Trees

Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Trees

Filesystems

Data are often organized hierarchically

source: https://en.wikipedia.org/wiki/Tree_structure

© Dept. CS, UPC 2

Company structure

jelkner@rms: ~
jelkner@rms:~$ tree webappdev/

[kjcole] [jelkner] [mrellana]

[interfaces] [public_html] [public_html] [webappdev] [public_html|]

PIANN

[index.mml] [css][html][unix] [vim] [index.html]

examples notes

[lessont.txt] [lesson2.txt)

— lessoni.txt
L— tlessonz.txt

Trees Dept. CS, UPC

Mind maps Genealogical trees

BENJAMIN
and SARAH
TERRY

o or Seience FRED TERRY
Computer Science ELLEN GEORGE MARION FLORENCE CHARLES
I . i TERRY TERRY TERRY TERRY TERRY o Ty s

e ey [l oy rery [l MRS EDITH GORDON 1acK ouvE wnie [oearmice [l norace [l PRYLS DS
B Lewis Lewis b CRAIG CRAIG MORRIS TERRY TERRY TERRY TERRY R e,

Lewis VAL JOHN Eleanor ROBIN EDWARD Rg;:m L' J‘ ANTHONY HAZEL
Gielgud GIELGUD GIELGUD Gielgud CRAIG CARRICK CRAIG HAWTREY TERRY

MAINA ke ok JEMMA
applied GIELGUD. = HYDE

Trees © Dept. CS, UPC 5 Trees © Dept. CS, UPC 6

Probability trees

Tr_ee Of.‘ Llfe Squids, Cuttlefish and Octopi Mammals

http:fiwww.greennature caf Snails and Slugs Crustaceans <
Worms and Leeches Jellyfish Rirde p=0.7 141 [70.2401 [4]
Green Bivalves Insects Reptiles and p(1)=0.7 /// — | =
- y Amphibians - 5
Filamentous Corals and Anemones Urchins Fish 8 p@=032] | 0.1029 || 4 |
Bacteria g —
. Arachnids . F— p(1)=0.7 5 0.1029 3
ram Halophiles Invertebrates I .
Positives) 6] 0.0441 3
Methanosarcina — 1
Spirochetes . v 5 0.1029 3
Methanobacterium Afiinas Ferns — —
Proteobacteria MetiaRacsaciie Horsetails 2@03 i 0.0441 :
Cyanobacteria T. celer Club Mosses p(=0.7| 6| 0.0441 3
Plant: N P
Planctomyces Thermoproteus\ : E" ® \\ D shiniia p(@zﬁffi 0.0189 || 3 |
. ungi i p(1)=0.7 0.1029 ‘
Bacteroides Fyfodichcdn Ciliates Mosses \ — 5| —
Cytophaga Flagellates Liverworts p@=03 6] | 0.0441 || 3
i Hornworts p(1)=0.7 . [
Thermotoga Trichomonads i 0.0441
’ Microsporidia 7] | 0.0189 3
Aquifex Diplomonads ? 0.0441 2
Viruses seemme=smsem=ss===2"" = 7] 0.0189 2
. . T o [Subphy[umvenebra[e] P(2)— | p(2)=0.3_|
Viruses Bacteria § Archaea Eucaryota-{ : gy 2 OPRO IR va-01[7] [“0.0189 |[2
g it — =
Living or non-living? 8 0.0081 2
SR f?«:’ = R e o o B Ty S G D B SO R p(2)=03"— 1

Trees © Dept. CS, UPC 7 Trees © Dept. CS, UPC 8

Parse trees

Image representation (quad-tre

es)

S
—-—'—'--_--—--_-.___‘-—-‘_-“_-—-_-—._"—'—-—
NP VP
.-‘—F"’f_‘h\“-\-\‘-
Nom VP PP
N N

Adj ril v NP P NP
|

l | T VAN

O

L

litle bear saw Det Nom in Det Nom / ‘ ‘\ / \
|
T [® O @ O
the Adj Adj N the N .,/‘/ ‘\o
1 |
fine fat trout brook
Trees © Dept. CS, UPC 9 Trees Dept. CS, UPC 10
Decision trees Tree: definition
=3 * Graph theory: atree is an undirected graph in which any
> 188500 = 188,500 two vertices are connected by exactly one path.
"_ i
| Education ‘| [Income |
e sronena =T0eY * Recursive definition (CS). A non-empty tree T consists of:
Yes (S i -
— = (Exkesten) — aroot node r
o2’ y oo =180 — alist of non-empty trees Ty, T, ..., T}, that hierarchically
Yes || e (Income | (Famiy | depend on r. The list can be possibly empty (n = 0).

= 11€= 118.500

= 2,500 < 2.500

|'Income |

= 112= 113.500

V
==
il

source: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model

Trees

© Dept. CS, UPC

11

Trees

© Dept. CS, UPC

12

Tree: nomenclature

Tree: representation

* Aistheroot node.
* Nodes with no children are leaves (e.g., B and P).
* Nodes with the same parent are siblings (e.g., K, L and M).

* The depth of a node is the length of the path from the root to the
node. Examples: depth(A)=0, depth(L)=2, depth(Q)=3.

Trees © Dept. CS, UPC 13

Tree: Abstract Data Type

There is a plethora of data structures (1)
that can be used to represent a tree,
e.g., a hierarchical list.

@ @ &

® © @
® ©

[root, child,, child,, .., child,]

another tree

tree = [1, 2,
[3J 5)
[4, 7]

[6, 8, 911,

]

Trees © Dept. CS, UPC 14

Write a tree

from dataclasses import dataclass
from typing import TypeVar, Generic 0

= TypeVar('T')

@dataclass 9 e e
class Tree(Generic[T]):
& € @

""Class to represent a generic tree"""
data: T
children: list[Tree[T]]

def size(t: Tree) -> int:
return 1 + sum(c.size() for c in t.children)

def num_levels(t: Tree) -> int:
implement it!

Trees © Dept. CS, UPC 15

home
home
doc
I | letter.doc
README
I I | courses
letter.doc pres. Ppt‘ ‘ AC2 AP2 N coM { PIE1 ! AC2
{ | AP2
‘—|—‘ PO1.pdf
(1 1 PO2.pdf
POl.pdf‘ ‘ POZ.pdf‘
- coM
PIE1l
index.txt
def write(t: Tree[T], depth: int = @) -> None:

Writes a tree indented according to the depth"""

Trees © Dept. CS, UPC 16

Write a tree

Write a tree (postorder traversal)

def write(t: Tree[T], depth: int = @) -> None:

Trees

Writes a tree indented according to the depth"""

print the root
print(' '*2*depth, t.data, sep='")

print the children with depth + 1
for c in t.children:
write(c, depth + 1)

This function executes a preorder traversal of the tree:
each node is processed before the children.

© Dept. CS, UPC 17

Write a tree (postordre traversal)

| letter.doc
home
pres.ppt
I I doc
Q coses x| v
AC2
) (\ PO2.pdf
letter.doc | pres. ppt‘ ‘ AC2 AP2 CoM { PIE1
l) AP2
L'l con
(I) PIE1
POl.pdf‘ POZ.pdf‘
courses
index.txt
home

Postorder traversal: each node is processed after the children.

Trees © Dept. CS, UPC 18

Binary tree: definition

def

Trees

write_postorder(t: Tree[T], depth: int = @) -> None:
"""Writes a tree (in postorder) indented according
to the depth"""

print the children with depth + 1
for ¢ in t.children:
write_postorder(c, depth + 1)

print the root
print(' '*2*depth, t.data, sep='")

This function executes a postorder traversal of the tree:
each node is processed after the children.

© Dept. CS, UPC 19

A binary tree is a finite set of nodes that either
* isempty, or

* is comprised of three disjoint sets of nodes: a root node
and two binary trees called its left and right subtrees

7;ight

7}eft

Trees © Dept. CS, UPC 20

Binary tree: representation Binary tree: representation

Data structures to represent binary trees are typically based on the
definition of a node.

| Node

from dataclasses import dataclass, field
from typing import TypeVar, Generic, Optional, Iterator | |

T = TypeVar('T")

@dataclass 6

class Node(Generic[T]):
"""Node of a bin tree"""

|||—|__mj
M
|

data: T
left: 'BinTree[T]' = field(default = None)
right: 'BinTree[T]' = field(default = None) _|__| l__|_ _|__| l__|_

BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

Trees © Dept. CS, UPC 21 Trees © Dept. CS, UPC 22

Example: expression trees Example: expression trees

Expressions are represented by strings in postfix notation in which
'a'.."z'" represent operands and '+"' and '*"' represent operators.

Exprtree: TypeAlias = BinTree[str]

def build_expr(expr: str) -> Exprtree:
"""Builds an expression tree from a correct
expression represented in postfix notation

def infix_expr(t: Exprtree) -> str:
"""Generates a string with the expression in
infix notation"""

Expression tree for: a+ b*c+ (d*e +f) * g

. . . def eval_expr(t: Exprtree, v: dict[str, int]) -> int:
Postfix representatlon' abc*+dex*f+ g *+ """Evaluates an expression taking v as the value of the

How can the postfix representation be obtained? VR EINES (Boop VL 7)) CENERGS Wi VENG @F &)

Trees © Dept. CS, UPC 23 Trees © Dept. CS, UPC 24

Example: expression trees

How to build an expression tree

def main():
t = build expr('abc *+de* f+g*+")

print(infix_expr(t))
print(eval_expr(t, {'a':3,
'e':2,

'b':1, 'c':0, 'd':5,
‘111, 'g':6}))
Output:

((a+(b*c))+(((d*e)+f)*g))
69

© Dept. CS, UPC

How to build an expression tree

abc*x+dexf+g*+

25 Trees © Dept. CS, UPC 26

How to build an expression tree

bcx+de*f+g=*+

Stack

© Dept. CS, UPC

cx+de*f+g*+

Stack

@ ®

27 Trees © Dept. CS, UPC 28

How to build an expression tree

How to build an expression tree

+dexf+g=+

Stack

®@ © ©
© Dept. CS, UPC

How to build an expression tree

+dexf+g*+

Stack

®@ ® ©

29 Trees © Dept. CS, UPC

How to build an expression tree

30

de*f+g*+

Stack

(D
()
@ ® ©

© Dept. CS, UPC

exf+g*+

Stack

O.
()
@ © © @

31 Trees © Dept. CS, UPC

32

How to build an expression tree

How to build an expression tree

f+g+

Stack

()
@ © © @ ©

© Dept. CS, UPC

How to build an expression tree

f+g*+

Stack

AR
® O © & @

33 Trees © Dept. CS, UPC 34

How to build an expression tree

+g %+

Stack

R
@O © © © 0

© Dept. CS, UPC

g *+

O. ()
() ()
@ ® O @ e ©

35 Trees © Dept. CS, UPC 36

How to build an expression tree

How to build an expression tree

* +

+

Stack

G ()
() ()
@ & 0 @ © ®

© Dept. CS, UPC 37 Trees

How to build an expression tree

Trees

Stack

© Dept. CS, UPC

Example: expression trees

def build_expr(expr: str) -> Exprtree:

Stack

Trees

© Dept. CS, UPC 39

Trees

"""Builds an expression tree from a correct
expression represented in postfix notation

Create a list of all characters (without spaces)
expr_char = [x for x in expr if not x.isspace()]
stack: list[Node[str]] = []
for c in expr_char:
if c.isalpha():
We have an operand. Create a leaf node
stack.append(Node(c))
else:
We have an operator (+ or *)
right = stack.pop()
left = stack.pop()
stack.append(Node(c, left, right))
The stack has only one element: the root of the expression
return stack.pop()

© Dept. CS, UPC

Example: expression trees

Example: expression trees

def infix_expr(t: Exprtree) -> str:

Generates a string with the expression in
infix notation"""

if not t.left: # it is a leaf node (operand)
return t.data

We have an operator. Add enclosing parenthesis (for safety)
return '(' + infix_expr(t.left) + t.data +
infix_expr(t.right) + ')’

Inorder traversal: node is visited between the left and right children.

Exercise: redesign infix_expr to minimize the number of parenthesis.

Trees

© Dept. CS, UPC 41

Tree traversals

def eval_expr(t: Exprtree, v: dict[str, int]) -> int:

Trees

Evaluates an expression taking v as the value of the
variables (e.g., v['a'] contains the value of a)"""

if not t.left: # it is a leaf node: return the value
return v[t.data]

We have an operator: evaluate subtrees and operate
left = eval_expr(t.left, v)

right = eval_expr(t.right, v)
return left + right if t.data == '+' else left * right

© Dept. CS, UPC 42

Tree traversals

Let us consider generators to visit the
nodes of the tree in some specific order.

t: BinTree[str] = .. # some tree constructor
Lpreorder = [n.data for n in preorder(t)]
Lpostorder = [n.data for n in postorder(t)]
Linorder = [n.data for n in inorder(t)]
Llevels = [n.data for n in level_order(t)]

Lpreorder:

Linorder:

Llevels:

[IAI’ IBI, IDI’ IGI, IHI’ lEIJ III’ Icl’ IFI, IJI’ IKI]

LpOStOPder! [IGI’ IH', IDI’ III, IEI’ IBI, IJI, IKI’ IF., lcl’ IAI]

[IGI’ IDI, IHI’ IBIJ IEI, lIlJ |Al, IJI, IFIJ IKI, lcl]

[IAI’ IBI, ch’ IDIJ IEI, IFIJ IGI, IHI, IIl, IJI, IKI]

Trees

© Dept. CS, UPC 43

Remember:

#
#

def

def

Trees

BinTree = Optional[Node[T]]
NodeIter = Iterator[Node[T]]

preorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in preorder
if t:

yield t.data

yield from preorder(t.left)

yield from preorder(t.right)

postorder(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes in postorder
if t:

yield from postorder(t.left)

yield from postorder(t.right)

yield t.data

© Dept. CS, UPC 44

Tree traversals

Tree visitors

def inorder(t: BinTree) -> NodeIter:
"""Tterator to visit the nodes in inorder
if t:
yield from inorder(t.left)
yield t.data
yield from inorder(t.right)

def level order(t: BinTree) -> NodeIter:
"""Iterator to visit the nodes by levels
if not t:
return
q: deque[Node] = deque([t])
while q:
n = q.popleft()
yield n
if n.left:
gq.append(n.left)
if n.right:
g.append(n.right)

Trees © Dept. CS, UPC 45

Tree visitors

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:

"""Applies f to all data in preorder
if t:
t.data = f(t.data)
visit_preorder(t.left, f)
visit_preorder(t.right, f)

Example

def square(x: int) -»> int:
return x*x

t: Bintree[int] = .. # some tree constructor
visit_preorder(t, square) # squares all data in the tree

equivalent with lambda: visit_preorder(t, lambda x: x*x)

Trees © Dept. CS, UPC 47

A visitor is a function that is applied to all
nodes of a tree.

Similar to the map function applied to
iterables (e.g., lists)

def visit_preorder(t: BinTree[T], f: Callable[[T], T]) -> None:
"""Visits all the nodes of the tree in preorder and applies
f() to the data. The result is reassigned to the data"""

Type: Callable[[T1,..Tn], Tr].
A function with parameters [T1,..,Tn] and result Tr.

Trees © Dept. CS, UPC 46

EXERCISES

Trees © Dept. CS, UPC 48

Expression tree

Binary tree types

* Modify infixExpr for a nicer printing:
— Minimize number of parenthesis.
— Add spaces around + (but not around *).

* Extend the functions to support other
operands, including the unary — (e.g., —a/b).

Intersection of binary trees

Design the function "def check_type(t: BinTree) -> bool:" for each type tree.

* Full Binary Tree: each node has
0 or 2 children.

* Complete Binary Tree: all levels

are filled entirely with nodes,
except the lowest level. In the
lowest level, all nodes reside on

the left side.

* Perfect Binary Tree: all the
internal nodes have exactly two
children and all leaves are at the
same level.

* Balanced Binary Tree: the tree
height is O(logn), where n is
the number of nodes. The
height of the left and right
subtrees of each node should (balanced) (unbalanced)
vary by at most one.

* Degenerated Binary Tree: every
internal node has a single child.

Traversals: Full Binary Trees

Design the function

def intersection(tl: BinTree[T], t2: BinTree[T],
f: Callable[[T, T], T]) -> BinTree[T]:

that returns the common structure of both trees
and combines the values of the common nodes
with the function f.

® @ ©

intersection(tl, t2, lambda x, y: x*y)

* A Full Binary Tree is a binary tree where each
node has 0 or 2 children.

* Draw the full binary trees corresponding to the
following tree traversals:
— Preorder:2736145; Postorder:3674512
— Preorder:31749526 8; Postorder: 195468273

* Given the pre- and post-order traversals of a
binary tree (not necessarily full), can we uniquely
determine the tree?

— If yes, prove it.
— If not, show a counterexample.

Traversals: Binary Trees

Drawing binary trees

* Draw the binary trees corresponding the
following traversals:
— Preorder:361852479;Inorder: 163528749
— Level-order:483127569;Inorder:185246793
— Postorder:432596871;Inorder:439251786

e Describe an algorithm that builds a binary tree
from the preorder and inorder traversals.

We want to draw the skeleton of a binary tree as it is shown in the figure. For that,
we need to assign (x, y) coordinates to each tree node. The layout must fit in a pre-
defined bounding box of size W X H, with the origin located in the top-left corner.
Design the function:

T = TypeVar('T")
Coordinate = tuple[float, float]
Coordinates = dict[Bintree, Coordinate]

def draw(t: Bintree, w: float, h: float) -> Coordinates:

that returns a dictionary with the coordinates of all tree nodes in such a way that
the lines that connect the nodes do not cross.

(0,0)

W, H)

