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It is a mere coincidence that Petri nets came on stage the same year the au-
thor of this paper was born [15]. But it not a coincidence that they had a strong
relationship since the early nineties. Petri nets have had a wide-spread use in
multiple areas where a computational model capable of expressing concurrency,
causality and choice is required. One of these areas is Electronic Design Au-
tomation [1], since hardware is inherently concurrent [10]. Dataflow systems [11],
communication protocols [8], hardware/software co-design [12], etc., are exam-
ples of domains where Petri nets have been used for specification, synthesis and
verification of electronic systems.

This paper reviews the impact Petri nets in one of the domains in which they
have played a predominant role: asynchronous circuits. The paper also discusses
challenges and topics of interest for the future.

Minimalist Petri nets

When associating certain semantics to events, Petri nets inherit an interpretation
that represents the functioning of a particular system. An event can symbolise
the initiation of a task, the arrival of a message, the utilization of a resource,
etc. Here is an interesting question:

What is the simplest interpretation one could conceive for a Petri net?

If one bit is the minimum unit of information, changing the state of one bit
could be considered the most elementary event. If each bit is implemented by an
electronic signal, we end up by having a circuit in which each signal may change
its state asynchronously according to a certain behaviour. This is precisely what
an asynchronous circuit is (see Fig. 1): a set of input signals (x1, . . . , xn), a set
of output signals (y1, . . . , ym), a set of components (logic gates) and a protocol
that specifies the interaction between the circuit and its environment.

Signal Transition Graphs (STG) [17] are the minimalist version of Petri nets
that can specify the behaviour of asynchronous circuits. Figure 2 presents an
STG specifying a circuit with two input signals (a and b) and one output signal
(c). The figure also depicts a possible circuit implementation using a Muller C-
element [13]. More precisely, the circuit waits for signals a and b to go high (in
any order). After that, the circuit generates a rising transition of c. Next, the
circuit waits for a and b to go low and generates a falling transition of c. This is
iteratively repeated forever.

Fortunately, the author of this paper had the pleasure to briefly talk about
the minimalist nets with Prof. Carl Adam Petri in 2003 (Eindhoven) and the



2 Jordi Cortadella

g1

g2

g3

g4

x1

x2

x3

y1

y2

Environment

Circuit

Fig. 1. Asynchronous circuit.
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Fig. 2. Signal Transition Graph and implementation.

impact of his contributions in the small community of asynchronous design: the
term Petri net appears 44 times in the Asynchronous Bibliography1 [14].

Synthesis and verification

The marriage between Petri nets and asynchronous circuits proposes interest-
ing design automation problems, most of them related to logic synthesis and
formal verification. State encoding and logic decomposition have been the most
challenging knots in synthesis [5].

Formal verification is also an intricate problem [16] which is computationally
expensive when dealing with timed circuits [3]. In this area, Petri net unfoldings
have also played a fundamental role when dealing with timed circuits [18].

For most of the synthesis and verification problems, the reachability graph of
the system needs to be generated and transformed. But a fundamental problem
arises: the system is specified as a Petri net, but the transformations at the
level of reachability graph (e.g., insertion of new events) cannot be observed as a
Petri net,. . . unless some method exists to retrieve a Petri net from a reachability
graph.

Here is where the theory of regions [9], by Ehrenfeucht and Rozenberg, plays
a crucial role in this area. Visualising the transformations of a reachability graph
with the same formal model as it was generated is an extremely useful engine
to gain intuition about the algorithms used for synthesis. In fact, the theory of
regions was the main motivation for creating one of the state-of-the-art tools for
synthesis of asynchronous circuits and Petri nets: petrify [4]. The tool is not only
synthesizing circuits, but also Petri nets. For the authors of the tool, the term

1 Let us bear in mind that the Asynchronous Bibliography has not been updated since 2004.
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petrifying means returning to the Petri net world from the reachability graph.
The tool is still being used actively in the community of asynchronous circuit
designers.

Mining: from circuits to nets

Figure 3 depicts the main problems that can be envisioned when relating speci-
fications and implementations. In the previous section we discussed about syn-
thesis and verification. Process mining [19], also known as process discovery or
specification mining, is becoming an area of growing interest in different domains.
How can process mining help in asynchronous design?

Synthesis

Mining

Verification

Circuit
Specification

(Petri net)

Fig. 3. Interesting problems in asynchronous design.

An interesting problem to solve is as follows: given a circuit, would it be
possible to discover environments that can safely interact with it? Moreover,
could we describe these environments using Petri nets? This is a kind of reverse
engineering problem still in its pre-history, although some initial effort has been
recently undertaken [7].

Solving this problem could contribute to improve some of the tasks in cir-
cuit design and verification. For example, the discovered specifications could be
used to re-synthesise and improve the quality of the circuits. Compositional ver-
ification could also benefit by substituting fragments of circuits by their mined
specifications (potentially more abstract and simpler than the implementations).

In the area of mining, the recent work by Best and Devillers [2] can be ex-
tremely useful since it may help to characterise those environments that preserve
certain properties (e.g., persistence) and can still be represented as a Petri net
(e.g., a choice-free net). We envision more progress in this direction in the next
few years.

The challenge

In the long journey to introduce asynchronous design in industry, we have re-
alized that most designers have an Electrical Engineering background, whereas
Petri nets have been mainly used by the academic community with Computer
Science background. This creates a cultural gap that makes the adoption of this
technology difficult, if not impossible in some cases.

The potential users of this technology are mostly familiar with finite-state
machines, waveforms, schematics, and HDLs such as Verilog or VHDL. One of
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the challenges for the future is to approach designers with a formalism that
can have the expressive power of Petri nets (or some subclass of them) while
exposing a friendly specification language similar to the formalisms typically
used by electrical engineers.

Along this direction, Waveform Transition Graphs (WTG) [6] have been
recently proposed as an alternative to STGs. In this formalism, the choice-free
fragments of the behaviour are represented as waveforms, which is an object
very well-known by circuit designers. Additionally, concurrency and choice are
mutually exclusive in such a way that choices can only be taken when the system
has sequential behaviour. Thus, the choice/join places mimic states of the system
that glue the waveforms.

An example is shown in Fig. 4 where the left part represents an STG and the
right part represents a WTG. The dotted arc in the STG is required to sacrifice
some performance and prevent concurrency during the choice represented by s0
in the WTG.

Fig. 4. STG (left) and WTG (right).

Petri nets have played a remarkable role in concurrent hardware and their
computational model will prevail in the future. It is now time for academia to
create bridges for engineers that enable a broader adoption of Petri nets so that
the footprint of Carl Adam Petri’s legacy becomes deeper in this area.

Long live Petri nets!
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