
Hashing

Jordi Cortadella and Jordi Petit
Department of Computer Science

The parking lot
• We want to keep a database of the cars inside a parking lot. The

database is automatically updated each time the cameras at the
entry and exit points of the parking read the plate of a car.

• Each plate is represented by a free-format short string of
alphanumeric characters (each country has a different system).

• The following operations are needed:
– Add a plate to the database (when a car enters).
– Remove a plate from the database (when a car exits).
– Check whether a car is in the parking.

• Constraint: we want the previous operations to be very
efficient, i.e., executed in constant time.
(This constraint is overly artificial, since the activity in a parking lot is extremely slow
compared to the speed of a computer.)

Hashing © Dept. CS, UPC 2

Naïve implementation options
• Lists, vectors or binary search trees are not valid options, since

the operations take too long:
– Unsorted lists: adding takes O(1). Removing/checking takes O(𝑛𝑛).
– Sorted vector: adding/removing takes O(𝑛𝑛). Checking takes O(log𝑛𝑛).
– AVL trees: adding/removing/checking takes O(log𝑛𝑛).

• A (Boolean) vector with one location for each possible plate:
– The operations could be done in constant time!, but …
– The vector would be extremely large (e.g., only the Spanish system can

have 80,000,000 different plates).
– We may not even know the size of the domain (all plates in the world).
– Most of the vector locations would be “empty” (e.g. assume that the

parking has 1,000 places).

• Can we use a data structure with size O(𝑛𝑛), where 𝑛𝑛 is the size of
the parking?

Hashing © Dept. CS, UPC 3

Hashing

Hashing © Dept. CS, UPC 4

Plates

Hash table

Hash function

A hash function maps data of arbitrary size to a table of fixed size.
Important questions:

• How to design a good hash function?
• The hash function is not injective. How to handle collisions?

?

Hash function
• We can calculate the location for item 𝑥𝑥 as

ℎ 𝑥𝑥 mod 𝑆𝑆

where ℎ is the hash function and 𝑆𝑆 is the size of the
hash table.

• A good hash function must scatter items uniformly
(to minimize the impact of collisions).

• A hash function must also be consistent, i.e., give the
same result each time it is applied to the same item.

Hashing © Dept. CS, UPC 5

Hashing the plates: some attempts
• Add the last three characters (e.g., ASCII codes) of plate:

ℎ 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 + 𝑥𝑥𝑛𝑛−2 + 𝑥𝑥𝑛𝑛−3

Bad choice: For the Spanish system, this would concentrate the values
between 198 (BBB) and 270 (ZZZ).

• Multiply the last three characters:

ℎ 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 ⋅ 𝑥𝑥𝑛𝑛−2 ⋅ 𝑥𝑥𝑛𝑛−3

The values are distributed between 287,496 and 729,000. However the
distribution is not uniform. The last three characters denote the age of
the car. The population of new cars is larger than the one of old cars
(e.g., about 15% of the cars are less than 1-year old).

Moreover: consecutive plates would fall into the same slot. Some
companies (e.g., car renting) have cars with consecutive plates and they
could be located in the neighbourhood of the parking lot.

Hashing © Dept. CS, UPC 6

Hashing the plates: some attempts
• Multiply all characters of the plate:

ℎ 𝑥𝑥 = 𝑥𝑥0 ⋅ 𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛−1

Better choice, but not fully random and uniform. Two
plates with permutations of characters would fall into the
same slot, e.g., 3812 DXF and 8321 FDX.

• The perfect hash function does not exist, but using
prime numbers is a good option since most data have
no structure related to prime numbers.

• Where can we use prime numbers?
– In the size of the hash table
– In the coefficients of the hash function

Hashing © Dept. CS, UPC 7

Example of hash function for strings

A usual hash function for a string with size 𝑛𝑛 is the
polynomial rolling hash function:

ℎ 𝑥𝑥 = �
𝑖𝑖=0

𝑛𝑛−1

𝑥𝑥𝑖𝑖 ⋅ 𝑝𝑝𝑖𝑖 mod 𝑚𝑚

where
• 𝑝𝑝 is a prime number (e.g., 29791, 11111, …)
• 𝑚𝑚 is a large prime (to reduce the probability of collision)

109 + 7 and 109 + 9 are widely used.
• and 𝑥𝑥𝑖𝑖 is the character at location 𝑖𝑖

This function can be efficiently implemented using
Horner’s rule for the evaluation of a polynomial.

Hashing © Dept. CS, UPC 8

Polynomial rolling hash function

def hash(s: str)-> int:
"""Hash function for strings"""
p, m = 31, 10**9 + 7
h = 0
p_pow = 1
for c in s:

h = (h + ord(c) * p_pow) % m
p_pow = (p_pow * p) % m

return h

print(hash('hello'), hash('bye'), hash('hash'))
105835282 100910 3387231

Hashing © Dept. CS, UPC 9

Handling collisions
• A collision is produced when

ℎ 𝑥𝑥1 ≡ ℎ 𝑥𝑥2 mod 𝑆𝑆

• There are two main strategies to handle collisions:
– Using lists of items with the same hash value

(separate chaining)
– Using alternative cells in the same hash table

(linear probing, double hashing, …)

Hashing © Dept. CS, UPC 10

Handling collisions: separate chaining

Hashing © Dept. CS, UPC 11

0

1

2

3

4

5

6

7

8

9

0

1

4

9

16

25

36

49

64

81
Each slot is a list of the items that have the
same hash value.

Load factor: 𝜆𝜆 = number of items
table size

𝜆𝜆 is the average length of a list.

A successful search takes about ⁄𝜆𝜆 2 links to
be traversed, on average.

Table size: make it similar to the number of expected items.
Common strategy: when 𝜆𝜆 > 1, do rehashing.

(perfect squares mod 10)

Handling collisions: using the same hash table
• If the slot is occupied, find alternative cells in the same

table. To avoid long trips finding empty slots, the load
factor should be below 𝜆𝜆 = 0.5.

• Deletions must be “lazy” (slots must be invalidated but
not deleted, thus avoiding truncated searches).

• Linear probing: if the slot is occupied, use the next
empty slot in the table.

• Double hashing: if the slot is occupied using the first
hash function ℎ1, use a second hash function ℎ2. The
sequence of slots that is visited is ℎ1 𝑥𝑥 , ℎ1 𝑥𝑥 + ℎ2 𝑥𝑥 ,
ℎ1 𝑥𝑥 + 2ℎ2(𝑥𝑥), etc.

Hashing © Dept. CS, UPC 12

55

An example
Insertion of the elements 54, 26, 93, 17, 77, 31, 44, 55, 20.
Hash function: ℎ 𝑥𝑥 = 𝑥𝑥 mod 11.

Hashing © Dept. CS, UPC 13

0 1 2 3 4 5 6 7 8 9 10

77 26 93 17 31 54

44 20

55

0 1 2 3 4 5 6 7 8 9 10

Separate chaining:

Linear probing: 5431179326204477

What if we remove 55? Use lazy deletion!

Rehashing
• When the table gets too full, the probability of

collision increases (and the cost of each
operation).

• Rehashing requires building another table with a
larger size and rehash all the elements to the new
table. Running time: O(𝑛𝑛).

• New size: 2𝑛𝑛 (or a prime number close to it).
Rehashing occurs very infrequently and the cost
is amortized by all the insertions. The average
cost remains constant.

Hashing © Dept. CS, UPC 14

Complexity analysis

Hashing © Dept. CS, UPC 15

𝑆𝑆 slots 𝑛𝑛 items The hash table occupies O(𝑆𝑆 + 𝑛𝑛) space.
Each slot has 𝑛𝑛/𝑆𝑆 items, on average.
The runtime to find an item is O(⁄𝑛𝑛 𝑆𝑆), on average.

Cases Space: O(𝒏𝒏 + 𝐒𝐒) Time: O(⁄𝒏𝒏 𝐒𝐒)
𝑆𝑆 ≫ 𝑛𝑛 O(𝑆𝑆) O(1)
𝑛𝑛 ≫ 𝑆𝑆 O(𝑛𝑛) O(𝑛𝑛)
𝑆𝑆 = O(𝑛𝑛) O(𝑛𝑛) O(1)

The best strategy is to have 𝑆𝑆 = O(𝑛𝑛) that allows to
maintain a constant-time access without wasting too
much memory.

Rehashing should be applied to maintain 𝑆𝑆 = O(𝑛𝑛).

Sets and Dictionaries
• A set: a collection of items. The typical operations are:

– Add/remove one element
– Does it contain an element?
– Size?, Is it empty?
– Visit all items

• A dictionary (map): a collection of key-value pairs. The
typical operations are:
– Put a new key-value pair
– Remove a key-value pair with a specific key
– Get the value associated to a key
– Does it contain a key?
– Visit all key-value pairs

Sets & Dictionaries © Dept. CS, UPC 16

key value

Sets and Dictionaries
• A dictionary can be treated as a set of keys, each key

having an associated value.

• We will focus on the implementation of sets.

Sets & Dictionaries © Dept. CS, UPC 17

Source: Natural Language Processing with Python, by Steven Bird, Ewan Klein and Edward Loper

set
dictionary

Binary Search Trees vs. Hash Tables

Hashing © Dept. CS, UPC 18

Operation Binary Search Tree Hash Table
Insertion/Deletion/Lookup O(log𝑛𝑛) O(1)

Sorted Iteration In-order traversal:
O(𝑛𝑛)

Needs an extra sorted
vector: O(𝑛𝑛 log𝑛𝑛)

Hash function Not required Required
Total order Required Not required
Min/max search O(log𝑛𝑛) O(𝑛𝑛)
Range search O(log𝑛𝑛) O(𝑛𝑛)

Python:
• set and dict are implemented with hash tables

C++ STL:
• set and map are implemented with BSTs
• unordered_set and unordered_map are implemented with hash tables

Application: data integrity check

Hashing © Dept. CS, UPC 19

Different hashing
algorithms exist:
SHA1, SHA255, …

The probability of collision
is extremely low.

Hash functions are used to
guarantee the integrity of data
(files, messages, etc) when
distributed between different
locations.

Application: password verification

Hashing © Dept. CS, UPC 20

Security is based on the fact that hashing functions are cryptographic (not reversible).

Be careful: there are databases of hash values for “popular” passwords
(e.g., 123456, qwerty, password, barcelona, android,…).

Bloom filters
• Let us assume that we have an internet router that wants to filter

the packets from a set of blacklisted IPs. The router has an speed of
100 Gbits/s. New IPs can be added to the blacklist dynamically.

• IPv4 addresses have 32 bits (4,294,967,296 possible addresses).

• Each time the router receives a packet, it must perform a search to
check whether the IP is blocked. In most cases, the IP will not be
blocked.

• We would like to have a fast and small data structure to avoid the
packets waiting for the search of their IP.

• Bloom filters give a space-efficient solution to the membership
testing problem. They do not store the keys of the set. But the
answer is probabilistic (small probability of false positives).

Hashing © Dept. CS, UPC 21

Simple Bloom filter

Hashing © Dept. CS, UPC 22

0

1

1

0

0

0

1

0

1

0

0

0

1

0

1

0

hash

192.38.01.16

173.06.26.93

135.72.41.03

Collisions:
• Unavoidable (false positives)
• How to minimize them?

How a Bloom filter works

Hashing © Dept. CS, UPC 23

• Initially, all array positions are at 0.
• To add an element, feed it to each of the 𝑘𝑘 hash functions to get 𝑘𝑘

array positions. Set the bits at all these positions to 1.
• To test whether an element is in the set, feed it to each of the 𝑘𝑘

hash functions to get 𝑘𝑘 array positions. If any of the bits at these
positions is 0, the element is not in the set. If all are 1, then either
the element is in the set, or the bits have by chance been set to 1
during the insertion of other elements, resulting in a false positive.

• Note: "basic" Bloom filters do not allow to delete elements.

Bit array
with 𝑚𝑚 bits

𝑘𝑘 hash functions

Bloom filter: probabilistic analysis

• Goal: given a set of elements, what is the size of the
bit array and the number of hash functions required
to achieve a false positive rate 𝜀𝜀?

• Assumptions for the probabilistic analysis:
– Hash functions select each position of the array with equal

probability
– Different hash functions are independent

Hashing © Dept. CS, UPC 24

Bloom filter probabilistic analysis

Hashing © Dept. CS, UPC 25

Intuition:
• As we increase the size of the array (𝑚𝑚), false positives decrease
• As we increase the number of hash functions (𝑘𝑘), … (not clear)

Source: Abishek Bhat, "Use the bloom filter, Luke!"
https://medium.com/engineering-semantics3/use-the-bloom-filter-luke-b59fd0839fc4

Bloom filter: probabilistic analysis
• Probability that a bit is not set to 1 by any of the hash functions:

1 −
1
𝑚𝑚

𝑘𝑘

• A well-known identity:

lim
𝑚𝑚→∞

1 −
1
𝑚𝑚

𝑚𝑚

=
1
𝑒𝑒

• Thus, for large 𝑚𝑚:

1 −
1
𝑚𝑚

𝑘𝑘

= 1 −
1
𝑚𝑚

𝑚𝑚
𝑘𝑘
𝑚𝑚

≈ 𝑒𝑒−
𝑘𝑘
𝑚𝑚

• After inserting 𝑛𝑛 elements, the probability that a certain bit is still 0 is

𝑒𝑒−
𝑘𝑘𝑛𝑛
𝑚𝑚

• And the probability that is 1 is

1 − 𝑒𝑒−
𝑘𝑘𝑛𝑛
𝑚𝑚

Hashing © Dept. CS, UPC 26

Bloom filter: probabilistic analysis
• The probability of a false positive (𝜀𝜀) is the probability that each of the 𝑘𝑘

positions computed by the hash functions are at 1, i.e.,

𝜀𝜀 = 1 − 1 −
1
𝑚𝑚

𝑘𝑘𝑛𝑛 𝑘𝑘

≈ 1 − 𝑒𝑒−
𝑘𝑘𝑛𝑛
𝑚𝑚

𝑘𝑘

• For a given 𝑛𝑛 and 𝑚𝑚, the optimal number of hash funcions to minimize 𝜀𝜀 is:

𝑘𝑘 =
𝑚𝑚
𝑛𝑛

ln 2 ≈ 0.693
𝑚𝑚
𝑛𝑛

• Given 𝜀𝜀 and 𝑛𝑛, the optimal size of the bit array and number of hash funcions is:

𝑚𝑚 = −
𝑛𝑛 log2 𝜀𝜀

ln 2
𝑘𝑘 = − log2 𝜀𝜀

• Equivalently, the number of bits per element must be
𝑚𝑚
𝑛𝑛
≈ −1.44 log2 𝜀𝜀

Hashing © Dept. CS, UPC 27

Bloom filter: probabilistic analysis

Hashing © Dept. CS, UPC 28

EXERCISES

Hashing © Dept. CS, UPC 29

Hash function

Given the values {2341, 4234, 2839, 430, 22, 397, 3920},
a hash table of size 7, and hash function ℎ 𝑥𝑥 = 𝑥𝑥 mod 7,
show the resulting tables after inserting the values in the
given order with each of these collision strategies:

• Separate chaining
• Linear probing

Hashing © Dept. CS, UPC 30

All elements different

Let us assume that we have a list with 𝑛𝑛
elements. Design an algorithm that can check
that all elements are different. Analyze the
complexity of the algorithm considering
different data structures:

• Checking the elements without any additional
data structure, i.e., using the same list

• Using balanced BSTs
• Using hash tables

Hashing © Dept. CS, UPC 31

String matching

• Let us assume that we have two strings, a pattern 𝑠𝑠
and a text 𝑡𝑡. Propose an algorithm to find all
occurrences of the pattern in the text.

• Constraint: we want to do it in O(𝑠𝑠 + 𝑡𝑡) time.

• Hint: Use the polynomial rolling hash function.
Propose an efficient (incremental) method to
calculate hash(𝑡𝑡 𝑖𝑖… 𝑗𝑗) from hash(𝑡𝑡 𝑖𝑖 − 1 … 𝑗𝑗 − 1).

Hashing © Dept. CS, UPC 32

Bloom filter parameters

• Let us consider a Bloom filter with 𝑛𝑛 = 106 elements.
– Give the size of the bit array and the number of hash functions

to achieve a 1% false positive rate

• Let us consider a Bloom filter with 𝑚𝑚 = 107.
– What is the maximum number of elements it must contain to

guarantee a false positive rate smaller than 2%?
– How many hash functions would be required?

Hashing © Dept. CS, UPC 33

Bloom filter

Let us consider a Bloom filter with 𝑚𝑚 = 17 and three
hash functions:

ℎ1 𝑥𝑥 = 19𝑥𝑥, ℎ2 𝑥𝑥 = 23𝑥𝑥, ℎ3 𝑥𝑥 = 31𝑥𝑥

Insert the values 1 and 2, and give the smallest positive
integer than produces a false positive

Hashing © Dept. CS, UPC 34

