
Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Trees
Data are often organized hierarchically

Trees © Dept. CS, UPC 2

source: https://en.wikipedia.org/wiki/Tree_structure

Filesystems

Trees © Dept. CS, UPC 3

Company structure

Trees © Dept. CS, UPC 4

Mind maps

Trees © Dept. CS, UPC 5

Genealogical trees

Trees © Dept. CS, UPC 6

Trees © Dept. CS, UPC 7

Probability trees

Trees © Dept. CS, UPC 8

Parse trees

Trees © Dept. CS, UPC 9

Image representation (quad-trees)

Trees © Dept. CS, UPC 10

Decision trees

Trees © Dept. CS, UPC 11

source: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model

Tree: definition
• Graph theory: a tree is an undirected graph in which any

two vertices are connected by exactly one path.

• Recursive definition (CS). A non-empty tree T consists of:
– a root node 𝑟𝑟
– a list of non-empty trees 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛 that hierarchically

depend on 𝑟𝑟. The list can be possibly empty (𝑛𝑛 ≥ 0).

Trees © Dept. CS, UPC 12

𝑇𝑇1
𝑇𝑇2

𝑇𝑇𝑛𝑛

•••

𝑟𝑟

Tree: nomenclature

• A is the root node.
• Nodes with no children are leaves (e.g., B and P).
• Nodes with the same parent are siblings (e.g., K, L and M).
• The depth of a node is the length of the path from the root to the

node. Examples: depth(A)=0, depth(L)=2, depth(Q)=3.

Trees © Dept. CS, UPC 13

B C E F G

H I J K L M N

P Q

A

D

Tree: representation

Trees © Dept. CS, UPC 14

1

2 3 4

5 6 7

8 9

There is a plethora of data structures
that can be used to represent a tree,
e.g., a hierarchical list.

[root, child1, child2, …, childn]

another tree

tree = [1, 2,
[3, 5, [6, 8, 9]],
[4, 7]

]

Tree: Abstract Data Type
from dataclasses import dataclass
from typing import TypeVar, Generic

T = TypeVar('T')

@dataclass
class Tree(Generic[T]):

"""Class to represent a generic tree"""
data: T
children: list[Tree[T]]

def size(t: Tree) -> int:
return 1 + sum(c.size() for c in t.children)

def num_levels(t: Tree) -> int:
implement it!

Trees © Dept. CS, UPC 15

1

2 3 4

5 6 7

8 9

Write a tree

Trees © Dept. CS, UPC 16

home

doc

letter.doc pres.ppt

README courses

AC2 AP2

P01.pdf P02.pdf

COM PIE1

index.txt

home
doc
letter.doc
pres.ppt

README
courses
AC2
AP2

P01.pdf
P02.pdf

COM
PIE1

index.txt

def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""

Write a tree

def write(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree indented according to the depth"""

print the root
print(' '*2*depth, t.data, sep='')

print the children with depth + 1
for c in t.children:

write(c, depth + 1)

Trees © Dept. CS, UPC 17

This function executes a preorder traversal of the tree:
each node is processed before the children.

Write a tree (postorder traversal)

Trees © Dept. CS, UPC 18

home

doc

letter.doc pres.ppt

README courses

AC2 AP2

P01.pdf P02.pdf

COM PIE1

index.txt

letter.doc
pres.ppt

doc
README
AC2

P01.pdf
P02.pdf

AP2
COM
PIE1

courses
index.txt

home

Postorder traversal: each node is processed after the children.

Write a tree (postordre traversal)

def write_postorder(t: Tree[T], depth: int = 0) -> None:
"""Writes a tree (in postorder) indented according

to the depth"""

print the children with depth + 1
for c in t.children:

write_postorder(c, depth + 1)

print the root
print(' '*2*depth, t.data, sep='')

Trees © Dept. CS, UPC 19

This function executes a postorder traversal of the tree:
each node is processed after the children.

Binary tree: definition
A binary tree is a finite set of nodes that either
• is empty, or
• is comprised of three disjoint sets of nodes: a root node

and two binary trees called its left and right subtrees

Trees © Dept. CS, UPC 20

r

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙

Binary tree: representation
Data structures to represent binary trees are typically based on the
definition of a node.

Trees © Dept. CS, UPC 21

from dataclasses import dataclass, field
from typing import TypeVar, Generic, Optional, Iterator

T = TypeVar('T')

@dataclass
class Node(Generic[T]):

"""Node of a bin tree"""
data: T
left: 'BinTree[T]' = field(default = None)
right: 'BinTree[T]' = field(default = None)

BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

r

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙

Binary tree: representation

Trees © Dept. CS, UPC 22

1

2 3

4 5 6
4 5 6

32

1 Node

Example: expression trees

Expression tree for: a + b∗c + (d∗e + f) ∗ g
Postfix representation: a b c ∗ + d e ∗ f + g ∗ +
How can the postfix representation be obtained?

Trees © Dept. CS, UPC 23

+
+

+
*

*a

b c

d e

f

g

*

Example: expression trees

Trees © Dept. CS, UPC 24

Exprtree: TypeAlias = BinTree[str]

def build_expr(expr: str) -> Exprtree:
"""Builds an expression tree from a correct

expression represented in postfix notation"""

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in

infix notation"""

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking v as the value of the

variables (e.g., v['a'] contains the value of a)"""

Expressions are represented by strings in postfix notation in which
'a'…'z' represent operands and '+' and '∗' represent operators.

Example: expression trees

Trees © Dept. CS, UPC 25

def main():
t = build_expr('a b c * + d e * f + g * +')
print(infix_expr(t))
print(eval_expr(t, {'a':3, 'b':1, 'c':0, 'd':5,

'e':2, 'f':1, 'g':6}))

Output:

((a+(b*c))+(((d*e)+f)*g))
69

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 26

+

+ +

*

*

a b c d e f g

*

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 27

a

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 28

a b

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 29

a b c

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 30

*

a b ca b c

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 31

+

*

a b c

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 32

+

*

a b c d

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 33

+

*

a b c d e

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 34

+

*

a b c d e

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 35

+

*

a b c d e f

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 36

+ +

*

a b c d e f

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 37

+ +

*

a b c d e f g

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 38

+ +

*

*

a b c d e f g

*

Stack

How to build an expression tree
a b c ∗ + d e ∗ f + g ∗ +

Trees © Dept. CS, UPC 39

+

+ +

*

*

a b c d e f g

*

Stack

Example: expression trees
def build_expr(expr: str) -> Exprtree:

"""Builds an expression tree from a correct
expression represented in postfix notation"""

Create a list of all characters (without spaces)
expr_char = [x for x in expr if not x.isspace()]
stack: list[Node[str]] = []
for c in expr_char:

if c.isalpha():
We have an operand. Create a leaf node
stack.append(Node(c))

else:
We have an operator (+ or *)
right = stack.pop()
left = stack.pop()
stack.append(Node(c, left, right))

The stack has only one element: the root of the expression
return stack.pop()

Trees © Dept. CS, UPC 40

Example: expression trees

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in

infix notation"""

if not t.left: # it is a leaf node (operand)
return t.data

We have an operator. Add enclosing parenthesis (for safety)
return '(' + infix_expr(t.left) + t.data +

infix_expr(t.right) + ')'

Trees © Dept. CS, UPC 41

Inorder traversal: node is visited between the left and right children.

Exercise: redesign infix_expr to minimize the number of parenthesis.

Example: expression trees

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking v as the value of the

variables (e.g., v['a'] contains the value of a)"""

if not t.left: # it is a leaf node: return the value
return v[t.data]

We have an operator: evaluate subtrees and operate
left = eval_expr(t.left, v)
right = eval_expr(t.right, v)
return left + right if t.data == '+' else left * right

Trees © Dept. CS, UPC 42

Tree traversals

Trees © Dept. CS, UPC 43

B C

E F

G H I J K

A

D
t: BinTree[str] = … # some tree constructor

Lpreorder = [n.data for n in preorder(t)]
Lpostorder = [n.data for n in postorder(t)]
Linorder = [n.data for n in inorder(t)]
Llevels = [n.data for n in level_order(t)]

Let us consider generators to visit the
nodes of the tree in some specific order.

Lpreorder: ['A', 'B', 'D', 'G', 'H', 'E', 'I', 'C', 'F', 'J', 'K']

Lpostorder: ['G', 'H', 'D', 'I', 'E', 'B', 'J', 'K', 'F', 'C', 'A']

Linorder: ['G', 'D', 'H', 'B', 'E', 'I', 'A', 'J', 'F', 'K', 'C']

Llevels: ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']

Tree traversals

Trees © Dept. CS, UPC 44

Remember:
BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

def preorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in preorder"""
if t:

yield t.data
yield from preorder(t.left)
yield from preorder(t.right)

def postorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in postorder"""
if t:

yield from postorder(t.left)
yield from postorder(t.right)
yield t.data

Tree traversals

Trees © Dept. CS, UPC 45

def inorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in inorder"""
if t:

yield from inorder(t.left)
yield t.data
yield from inorder(t.right)

def level_order(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes by levels"""
if not t:

return
q: deque[Node] = deque([t])
while q:

n = q.popleft()
yield n
if n.left:

q.append(n.left)
if n.right:

q.append(n.right)

Tree visitors

Trees © Dept. CS, UPC 46

B C

E F

G H I J K

A

D

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Visits all the nodes of the tree in preorder and applies

f() to the data. The result is reassigned to the data"""

A visitor is a function that is applied to all
nodes of a tree.

Similar to the map function applied to
iterables (e.g., lists)

Type: Callable[[T1,…Tn], Tr].
A function with parameters [T1,…,Tn] and result Tr.

Tree visitors

Trees © Dept. CS, UPC 47

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Applies f to all data in preorder"""
if t:

t.data = f(t.data)
visit_preorder(t.left, f)
visit_preorder(t.right, f)

Example
def square(x: int) -> int:

return x*x

t: Bintree[int] = … # some tree constructor
visit_preorder(t, square) # squares all data in the tree

equivalent with lambda: visit_preorder(t, lambda x: x*x)

EXERCISES

Trees © Dept. CS, UPC 48

Expression tree

• Modify infixExpr for a nicer printing:
– Minimize number of parenthesis.
– Add spaces around + (but not around ∗).

• Extend the functions to support other
operands, including the unary – (e.g., –a/b).

Trees © Dept. CS, UPC 49

Binary tree types

• Full Binary Tree: each node has
0 or 2 children.

• Complete Binary Tree: all levels
are filled entirely with nodes,
except the lowest level. In the
lowest level, all nodes reside on
the left side.

• Perfect Binary Tree: all the
internal nodes have exactly two
children and all leaves are at the
same level.

• Balanced Binary Tree: the tree
height is O(log𝑛𝑛), where 𝑛𝑛 is
the number of nodes. The
height of the left and right
subtrees of each node should
vary by at most one.

• Degenerated Binary Tree: every
internal node has a single child.

Trees © Dept. CS, UPC 50

Design the function "def check_type(t: BinTree) -> bool:" for each type tree.

(balanced) (unbalanced)

Intersection of binary trees

Trees © Dept. CS, UPC 51

Design the function

def intersection(t1: BinTree[T], t2: BinTree[T],
f: Callable[[T, T], T]) -> BinTree[T]:

2

2

1

3

98 2

1 4

3

1

2

3

04

6

2

2

9

08

t1:

t2:

that returns the common structure of both trees
and combines the values of the common nodes
with the function f.

intersection(t1, t2, lambda x, y: x*y)

Traversals: Full Binary Trees
• A Full Binary Tree is a binary tree where each

node has 0 or 2 children.

• Draw the full binary trees corresponding to the
following tree traversals:
– Preorder: 2 7 3 6 1 4 5; Postorder: 3 6 7 4 5 1 2
– Preorder: 3 1 7 4 9 5 2 6 8; Postorder: 1 9 5 4 6 8 2 7 3

• Given the pre- and post-order traversals of a
binary tree (not necessarily full), can we uniquely
determine the tree?
– If yes, prove it.
– If not, show a counterexample.

Trees © Dept. CS, UPC 52

Traversals: Binary Trees
• Draw the binary trees corresponding the

following traversals:
– Preorder: 3 6 1 8 5 2 4 7 9; Inorder: 1 6 3 5 2 8 7 4 9
– Level-order: 4 8 3 1 2 7 5 6 9; Inorder: 1 8 5 2 4 6 7 9 3
– Postorder: 4 3 2 5 9 6 8 7 1; Inorder: 4 3 9 2 5 1 7 8 6

• Describe an algorithm that builds a binary tree
from the preorder and inorder traversals.

Trees © Dept. CS, UPC 53

Drawing binary trees
We want to draw the skeleton of a binary tree as it is shown in the figure. For that,
we need to assign (𝑥𝑥, 𝑦𝑦) coordinates to each tree node. The layout must fit in a pre-
defined bounding box of size 𝑊𝑊 × 𝐻𝐻, with the origin located in the top-left corner.
Design the function:

T = TypeVar('T')
Coordinate = tuple[float, float]
Coordinates = dict[Bintree, Coordinate]

def draw(t: Bintree, w: float, h: float) -> Coordinates:

that returns a dictionary with the coordinates of all tree nodes in such a way that
the lines that connect the nodes do not cross.

Trees © Dept. CS, UPC 54

(0,0)

(𝑊𝑊,𝐻𝐻)

