## Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science
Data are often organized hierarchically

source: https://en.wikipedia.org/wiki/Tree_structure

## Filesystems

© Dept. CS, UPC


Probability trees



Decision trees

source: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model

- Graph theory: a tree is an undirected graph in which any two vertices are connected by exactly one path.
- Recursive definition (CS). A non-empty tree T consists of:
- a root node $r$
- a list of non-empty trees $T_{1}, T_{2}, \ldots, T_{n}$ that hierarchically depend on $r$. The list can be possibly empty ( $n \geq 0$ ).



There is a plethora of data structures that can be used to represent a tree, e.g., a hierarchical list.


- A is the root node.
- Nodes with no children are leaves (e.g., B and P).
- Nodes with the same parent are siblings (e.g., K, L and M).
- The depth of a node is the length of the path from the root to the node. Examples: $\operatorname{depth}(\mathrm{A})=0, \operatorname{depth}(\mathrm{~L})=2, \operatorname{depth}(\mathrm{Q})=3$.

```
```

tree = [1, 2,

```
```

tree = [1, 2,
[3, 5, [6, 8, 9]],
[3, 5, [6, 8, 9]],
[4, 7]
[4, 7]
]

```
```

    ]
    ```
```


## Tree: Abstract Data Type




```
def write(t: Tree[T], depth: int = 0) -> None:
    """Writes a tree indented according to the depth"""
    # print the root
    print(' '*2*depth, t.data, sep='')
    # print the children with depth + 1
    for c in t.children:
        write(c, depth + 1)
```

This function executes a preorder traversal of the tree: each node is processed before the children.

letter.doc pres.ppt doc README

AC2
P01.pdf P02.pdf
AP2
COM
PIE1
courses index.txt home

Postorder traversal: each node is processed after the children.

Write a tree (postordre traversal)
def write_postorder(t: Tree[T], depth: int = 0) -> None:
"" Writes a tree (in postorder) indented according to the depth""
\# print the children with depth + 1
for c in t.children:
write_postorder(c, depth + 1)
\# print the root
print(' '*2*depth, t.data, sep='')

This function executes a postorder traversal of the tree: each node is processed after the children.

## Binary tree: definition

A binary tree is a finite set of nodes that either

- is empty, or
- is comprised of three disjoint sets of nodes: a root node and two binary trees called its left and right subtrees



## Binary tree: representation

Data structures to represent binary trees are typically based on the definition of a node.
from dataclasses import dataclass, field
from typing import TypeVar, Generic, Optional, Iterator
T = TypeVar('T')
@dataclass
class Node(Generic[T]):
data: T

BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]
"""Node of a bin tree"""
left: 'BinTree[T]' = field(default = None)
right: 'BinTree[T]' = field(default = None)


Example: expression trees


## Example: expression trees



Expression tree for: $\mathbf{a}+\mathbf{b} * \mathbf{c}+(\mathbf{d} * \mathbf{e}+\mathbf{f}) * g$ Postfix representation: abc*+de*f+g*+ How can the postfix representation be obtained?

Expressions are represented by strings in postfix notation in which 'a'...'z' represent operands and '+' and '*' represent operators.

```
Exprtree: TypeAlias = BinTree[str]
def build_expr(expr: str) -> Exprtree:
    """Builds an expression tree from a correct
        expression represented in postfix notation"""
def infix_expr(t: Exprtree) -> str:
    """Generates a string with the expression in
        infix notation"""
def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
    """Evaluates an expression taking v as the value of the
        variables (e.g., v['a'] contains the value of a)"""
```


## How to build an expression tree

```
def main():
    t = build_expr('a b c * + d e * f + g * +')
    print(infix_expr(t))
    print(eval_expr(t, {'a':3, 'b':1, 'c':0, 'd':5,
```

Output:
$\left(\left(a+\left(b^{*} c\right)\right)+\left(\left(\left(d^{*} e\right)+f\right) * g\right)\right)$
69

How to build an expression tree
abc*+de*f+g*+


How to build an expression tree
abc*+de*f+g*+


© Dept. CS, UPC
How to build an expression tree


How to build an expression tree

$$
\text { abc c } *+\mathrm{d} \mathbf{e} * \mathbf{f}+\mathbf{g} *+
$$



© Dept. CS, UPC
How to build an expression tree
© Dept. CS, UPC
How to build an expression tree

$\mathrm{abc} *+\mathrm{de} * \mathrm{f}+\mathrm{g} *+$
abc*+de*f+g*+


$\mathrm{abc} *+\mathrm{de} * \mathrm{f}+\mathrm{g} *+$
$\mathrm{abc} *+\mathrm{de} * \mathrm{f}+\mathrm{g} *+$
abc*+de*f+g*+


How to build an expression tree

© Dept. CS, UPC

Example: expression trees

def build_expr(expr: str) -> Exprtree:
"""Builds an expression tree from a correct
expression represented in postfix notation"""
\# Create a list of all characters (without spaces)
expr_char $=[x$ for $x$ in expr if not $x . i s s p a c e()]$
stack: list[Node[str]] = []
for c in expr_char:
if c.isalpha():
\# We have an operand. Create a leaf node
stack.append(Node(c))
else:
\# We have an operator (+ or *)
right = stack.pop()
left = stack.pop()
stack.append(Node(c, left, right))
\# The stack has only one element: the root of the expression return stack.pop()

```
def infix_expr(t: Exprtree) -> str:
    """Generates a string with the expression in
        infix notation"""
    if not t.left: # it is a leaf node (operand)
        return t.data
    # We have an operator. Add enclosing parenthesis (for safety)
    return '(' + infix_expr(t.left) + t.data +
        infix_expr(t.right) + ')'
```

Inorder traversal: node is visited between the left and right children.

Exercise: redesign infix_expr to minimize the number of parenthesis.
def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
"""Evaluates an expression taking $v$ as the value of the variables (e.g., v['a'] contains the value of a)""
if not t.left: \# it is a leaf node: return the value return v [t.data]
\# We have an operator: evaluate subtrees and operate
left = eval_expr(t.left, v)
right = eval_expr(t.right, v)
return left + right if t.data $==$ '+' else left $*$ right

## Tree traversals

Let us consider generators to visit the nodes of the tree in some specific order.
t: BinTree[str] = ... \# some tree constructor
Lpreorder $=[n$.data for $n$ in preorder $(t)]$ Lpostorder = [n.data for $n$ in postorder( t$)$ ] Linorder $=[n . d a t a$ for $n$ in inorder ( $t$ )] Llevels $=$ [n.data for $n$ in level_order $(t)]$

```
# Remember:
# BinTree = Optional[Node[T]]
# NodeIter = Iterator[Node[T]]
def preorder(t: BinTree) -> NodeIter:
    """Iterator to visit the nodes in preorder"""
    if t:
        yield t.data
        yield from preorder(t.left)
        yield from preorder(t.right)
def postorder(t: BinTree) -> NodeIter:
    """Iterator to visit the nodes in postorder"""
    if t:
        yield from postorder(t.left)
        yield from postorder(t.right)
        yield t.data
```

def postorder(t: BinTree) -> NodeIter: if $t:$ yield t.data
Lpreorder: ['A', 'B', 'D', 'G', 'H', 'E', 'I', 'C', 'F', 'J', 'K']
Lpostorder: ['G', 'H', 'D', 'I', 'E', 'B', 'J', 'K', 'F', 'C', 'A']
Linorder: ['G', 'D', 'H', 'B', 'E', 'I', 'A', 'J', 'F', 'K', 'C']
Llevels: ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']

```
def inorder(t: BinTree) -> NodeIter:
    """Iterator to visit the nodes in inorder"""
    if t:
        yield from inorder(t.left)
        yield t.data
        yield from inorder(t.right)
def level_order(t: BinTree) -> NodeIter:
    """Iterator to visit the nodes by levels"""
    if not t:
        return
    q: deque[Node] = deque([t])
    while q:
        n = q.popleft()
        yield n
        if n.left:
            q.append(n.left)
        if n.right:
            q.append(n.right)

\section*{Tree visitors}
```

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:

```
def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
    """Applies f to all data in preorder"""
    """Applies f to all data in preorder"""
    if t:
    if t:
        t.data = f(t.data)
        t.data = f(t.data)
        visit_preorder(t.left, f)
        visit_preorder(t.left, f)
        visit_preorder(t.right, f)
        visit_preorder(t.right, f)
# Example
# Example
def square(x: int) -> int:
def square(x: int) -> int:
    return x*x
    return x*x
t: Bintree[int] = ... # some tree constructor
t: Bintree[int] = ... # some tree constructor
visit_preorder(t, square) # squares all data in the tree
```

visit_preorder(t, square) \# squares all data in the tree

```


A visitor is a function that is applied to all nodes of a tree.

Similar to the map function applied to iterables (e.g., lists)

> def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
> """Visits all the nodes of the tree in preorder and applies f() to the data. The result is reassigned to the data"""

\section*{Type: Callable[[T1,...Tn], Tr].}

A function with parameters [ \(\mathrm{T} 1, \ldots, \mathrm{Tn}\) ] and result Tr .
EXERCISES
- Modify infixExpr for a nicer printing:
- Minimize number of parenthesis.
- Add spaces around + (but not around *).
- Extend the functions to support other operands, including the unary - (e.g., -a/b).

\section*{Intersection of binary trees}

Design the function
def intersection(t1: BinTree[T], t2: BinTree[T], f: Callable[[T, T], T]) -> BinTree[T]:

that returns the common structure of both trees and combines the values of the common nodes with the function \(f\).
intersection(t1, t2, lambda \(x, y: x * y)\)

- Full Binary Tree: each node has 0 or 2 children.
- Complete Binary Tree: all levels are filled entirely with nodes, except the lowest level. In the lowest level, all nodes reside on the left side.
- Perfect Binary Tree: all the internal nodes have exactly two children and all leaves are at the same level.
- Balanced Binary Tree: the tree height is \(0(\log n)\), where \(n\) is the number of nodes. The height of the left and right subtrees of each node should vary by at most one.

Degenerated Binary Tree: every internal node has a single child.



© Dept. CS, UPC

\section*{Traversals: Full Binary Trees}
- A Full Binary Tree is a binary tree where each node has 0 or 2 children.
- Draw the full binary trees corresponding to the following tree traversals:
- Preorder: 273614 5; Postorder: 3674512
- Preorder: 31749526 8; Postorder: 195468273
- Given the pre- and post-order traversals of a binary tree (not necessarily full), can we uniquely determine the tree?
- If yes, prove it.
- If not, show a counterexample.

\section*{Drawing binary trees}
- Draw the binary trees corresponding the following traversals:
- Preorder: 36185247 9; Inorder: 163528749
- Level-order: 48312756 9; Inorder: 185246793
- Postorder: 43259687 1; Inorder: 439251786
- Describe an algorithm that builds a binary tree from the preorder and inorder traversals.

We want to draw the skeleton of a binary tree as it is shown in the figure. For that, we need to assign \((x, y)\) coordinates to each tree node. The layout must fit in a predefined bounding box of size \(W \times H\), with the origin located in the top-left corner. Design the function:
```

T = TypeVar('T')
Coordinate = tuple[float, float]
Coordinates = dict[Bintree, Coordinate]
def draw(t: Bintree, w: float, h: float) -> Coordinates:

```
that returns a dictionary with the coordinates of all tree nodes in such a way that the lines that connect the nodes do not cross.```

