) ·
P
e∈c

T (e)P
n∈c

β(n)
. The actual

throughput of the RC is less than or equal to the maximal Θle(c) taken for all directed
cycles of the RRG. Hence, we have the following chain of the inequalities:

Θ(RC) ≤ max
c∈C

Θle(c) ≤ τ(RC) ·max
c∈C

∑
e∈c

T (e)∑
n∈c

β(n)
.

And finally for the effective cycle we have:

ξ(RC) =
τ(RC)

Θ(RC)
≥ τ(RC)

τ(RC) ·max

P
e∈c

T (e)P
n∈c

β(n)

= min
c∈C

∑
v∈c

β(v)∑
e∈c

T (e)
.

�
Comparing with the result of Lemma 4.2.1, this lower bound leaves more freedom for
optimization. Still, it can be observed that for RRGs with well-balanced delays the
chances to improve min-delay retiming cycle time are reduced, because for such RRGs
the upper bound of Lemma 5.3.1 is close to the upper bound of Lemma 4.2.1, which,
in turn, is close to the min-delay retiming cycle time.

5.4 Throughput constraints

To modify the throughput constraints (4.7) in (4.8) we construct a multi-guarded
timed marked graph (TGMG) which models the behavior of an RC. The idea is to
associate the number of EBs (R(e)) with the delay of transition and use initialized
EBs (T (e)) as the number of tokens in corresponding place.

Figure 5.5(a) shows the TGMG model of the RC from Figure 5.2(a). Each tran-
sition represents a computational node of the RC. Node F1 has only one input edge
without EBs on it, thus the delay of the corresponding transition is equal to zero and
the marking of the input edge also is equal to zero. Node m has two input edges (a
join node), hence, the number of EBs on all input edges can not be associated with
the transition m. To handle this, two new transitions are added for each input edge
(n1 and n2) and their delays are set according to the number of EBs. Notice, that for
each directed cycle of the RC the total number of EBs is equal to the total delay of
the corresponding cycle of the TGMG.

The Algorithm 3 formalizes the construction of a TGMG model for an RC. The
first line sets the graph structure of the TGMG to be the same as the one of the
corresponding RRG. A node of the TGMG has early evaluation if its corresponding
node in the RRG has. The branch selection probability function (γ) of the TGMG is
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Figure 5.5: Multi-guarded marked graph models for RRGs with EE nodes.

Algorithm 3: Construction of TGMG model for an RRG

input : An RRG
output: An TGMG model of the RRG
TGMG← RRG1

foreach n ∈ N do2

if in degree(n) = 1 then3

e← (no, n)4

m0(e) = T (e)5

δ(n) = R(e)6

else7

foreach e = (ni, n) ∈ E do8

split e into (ni, nj) and (nj, n)9

m0(ni, nj) = 010

m0(nj, n) = T (e)11

δ(nj) = R(e)12

δ(n) = 013

end14

end15

end16
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equal to the corresponding function of the RRG, (see Figure 5.5(a)). The function
in degree(n) provides the input degree of node n. Lines 3 − 6 applied to the node
F2 of the RRG from Figure 5.2(a) put one token on the edge e3 and set the delay of
node F2 equal to one. Lines 8− 14 are applied to the node m.

If an RC has only simple nodes, its throughput is equal to the throughput of the
TGMG obtained by Algorithm 3. However, if an RC has early evaluation nodes, then
the throughput of the TGMG may be greater than the throughput of the RC. For
example, if α is equal to 0.5 the throughput of the TGMG in Figure 5.5(a) is equal to
0.625 which is equal to the optimal solution of LP (2.7). From Section 5.2 we know
that the throughput of the RC depicted in Figure 5.2(a) is equal to 0.491. The reason
for this difference is that the EE transition of the TGMG can produce several tokens
in one unit of a time, changing the order of the tokens. Even though such type of
out-of-order completion could be implemented it is out of the scope of this work. This
work assumes that all computational nodes of an ES preserve the flow of the data.

To forbid the EE nodes to change the order of the tokens, a special loop is in-
troduced for each such a node. Figure 5.5(b) shows the result TGMG for the TGMG
depicted in Figure 5.5(a). It can be observed, that the result TGMG is not single-
ton (see Section 2.5.3 for the definition of a singleton TGMG). The singleton TGMG
with the same throughput is obtained by applying the transformation described in
section 2.5.3 (Figure 2.12). For our example, Figure 5.5(c) shows the final TGMG
model. The throughput of this TGMG is equal to 0.491 (for α = 0.5) which exactly
matches our expectations.

The final TGMG model for an RC is obtained first by applying Algorithm 3 and
then by introducing a self-loop for each EE node as it shows Figure 5.5(b). Algorithm 4
formalizes the construction process.
The firing semantics of the EE transitions in the TGMG model coincides with the
firing semantics of the EE nodes of an RC. Thus, the throughput of the RC is equal
to the throughput of its TGMG model that is constructed by Algorithm 4. Then,
using the TGMG model and LP (2.7) the following lemma can be derived.

Lemma 5.4.1 (Throughput constraints) If the throughput of an RC is less than
or equal to Θ, then the following system of inequalities is feasible:

R(e) ≤ x · T (e) + σ(v)− σ(u) ∀e = (u, v), such that v ∈ NL, (5.1)

R(e) ≤ σ(u)− auxR(e) ∀e = (u, v), such that v ∈ NE, (5.2)

0 ≤
∑
e∈•v

γ(e) · (aux0(e)− σ(v)) ∀e = (u, v), such that v ∈ NE, (5.3)

x + σ(v)− σ(s) ≥ 1 ∀v ∈ NE, (5.4)

σ(s)− aux0(e) ≥ 0 ∀e = (u, v), such that v ∈ NE, (5.5)

x · T (e) + auxR(e)− aux0(e) ≥ 0 ∀e = (u, v), such that v ∈ NE. (5.6)
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Algorithm 4: Refining a TGMG model

input : An TGMG model produced by Algorithm 3
output: An TGMG model of the RRG
foreach n ∈ NE do1

add a new late evaluation node s2

δ(s) = 13

add an edge (n, s)4

m0(n, s) = 15

foreach e = (ni, n) ∈ E do6

split e into (ni, nk) and (nk, n)7

add a new edge (s, nk)8

δ(nk) = 09

m0(ni, nk) = m0(e)10

m0(nk, n) = 011

m0(s, nk) = 012

end13

end14

Where x = 1/Θ is used instead of Θ to avoid quadratic terms in (5.1), similarly
as it is done in Section 4.4.2. Inequalities (5.2)-(5.6) are applied for each EE node
v. Variables auxR are the firing count for the nodes introduced by the Algorithm 3.
Variables aux0 and s refer to the nodes introduced by Algorithm 4.

The demonstration of this lemma is a direct application of LP (2.7) to the TGMG
model of an RC.

From this moment the Throughput Constr(RC, Θ) refers to the constraints (5.1)-
(5.6). Using Lemma 5.4.1, an upper bound of the throughput for a given RC, can be
computed with the following LP:

minimize x :
Throughput Constr(RC, Θ).

(5.7)

By modifying throughput constraints in (4.8) we obtain a mathematical programming
model to find an RC with the minimal effective cycle time. This problem can be solved
in a similar way as in Chapter 4. Since, the LP (5.7) provides only an upper bound
on the actual throughput of the RC, the exact solution of (4.8) does not necessary
provides an RC with the minimal effective cycle time. To evaluate the quality of the
provided approximation a lot of experiments were performed and the results were
quite satisfactory.

Another observation is that Lemma 4.5.2 is not valid for RRGs with EE nodes. The
demonstration of a similar lemma for the EE case is left as part of future work. For the
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moment a small enough value can be used to separate non-dominated configurations.
For example, in the experiments that were performed for this chapter, epsilon in
Algorithm 2 was set to 0.01.

What about the mixed binary linear program (MBLP) that was described in
Section 4.5.6? The EE version of R&R can not be solved with binary programming,
at least in the given framework. This is because the way the cycle path constraints
are derived.

Another problem related to the EE nodes naturally arises. Given an ES with a
set of EE nodes, which nodes can be converted to late evaluation while preserving
the minimal effective cycle time R&R achieves? The paper [60] provides a heuristics
to solve this problem. The exact version of this heuristics can be derived by using
OR-relation in mixed linear programming (see Equation (2.3)). The two groups of
constraints for each EE transition are introduced: the early evaluation and the late
evaluation. Then, the number of the active early evaluation constraints is minimized,
while preserving original throughput upper bound.

5.5 Active anti-tokens

The question to answer in this section is whether the active anti-tokens mechanism
may further increase the performance of an ES. To answer this question let us consider
the RC depicted in Figure 5.6. It has three EBs and two EE multiplexers, m0 and
m1. The skid-buffer of each multiplexer is drawn as a rhombus with zero inside.
Remember, that skid-buffers are special buffers of the control logic that can store
tokens but do not increase the forward latency of the ES [37].

First, let us assume that the anti-tokens are passive. Figure 5.7(a) shows the
Markov chain of the RC behavior. If the (1 − α) branch of the mux m0 is selected,
then the initial state S0 is preserved, which means that all nodes have computed new
values, thus, the throughput of the RC is equal to one in this case. If both ”slow”
branches of the muxes are selected simultaneously then the initial state is changed to
the state S2; the probability of this transition is equal to α ·β. The transition S0 → S1

occurs when α and (1 − β) branches are selected. In that case, the multiplexer m1

produces new token and generate an anti-token in the skid-buffer. The anti-token is
waiting for a token from the mux m0 which comes in the next time stamp. State S1

is preserved if the (1 − β) branch of the m1 is selected as this results that all nodes
have produced token, otherwise, with probability equal to β the state changes to S2.
Resolving the Markov chain the following expression for the throughput of the RC is
obtained

1− αβ

α + β
.
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Figure 5.6: An RRG where active anti-tokens leads to a better throughput.

The Markov chain of the same RC with active anti-tokens mechanism is depicted
in Figure 5.7(b). To derive this chain it is enough to notice that the state S1 no longer
exists. Since the anti-token in the skid buffer of the mux m1 travels backward and
cancels input tokens of the mux m0. Hence, state S1 can be merged with the state
S0. The probability to preserve state S0 is higher now and it is equal to the sum of
the probabilities of three possible branch selections:

(1− α)β + (1− α)(1− β) + (1− β)α = 1− αβ.

Resolving this Markov chain the following expression for the throughput is obtained:

1− αβ

1 + αβ
.

It can be proved, that for this example the throughput with active anti-tokens is
always greater than the throughput with passive anti-tokens, independently of the
values of α and β. Indeed:

[1− αβ

1 + αβ
]− [1− αβ

α + β
] =

αβ(1− α)(1− β)

(1 + αβ)(α + β)
> 0,

when 0 < α < 1 and 0 < β < 1. For example, if α = 0.25 and β = 0.2, the
throughput of the RC with passive anti-tokens mechanism is equal to 8/9 ≈ 0.888
while with active anti-tokens it is equal to 20/21 ≈ 0.952. Notice, that this throughput
can or cannot be achieved in a particular implementation of elastic protocol. See, for
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Figure 5.7: Markov chains for RC depicted in Figure 5.6 with passive and active
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example, [26] for a discussion about details of different implementations. Our results
of Verilog simulation for this example coincide with the theoretical prediction. MArEx
tool [61] was used to generate control module.

It turns out that the TGMG model that was proposed in the previous section is
correct only for passive anti-tokens. To get the TGMG which correctly handles active
anti-tokens mechanism, in this example it is enough to remove self-loop from the mux
m0. To find out a general model to estimate the throughput of ESs with EE nodes
and active anti-tokens more investigation is required. Remember, that in this chapter
it is assumed that back-pressure never limits the throughput of an ES. For examples,
when this is not the case the reader is referred to [22,26].

5.6 Experimental results

A set of experiments was performed to verify the throughput model (5.1)-(5.6) and
to demonstrate the optimization power of the R&R for ESs with EE nodes. A set of
RRGs was generated as follows:

• The ISCAS89 circuits have been used to extract the underlying graph structures.
The largest strongly connected component of the each ISCAS89 circuit was
taken. The rest of nodes and edges were removed. Actually, they are the same
graphs from the experiments of the previous chapter.

• Each edge was assigned a token with probability 0.25. Thus, about 25% of the
edges were assigned an initialized EB, whereas the rest were just wires.

• Each node was assigned a combinational delay uniformly distributed in the
interval (0, 20].

• A node with more than one input was marked as early evaluation with proba-
bility of 0.4. The branch probabilities were selected randomly.

Table 5.1: All non-dominated RCs for the test case s526

Name τ Θlp Θ err(%) ξlp ξ ∆(%)
s526 19.98 0.2500 0.2390 4.6025 79.9200 83.5983

24.10 0.3333 0.3050 9.2896 72.3000 79.0164
31.74 0.4936 0.4200 17.5219 64.3041 75.5714
56.54 0.8367 0.7910 5.7787 67.5742 71.4791
74.52 1.0000 1.0000 0.0000 74.5200 74.5200 5.4

Let x0 be a solution of (5.7) for a given RC, then let us denote Θlp(RC) = 1/x0. The
corresponding effective cycle time will be denoted as ξlp(RC), i.e., ξlp = τ(RC)/Θlp(RC).
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For each test case the RClp
min was found by calling the MIN EFF CYC procedure,

described in Section 4.5. The Verilog representation of synchronous elastic controller
was generated for each non-dominated RC. Then, the actual throughput was cal-
culated by performing a Verilog simulation. MArEx [61] tool was used to generate
Verilog code based on a high level circuit description.

As an example, Table 5.1 shows all the RCs that were found for the test case s526.
Rows of the table correspond to different RCs. The column τ provides the cycle time of
the RC. The columns Θlp and Θ provide the throughput upper bound and the actual
throughput of the RC (obtained by simulation) respectively. The column err(%)
provides the relative difference between the throughput upper bound Θlp and Θ. The
effective cycle times of RClp

min and RCmin are marked in bold in the columns ξlp and ξ
respectively. The last column ∆(%) is the relative difference between ξ(RCmin) and
ξ(RClp

min), e.g., for s526 it is equal to (75.5714 − 71.4791)/71.4791 · 100% ≈ 5.4%.
It can be seen that the RClp

min and RCmin are different configurations in this case,
however RClp

min has only 5.4% worse performance. Also the second best configuration
returned by Algorithm 2 does correspond to RCmin.

Table 5.2 shows the obtained results. The first column is the name of the un-
derlying ISCAS89 circuit. The next three columns are the number of simple nodes,
early evaluated nodes and edges respectively. The column ξ∗ provides the cycle time
of test case before the optimization (it is equal to the effective cycle time because
originally RRGs have no bubbles). The column ξnee provides the minimal effective
cycle time of the RRG with all nodes being late evaluation. As in the experiments
in the previous chapter, it always coincides with the min-delay retiming cycle time.
The columns ξlp

min and ξsim
min show ξ(RClp

min) and ξ(RCmin), respectively. For example,
for the RRG s526 the corresponding values are equal to 75.57 and 71.48 units of time.
The column ∆(%) shows the relative difference between ξlp

min and ξsim
min. The last

column I(%) provides the performance improvement obtained by MIN EFF CYC using
early evaluation. It is calculated as follows:

I =
ξnee − ξsim

min

ξnee

· 100%.

CPLEX [58] was used as an MILP solver. The timeout for integer optimization
was set to 20 minutes in all experiments, but usually the optimal solution could be
found before this timeout was reached.

Observation 1: The average effective cycle time improvement is equal to 14.5%.
It has been calculated as the mean value of the column I%. The improvement in the
particular case strongly depends on the position of early evaluation nodes. In the RRG
s953 the effective cycle time has been improved more than twice with respect to the
min-delay retiming cycle time. Theoretically, even larger performance improvements
can be achieved with EE (see Lemma 5.3.1). ξnee was not improved for s832, s1488,
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Table 5.2: Experimental results.

Name |NL| |NE| |E| ξ∗ ξnee ξlp
min ξsim

min ∆(%) I%
s208 7 1 9 87.58 87.58 85.54 85.54 0.00 2.3
s641 206 15 270 183.15 109.62 93.72 89.98 3.99 17.9
s27 9 5 24 43.73 43.73 32.31 32.31 0.00 26.1
s444 45 13 82 174.88 106.75 92.5 92.5 0.00 13.3
s838 7 1 9 68.4 68.4 59.99 59.99 0.00 12.3
s386 36 12 131 74.8 74.6 58.55 59.81 -2.15 21.5
s344 122 13 176 130.63 114.19 90.79 82.89 8.70 27.4
s400 37 9 66 149.29 79.5 80.1 77.63 3.08 2.3
s526 43 7 71 144.47 74.52 75.57 71.48 5.41 4.1
s382 35 7 60 84.65 68.47 66.07 66.07 0.00 3.5
s420 7 1 9 76.7 76.7 59.78 59.78 0.00 22.1
s832 76 41 462 62.11 50.39 50.39 50.39 0.00 0
s1488 85 48 572 64.28 59.52 59.52 59.52 0.00 0
s510 63 40 407 116.63 116.63 73.26 73.26 0.00 37.2
s953 232 36 371 354.86 292.28 125.92 119.53 5.07 59.1
s713 229 27 341 119.15 96.63 99.13 95.96 3.20 0.7
s1494 88 48 572 61.97 55.8 55.8 55.8 0.00 0
s820 72 38 424 55.64 53.23 46.9 46.9 0.00 13.5

s1494. This is because some critical directed cycles (the cycles where bubbles have
to be inserted) have no early evaluation nodes. Early evaluation does not affect the
performance of such ESs.

Observation 2: The RClp
min coincides with RCsim

min in more than half of the
examples. In s641, s386, s400, s526, s713, s953 the relative difference between
ξ(RCmin) and ξ(RClp

min) (∆(%)) is within 5%.

Observation 3: The average error err(%) of the throughput estimation is equal to
12.5%. It is calculated as the relative difference between Θlp and Θ. The error usually
increases with the number of bubbles that were inserted in the RRG and achieves 35%
for some configurations. Usually the error is proportional to the difference between
the throughputs of an RRG with and without early evaluation nodes.

5.7 Conclusions and future work

The R&R optimization technique has been extended to ESs with EE nodes. This
model is solved using a heuristics based on the exact method developed in Chapter 4
for R&R of ESs with late evaluation nodes. Experimental results show that in most
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cases this heuristics allows to solve the problem of R&R for ESs with EE nodes exactly.
With the proposed approach the performace of an ES can be improved up to 50%
with respect to the minimal cycle time achievable by the retiming technique.

The proposed MILPs are difficult to solve exactly for RRGs with more than one
thousand edges. However, there are simple and efficient heuristics for solving MILP
problems. Exploring such heuristics is a part of the future work. The proposed model
can be extended to handle telescopic nodes (i.e., nodes with variable combinational
delays). Recently, R&R was used as local optimization step to find an optimal number
of bypasses for memory register files [48].
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Chapter 6

Optimal buffer sizing

The optimization models that are presented in Chapters 4 and 5 assume that all EBs
have infinite queues. If queue sizes of some EBs are not sufficiently large, the actual
throughput of an ES may be significantly less than its estimation. This chapter shows
how the EBs can be optimally resized to minimize the area the control logic of an ES
occupies and to avoid throughput degradation. This chapter uses the elastic marked
graph model to represent an ES. Notice, this model significantly differs from the
retiming and recycling graph that is used in Chapters 4 and 5. The main contribution
of this chapter was published in [12].

6.1 Introductory example

This section describes an example where the buffer sizing achieves higher throughput
than the buffer insertion (a.k.a slack matching). Please, refer to Section 3.2.4 for the
explanation of what the buffer sizing and slack matching is.

In the example that was presented in Section 3.2.4 (Figure 3.9) both transfor-
mations achieve the same throughput. This is not always the case. To construct
an example, where buffer sizing does better than buffer insertion it is enough to re-
move vertex f from the graph 3.9(a) and put a token in the EB (c, d). Figure 6.1(a)
shows the result graph, as before, vertices represent computational nodes. The pair
of forward (solid line) and backward (dashed line) edges represent an EB. In the
example we assume that the forward and the backward delay of each EB is equal to
one. The minimal ratio tokens/delay of the graph is equal to 3/4; the critical cycle
is composed by the vertices a, b, c, d. Buffer sizing removes the backward edge (d, a)
from the critical cycle by incrementing the size of the EB (a, d). Figure 6.1(b) shows
the result of the optimal buffer sizing; the throughput is equal to 4/5; the critical
cycle (a→ b→ c→ d→ e→ a) has only forward edges.

Inserting a bubble (a, r) to the ”fast” branch of reconvergent paths produces a
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Figure 6.1: ES, where buffer sizing achieves better throughput than buffer insertion.

new directed cycle (a→ r → d→ e→ a) with the ratio tokens/delay is equal to 3/4.
Figure 6.1(c) depicts the result of this transformation. Thus, buffer insertion cannot
improve performance in this example.

The main contribution of this chapter is a general model that combines buffer
sizing and buffer insertion to achieve maximal possible throughput of an ES and
allows to give a priority to one of the transformations.

6.2 Elastic marked graph

This chapter models ESs with elastic marked graphs. The formal definition is as
follows.

Definition 6.2.1 (EMG) An elastic marked graph (EMG) is a directed connected
graph EMG = (V, E, E ′, T, δ), where:

• V is the set of vertices (computational nodes of the ES)

• E is the set of forward edges

• E ′ is the set of backward edges

• T : E ∪ E ′ → Z+ assigns an initial number of tokens to each edge

• δ : E ∪ E ′ → R+ is the delay of edge

A bijection, B : E → E ′, exists such that for each forward edge e = (u, v) there is
a backward edge e′ = B(e) and e′ = (v, u). For each such a pair of forward and
backward edges we define: C0(e) = T (e) + T (e′). The value of C0(e) represents the
EB capacity and must be greater than or equal to two, C0(e) ≥ 2.

Figures 6.1 and 3.9 provides examples of EMGs. The capacitance of all EBs of these
EMGs is equal to two. It directly follows from the definition, that EMG have to be
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strongly connected. This is because if there is a directed path from vertex u to vertex
v, then there is a complementary directed path from v to u. By complementary we
mean the path that is composed with edges on the opposite direction. Therefore,
there is a directed path in an EMG between any pair of vertices. An EB is modeled
by a pair of forward and backward edges. Thus, each EB of an ES is identified by its
forward edge in the EMG model. The number of tokens in the forward edge represents
the number of valid data in the EB, while the number of tokens in the backward edge
represents the number of free registers in the EB.

An EMG can be treated as a marked graph. Marked graphs is a convenient tool
for modeling of concurrent discrete systems. They have been used in asynchronous
design for several decades and also are used to model synchronous elastic systems.
Section 3.2.4 provides more details about related work.

6.3 Throughput of an EMG

The performance of an ES can be estimated as the minimum cycle ratio tokens/delay
of the corresponding EMG [91, 92]:

Definition 6.3.1 The throughput, Θ, of an EMG is defined by the following equation:

Θ = min

{
min
c∈C

∑
e∈c

T (e)∑
e∈c

δ(e)
,

1

δmax

}
(6.1)

where C is the set of directed cycles of EMG and δmax = max
e∈E∪E′

δ(e).

A cycle c is called critical if it satisfies Θ =

∑
e∈c

T (e)∑
e∈c

δ(e)
. A critical cycle can contain

both forward and backward edges. If a critical cycle contains backward edges the
throughput of an EMG is being constrained by the capacity of the corresponding EB
and therefore, it can be improved with buffer sizing and/or buffer insertion.

The maximum throughput, Θ∗, that can be achieved by buffer sizing and buffer
insertion for a given EMG is upper bounded by the throughput, ΘF , of the corre-
sponding forward EMG [72]:

Proposition 6.3.1 The maximum throughput, Θ∗, that can be achieved by buffer
sizing and buffer insertion satisfies:

Θ∗ ≤ ΘF = min

{
min
c∈CF

∑
e∈c

T (e)∑
e∈c

δ(e)
,

1

δmax

}
(6.2)
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where CF is the set of directed cycles containing only forward edges of EMG.

The following theorem allows to combine buffer sizing with buffer insertion in
one MILP model. The constraints that apper in the formulation of this theorem are
similar to the constraints (2.4), with W1 = T and W2 = δ. The deomnstration of this
theorem is a direct application of Definition 6.3.1 and Theorem 2.3.2.

Theorem 6.3.1 The throughput of an EMG can be calculated with the following LP:

maximize : Θ,
subject to:

T (e)−Θ · δ(e) ≥ d(v)− d(u), ∀e = (u, v) ∈ E,
T (e′)−Θ · δ(e′) ≥ d(u)− d(v), ∀e′ = (v, u) ∈ E ′,

Θ ≤ 1

δmax

.

(6.3)

Here d ∈ R|V | is a |V |-dimensional vector of real variables.

6.4 MILP formulations

Firstly this section reviews MILP formulations for buffer sizing and buffer insertion,
both models can be derived from Theorem 6.3.1. These formulations are not the
contribution of this chapter. Then, a single MILP formulation is proposed to combine
both techniques. Finally, a method based on a binary search is described to search
for the maximum achievable throughput.

6.4.1 MILP: Buffer sizing

The capacity of an EB is equal to the sum of the tokens on the corresponding forward
and backward edges. By increasing the capacity of an EB we increase the number
of tokens on the corresponding backward edge e′, since the number of valid data in
each EB should be unchanged to preserve the original behavior. For instance, the
EB in Figure 6.2(a) has capacity 2 and the addition of 1 token to e′ = (v, u) increases
its capacity to 3, see Figure 6.2(b). The capacity of an EB after sizing is denoted by
C(e).

The following model for buffer sizing of ESs takes into account that an increase of
a given EB capacity entails a more complex control logic, and in turn an increase of
the corresponding forward delay. Such an increase of the delay is usually logarithmic
with respect to the increase of the capacity, however, linear approximations work also
reasonably well for small values of the capacity and EBs with big capacity have no
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Figure 6.2: (a) Original buffer with capacity 2, i.e., C0(e) = 2; (b) Buffer is resized
to capacity 3, i.e., C(e) = 3.

practical interest. Let us assume that the EB corresponding to edge e is sized from
capacity C0(e) to C(e), then its new forward delay, δc(e), can be calculated as follows:

δc(e) = δ(e) + h · (C(e)− C0(e)) (6.4)

where h is a real parameter to adjust the linear approximation of the increase of
delay with respect to the increase of capacity. Obviously, if h = 0 the new delay is
independent of the new capacity.

Capacity-dependent delays, δc, can be included in Theorem 6.3.1 just by replacing

δ(e) with δc(e). Then, for a given Θg ≤
1

δmax

the minimum sum of capacities that

can achieve throughput Θg can be obtained by solving the following MILP:

minimize :
∑
e∈E

C(e),

subject to:
T (e)−Θg · δc(e) ≥ d(v)− d(u), ∀e = (u, v) ∈ E,
C(e)− T (e)−Θg · δc(e

′) ≥ d(u)− d(v), ∀e = (u, v) ∈ E,
C(e) ∈ Z+, C(e) ≥ C0(e), ∀e ∈ E.

(6.5)

where C0(e) is the initial capacity of the EB, and C(e) is a variable determining the
new capacity of the EB. The MILP (6.5) is feasible iff Θg is achievable by buffer
sizing. If all delays in (6.5) are equal to one and h = 0 then (6.5) is equivalent to the
model for buffer sizing of latency insensitive systems proposed in [71]. Also notice,
that if h is equal to zero, then MILP (6.5) is feasible for Θg = ΘF , where ΘF is equal
to the throughput of the forward EMG (see Proposition 6.3.1).

6.4.2 MILP: Buffer insertion

In order to describe the insertion of a bubble to the EMG, one more edge weight
function should be introduced to it: N : E → Z+. This function specifies the number
of bubbles, that are added after main EB. For example, all the edges of the EMG
in Figure 6.1(c) have no extra EBs except (a, d), which is pipelined with one bubble
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(a, r), that is N((a, d)) = 1. Figure 6.3 exemplifies how the EMG is modified when
two bubbles are inserted.

δ(e) d f

δ(e’)

δ(e) d f

δ(e’) dbdb

(b)(a)

u v u v

Figure 6.3: (a) Original EB with capacity 2; (b) Result of inserting 2 bubble, i.e.,
N(e) = 2.

After buffer insertion, the total number of tokens on the backward edges from v
to u is equal to C(e)− T (e) + Cb ·N(e), where Cb is the capacity of the inserted EBs.
For example, Cb = 2 for latency insensitive systems. Let df and db be the forward
and backward delays of the inserted bubbles. Then, the total delay of the forward
edges from u to v is equal to δ(e) + df ·N(e), and the overall delay of the backward
edges from v to u is δ(e′) + db ·N(e). The use of Theorem 6.3.1 allows to design an
MILP that minimizes the number of bubbles that must be inserted to achieve a given

throughput Θg ≤
1

δmax

:

minimize :
∑
e∈E

N(e)

subject to:
T (e)−Θg · (δ(e) + df ·N(e)) ≥ d(v)− d(u), ∀e = (u, v) ∈ E,
C0(e)− T (e) + Cb ·N(e)
−Θg · (δ(e′) + db ·N(e)) ≥ d(u)− d(v), ∀e = (u, v) ∈ E,
N(e) ∈ Z+, ∀e = (u, v) ∈ E.

(6.6)

where N(e) is the number of bubbles inserted in edge e. Capacity dependent delays,
δc, are not considered in (6.6) because capacities are kept to their initial values C0.
The MILP (6.6) is feasible iff Θg is achievable by buffer insertion. The formulation
in (6.6) is equivalent to the one obtained in [4] for slack matching of asynchronous
design.

6.4.3 MILP: buffer resizing and buffer insertion

The buffer insertion and buffer sizing transformations have their own advantages and
disadvantages: buffer sizing might achieve a higher throughput than buffer insertion
but the complexity of the required logic increases with the size of the computed
capacities; buffer insertion does not increase the complexity of the control logic but
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it might achieve a lower throughput and also increases the latency of the ES. It is
always possible to construct an example of an EMG where the value of the objective
function of the optimal solution of MILP (6.5) is equal to one, while the value of the
objective function of the optimal solution of MILP (6.6) is equal to K, for any integer
K. Thus, both transformations provide the same throughput, but buffer insertion may
lead to large area overhead.

This section proposes an MILP that aims at combining both techniques to mini-
mize the cost involved by the implementation of the solution. The cost can refer to
any index related to the sizing and insertion of EBs, for example, area required to
resize an EB (insert a new EB), complexity of the control logic required to resize an
EB (insert a new EB), etc.

In order to combine both techniques, we will make use of a real parameter α > 0
that represents the ratio of the cost required to increase in one unit the capacity of
an EB to the cost required to insert a bubble between two nodes. If α = 1 (α < 1)
(α > 1) the cost required to increase in one the EB capacity is assumed to be equal
to (less than) (greater than) the cost to insert one bubble. For instance, if one
desires to minimize the area of the implementation, and the area required to insert
one bubble is half the area required to increase the capacity of an EB in one unit,

then α must be set to 2. For a given Θg ≤
1

δmax

the solution of the following MILP

provides simultaneously a sizing and an insertion transformation that achieves Θg

and minimizes the overall cost.

minimize : α ·
∑
e∈E

C(e) +
∑
e∈E

N(e)

subject to:
T (e)−Θg · (δc(e) + df ·N(e)) ≥ d(v)− d(u), ∀e = (u, v) ∈ E,
C(e)− T (e) + Cb ·N(e)
−Θg · (δc(e

′) + db ·N(e)) ≥ d(u)− d(v), ∀e = (u, v) ∈ E,
N(e), C(e) ∈ Z+, C(e) ≥ C0, ∀e = (u, v) ∈ E.

(6.7)

where C(e) is the capacity of the EB e, and N(e) is the number of bubbles inserted
after main EB e. The MILP (6.7) is feasible iff Θg is achievable by buffer sizing and
buffer insertion. Notice that even a very high α is chosen, it might not be possible
to achieve Θg just by inserting bubbles. In general, the throughput of forward EMG
can not be always achieved with both transformations. This might happen if buffer
sizing significantly increases the delay of the backward edge, i.e., the value of the
parameter h in the equation (6.4) is large. In circuits this is not a real problem, but
to be rigorous let us show how the maximal achievable throughput can be found.
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6.4.4 Search for the maximum throughput

The use of MILP (6.7) greatly simplifies the search for the maximum throughput,
Θ∗, achievable with buffer sizing and buffer insertion. By Proposition 6.3.1, Θ∗ is
upper-bounded by ΘF , i.e., Θ∗ ≤ ΘF . On the other hand, Θ∗ is obviously greater
than or equal to the throughput, Θ, of the original EMG which is given by (6.1), then
Θ ≤ Θ∗ ≤ ΘF .

In this way, the interval [Θ, ΘF ] can be taken to perform a binary search for Θ∗:
if (6.7) is feasible for a given Θ1 ∈ [Θ, ΘF ] then Θ1 ≤ Θ∗ ≤ ΘF and the interval
[Θ1, Θ

F ] is taken for the next search. If (6.7) is not feasible for Θ1 then Θ ≤ Θ∗ ≤ Θ1

and the interval to be considered is [Θ, Θ1]. This procedure can be repeated until a
satisfactory precision for Θ∗ is obtained.

It is always a good idea to try first Θ∗ = ΘF and if the problem is infeasible
then to apply the binary search. In synchronous elastic systems the delays of forward
and backward edge represent the minimal forward and backward latency of the EB.
Hence, the delay cannot be increased by buffer sizing and the proposed binary search
is never needed if an EMG models a synchronous elastic circuit.

The proposed MILP might be difficult to solve for some cases, since it is well
known that MILP is an NP-complete problem [51]. Next we prove that the decision
version of buffer sizing problem is NP-hard and hence, the reduction to MILP is one
of the most efficient ways to solve it.

6.5 Buffer sizing is NP-complete

The minimal buffer sizing is minimization problem. The decision version of buffer
sizing is as follows:
Given an EMG and an integer constant K > 0. Is it possible to achieve the maximal
throughput with total buffer capacity increment of at most K?

Theorem 6.5.1 The decision version of buffer sizing is NP-complete.

Proof: To demonstrate the statement of the theorem it must be shown that:

• The problem is in NP.

• The problem is in NP-hard.

To see that the problem is in NP it is enough to notice that the throughput of an
EMG can be calculated in polynomial time with a minimal cycle ratio algorithm [42].

To show that the decision version of buffer sizing is NP-hard we will reduce the
minimal feedback edges set problem, which is known to be NP-complete [51], to it.
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Figure 6.4: (a) Original directed graph; (b) Corresponding EMG.

A feedback edges set is a set of edges which, when removed from the graph, leave a
directed acyclic graph (DAG). The decision version of the problem is as follows:
Given directed graph G = (V, A), where V is a set of vertices and A is a set of edges
(arcs) and integer number K > 0. Is there Af ⊂ A, |Af | ≤ K such that subgraph
G′ = (V, A− Af ) is a DAG?

The reduction is as follows: for each edge a ∈ A, a = (u, v) of the graph G we add
a forward edge e = (v, u) and set T (e) = 2, T (a) = 0, δ(e) = 1, δ(a) = 1. Figure 6.4(a)
shows a directed graph, and Figure 6.4(b) shows the corresponding EMG.

The following observations conclude the demonstration:

• The reduction has a linear time complexity with respect to the number of the
edges in G.

• The initial throughput of the EMG is equal to zero. If it is not, then G has no
directed cycles.

• If for some cycle of the EMG the tokens to delay ratio is greater than zero, then
it is greater than 1

2|A| as well.

• A minimal buffer sizing of the result EMG that yields the throughput of at least
1

2|A| provides minimal feedback edges set of the G.

�
The provided reduction in fact allows to show that a typical case of buffer sizing is not
a difficult to solve problem. Since, the combinatorial optimization should be applied
only to the critical subgraph of the EMG. A critical subgraph is a subgraph such that
any cycle in it has a ratio tokens/delay equal to the throughput of the EMG. The
most common structure of a critical subgraph is a graph with one simple cycle. For
such a graph the minimal feedback edges problem is trivial to solve.
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The related problem was studied in the world of timed marked graphs. It is called
minimal initial marking [94] or optimal token allocation [53] problem. The minimal
feedback edges set problem can also be reduced to these problems in a similar manner.

6.6 Experimental results

6.6.1 Generation of EMGs

Two sets of EMGs have been used to evaluate the method presented in this chapter.
On the one hand, the ISCAS89 circuits have been used to extract the underlying
graphs. On other hand, some random EMGs have also been generated (lines from
ge1 to ge10 in the table of results). The tokens, EB capacities and delays have been
generated as follows:

Initial tokens: Each forward edge e is assigned a token (T (e) = 1) with proba-
bility 0.9.

Capacities: The initial capacity of each edge e is 2 (C0(e) = 2). The capacity of
the inserted bubbles is 2 as well (Cb = 2).

Delays: Each forward delay e is generated randomly, more precisely, δ(e) is a real
number obtained from a random uniform variable in the interval [1, 3]. The forward
delay of the inserted bubbles is 1 (df = 1). All backward delays are set to 1 (δ(e′) = 1)
for each backward edge e′, and db = 1 for the inserted bubbles. The dependence of
the delay on the capacity is modeled using Equation (6.4) with h = 0.5.

In order to test buffer sizing and buffer insertion, every EMG in Table 6.1 satisfies
Θ < ΘF , what implies that its throughput can be improved. We were generating
EMGs until this constraint is verified.

6.6.2 Results

For each test case, buffer sizing and buffer insertion solutions that provide a maximal
throughput were obtained by using the procedure described in Subsection 6.4.4. Two
different values of α were used, 6/5 and 5/6, in order to test different priorities for
buffer sizing and buffer insertion. In most of the tests the actual values of α do not
change the obtained results. Examples, where the value of α changes the results, are
explicitly discussed.

Table 6.1 reports the obtained results. Columns |V | and |E| are the number of
vertices and forward edges in an EMG respectively. Column “Θ” is the throughput
of the EMG computed with (6.1). Column “Θ∗” provides the maximal throughput
achieved with buffer sizing and buffer insertion. Column “Σ∆N” reports the num-
ber of inserted bubbles. Column “Σ∆C” reports the overall increase of capacities,∑
e∈E

(C(e)− C0(e)).
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Observation 1: In every case, except ge5 and ge6, the throughput upper bound,
ΘF , provided by (6.2) is achievable, i.e., Θ∗ = ΘF . For ge5 ΘF = 0.4037 and
Θ∗ = 0.4025; for ge6 ΘF = 0.4653 and Θ∗ = 0.4643, the precision of Θ∗ obtained
by the binary search was set to 0.01%. That is, the increase of delays due to buffer
sizing avoids achieving ΘF only in ge5 and ge6 (notice, however, that ΘF −Θ∗ is very
small in both cases) .

Observation 2: In most cases Θ∗ can be achieved only by buffer insertion, see
columns “Σ∆N” and “Σ∆C” below α = 6/5. Only ge1, ge2, ge3, and ge4 require
buffer sizing to achieve Θ∗ (this happens even if arbitrarily high values of α are
considered).

Observation 3: With α = 5/6, Θ∗ is achieved only by buffer sizing in all cases
except in s27, s400 and ge7. Nevertheless, if α is set to 0.5, i.e., higher cost is given
to buffer insertion, the maximum throughput of s27, s400 and ge7 is achieved only
by buffer sizing with Σ∆C equal to 12, 9 and 10 respectively.

Observation 4: Although MILP problems are NP-complete, the CPU times
spent for the largest test cases ge7, ge8, ge9 and ge10 were 10, 15, 45 and 540 seconds
respectively. This because only the variables corresponding to cycles with minimum
cycle ratio equal to Θ are relevant in the objective function, the rest of variables are
set to 0 in the first steps performed by the solver. The CPU time for the rest of cases
was less than one second.

All the experiments were run on Linux system with XEON 3.8GHz CPU and 2Gb
of memory per process. CPLEX [58] was used as MILP solver.

6.7 Conclustions and future work

The provided solution does not handle early evaluation. MILP (6.7) should be revised
to handle early evaluation nodes. Again, guarded marked graphs presented in [59]
may help to deal with this problem, as it was done in the second contribution [10].

This work does not show how the EMG model can be derived from an RRG. This
is because the EMG model depends on the details of the implementation of the ES.
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Table 6.1: Experimental results

Buffer sizing & buffer insertion
|V | |E| Θ Θ∗ α = 6/5 α = 5/6

Σ∆N Σ∆C Σ∆N Σ∆C

s27 31 78 0.2634 0.3399 11 0 11 0
s298 823 7154 0.0341 0.0383 37 0 0 37
s349 139 241 0.2110 0.2663 2 0 0 2
s400 119 273 0.1963 0.2892 8 0 1 7
s526 145 382 0.1215 0.1835 2 0 0 2
s641 182 298 0.2062 0.2855 2 0 0 2
s713 208 350 0.2935 0.3099 1 0 0 1
s820 183 919 0.1094 0.1320 10 0 0 10
s832 191 972 0.1181 0.1356 7 0 0 7
s953 373 704 0.2887 0.3233 15 0 0 15
s1423 484 942 0.1529 0.1784 1 0 0 1
s1488 321 1662 0.0716 0.0867 1 0 0 1
s1494 341 1775 0.0639 0.0911 22 0 0 22
s5378 1138 2484 0.2204 0.2527 5 0 0 5
s9234 1023 1992 0.1813 0.2133 3 0 0 3
ge1 10 30 0.5288 0.5897 3 1 0 4
ge2 20 50 0.5484 0.5916 2 1 0 3
ge3 70 100 0.5467 0.5785 2 1 0 3
ge4 30 100 0.5317 0.6470 6 1 0 7
ge5 20 100 0.3373 0.4025 1 0 0 1
ge6 10 30 0.4390 0.4642 1 0 0 1
ge7 5000 20000 0.0942 0.1250 9 0 1 8
ge8 10000 50000 0.0662 0.0834 8 0 0 8
ge9 20000 100000 0.0675 0.0857 10 0 0 10
ge10 50000 500000 0.0146 0.0220 8 0 0 8
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Chapter 7

Conclusions and future work

This chapter draws general conclusions about the contributions of this dissertation.
Next, two directions for the future investigation are described: elastization of a syn-
chronous design and performance evaluation of complex ESs.

This work provides formal methods for performance evaluation and optimization
of elastic systems. All the contributions are general and can be useful both in syn-
chronous and asynchronous domains.

In this work elastic systems (ES) are represented with simple abstract models
based on graphs. Such models can be derived at different stages of the design flow.
They allow to use simple and yet powerful formal techniques for the analysis and
optimization of ESs.

Retiming and recycling hardly improves the performance of an ES with only late
evaluation nodes. The insertion of bubbles, indeed, breaks the long interconnections,
but also decreases the throughput of the ES. If a critical interconnection belongs to
a directed cycle with a small latency, the insertion of one bubble may decrease the
throughput by 50%. Fortunately, it turns out that early evaluation may help in this
situation. Speculative execution is another technique to increase the throughput of
ESs [49].

Buffer sizing is a nice, efficient and easy to implement technique which allows to
remove extra performance lost in ESs. As we have already mentioned, this technique
should be adapted to ESs with early evaluation and variable latency nodes. Optimal
capacitances of EBs can be greater than two. An efficient implementation of such
buffers are welcome. The paper [70] defines the interface for buffers of capacity N ≥ 2.
Combining this interface with the design of a synchronization queue proposed in [28]
the desired implementation can be derived. Probably, it can still be optimized.

Elastic design looks promising for the deep nano-technologies. This work can be
treated as a preliminary step toward making it widely accepted. More investigation
on this topic is required to bring it to the industry. It is not an easy task to change
a well known and well supported synchronous methodology.
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As a future work, the theory presented in this document should be applied for a
real design. This seems to be quite a big project. Let us outline some issues that
should be addressed in this sense:

1. Design partitioning. To build retiming and recycling graph from the high level
description (HDL) of a circuit it is necessary to know which part of this de-
scription can be represented as a vertex in the graph. This process might be
difficult to automate. The information about candidates on early evaluation
and variable latency nodes resides mostly in the mind of the designer. The best
approach would be to start from a well structured HDL code. In such a code
the nodes of retiming and recycling graph will be the modules of the system,
e.g, ALUs, memory register file, multiplexers, etc.

2. Input parameters for the optimization such as: delays of the nodes, probabilities
for taking branches or several cycles for multi cycle operations. The timing of
the design at the behavioral level may be significantly different from the timing
of the layout. All contemporary synchronous designs face with this problem
and the elastic methodology is not an exception. To obtain the probabilities
one can use the numbers that were derived from the profiling of a non-elastic
implementation or just some realistic numbers.

Recently, a progress in this direction was made by the Intel office in Moscow [55].
Another interesting direction to explore is ES performance evaluation. The per-

formance evaluation of ESs can not be closed at this step. Marked graphs are only
capable of describing simple ESs. There are new challenges arise when modeling ESs
with early evaluation and variable latency nodes and active anti-tokens. For example,
in [50] a method based on the combination of unfolding and symbolic max-plus alge-
bra to calculate throughput bounds of ES with early evaluation and variable latency
nodes is provided.

Simulation should not be discarded as a powerful tool for ESs performance estima-
tion. For example, the performance of an ES with early evaluation, variable latency
nodes and active anti-tokens propagation mechanism can be calculated using its def-
inition, lim

t→∞
σ(t)/t, where σ(t) is the number of times the given node has been fired

at the time stamp t. In [33] (Chapter 3) a simple recurrence for the σ(t) is described.
This recurrence allows to calculate exactly the throughput of a stochastic guarded
marked graph with several thousands of places within a second. Each iteration of the
simulation of a marked graph has linear complexity with respect to the number of
edges.

The optimization models proposed in Chapters 4 and 5 can be extended by in-
corporating variable latency nodes and memory register file bypass transformation.
This can be easily achieved by modeling the OR relation between different groups
of constraints in mixed integer linear programming. A question to answer is how to
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estimate the throughput of an ES with both early evaluation and variable latency
nodes. It can be shown that marked graphs can not model a general ES of such type.
Simulation can be used to estimate the throughput but it does not provide a way to
optimize the performance. Thus, formal methods for performance estimation of ESs
of this kind are welcomed.
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