
Graphs:
Maximum Flows

Jordi Cortadella and Jordi Petit
Department of Computer Science

Max-flow/min-cut problems

Graphs: Maxflow © Dept. CS, UPC 2

OpenValve, by JAE HYUN LEE

How much water can you pump
from source to target?

What is the fewest number of green
tubes that need to be cut so that no
water will be able to flow from the
hydrant to the bucket?

Max-flow/Min-cut algorithm. Brilliant.org.
https://brilliant.org/wiki/max-flow-min-cut-algorithm/

Max-flow/min-cut problems: applications

• Networks that carry data, water, oil, electricity, cars,
etc.
– How to maximize usage?
– How to minimize cost?
– How to maximize reliability?

• Multiple application domains:
– Computer networks
– Image processing
– Computational biology
– Airline scheduling
– Data mining
– Distributed computing
– …

Graphs: Maxflow © Dept. CS, UPC 3

Max-flow problem

Graphs: Maxflow © Dept. CS, UPC 4

Model:
• A directed graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 .
• Two special nodes 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉.
• Capacities 𝑐𝑐𝑒𝑒 > 0 on the edges.

Goal: assign a flow 𝑓𝑓𝑒𝑒 to each edge 𝑒𝑒 of the network satisfying:
• 0 ≤ 𝑓𝑓𝑒𝑒 ≤ 𝑐𝑐𝑒𝑒 for all 𝑒𝑒 ∈ 𝐸𝐸 (edge capacity not exceeded)
• For all nodes 𝑢𝑢 (except 𝑠𝑠 and 𝑡𝑡), the flow entering the node

is equal to the flow exiting the node:

�
𝑤𝑤,𝑢𝑢 ∈𝐸𝐸

𝑓𝑓𝑤𝑤𝑤𝑤 = �
𝑢𝑢,𝑧𝑧 ∈𝐸𝐸

𝑓𝑓𝑢𝑢𝑢𝑢 .

Size of a flow: total quantity sent from 𝑠𝑠 to 𝑡𝑡 (equal to the quantity leaving 𝑠𝑠):

size 𝑓𝑓 = �
𝑠𝑠,𝑢𝑢 ∈𝐸𝐸

𝑓𝑓𝑠𝑠𝑠𝑠

a

b

c

d

t

e

s

3

2

3

4

5

110 3

1 1

5

2
1

4

1
1

2

2

5

5
0

0

Max-flow problem: intuition

Graphs: Maxflow © Dept. CS, UPC 5

Find an augmenting path

An augmenting path may reverse
some of the flow previously assigned

s

b

t

a

𝑐𝑐

0

𝑐𝑐 − 𝑓𝑓

𝑓𝑓

After augmenting
flow by 𝑓𝑓

Augmenting paths

Graphs: Maxflow © Dept. CS, UPC 6

a

b

c

d

t

e

s

3

2

3

4

5

110 3

1 1

5

2

a

b

c

s

2

3

1 2

1

1

Flow

t

d

e

a

b

d

4

4

4

Augmenting path

c

t

e

s

Given a flow, an augmenting path represents a feasible additional flow from 𝑠𝑠 to 𝑡𝑡.

2

a

b

c

s

2

3

1 2

1

5

New flow

t

d

e4

4

Augmenting paths

Graphs: Maxflow © Dept. CS, UPC 7

a

b

c

d

t

e

s

3

2

3

4

5

110 3

1 1

5

Augmenting paths can have forward and backward edges.

Flow

b

2

4

1

5

2

1

3

e

d

t

a

c

s

New flow

b

2

5

1

5

2

1

4

e

d

t

a

c

s

Augmenting path

a

b

1

1

1

1

e

s

c

d

t

ba
ck

w
ar

d

Augmenting paths

Given a flow 𝑓𝑓, an augmenting path is a directed path from 𝑠𝑠 to
𝑡𝑡, which consists of edges from 𝐸𝐸, but not necessarily in the
same direction. Each of these edges 𝑒𝑒 satisfies exactly one of the
following two conditions:

• 𝑒𝑒 is in the same direction as in 𝐸𝐸 (forward) and
fe < 𝑐𝑐𝑒𝑒. The difference 𝑐𝑐𝑒𝑒 − 𝑓𝑓𝑒𝑒 is called the slack of the edge.

• 𝑒𝑒 is in the opposite direction (backward) and 𝑓𝑓𝑒𝑒 > 0. It
represents the fact that some flow can be borrowed from the
current flow.

Graphs: Maxflow © Dept. CS, UPC 8

Residual graph

Graphs: Maxflow © Dept. CS, UPC 9

a

b

c

d

t

e

s

3

2

3

4

5

110 3

1 1

5

Flow

b

2

4

1

5

2

1

3

e

d

t

a

c

s

a

b
1

2

3

1

1

110 3

1 1

5

2

4
e

s

c

3

d

t

Graph

Residual graph backward
forward

Ford-Fulkerson algorithm: example

Graphs: Maxflow © Dept. CS, UPC 10

a

b t

e

s
2

1

3

4

4

110 3

1 1

4
1

1

1

1

d

c

a

b

c

d

t

e

s

3

2

3

4

5

110 3

1 1

5

Residuala

b

c

d

t

e

s

Flow

1a

b

c

d

t

e

s

1

1

1

1

a

b

c

d

t

e

s

2

1

1

2

2

1

a

b
1

2

3

4

4

110 3

1 1

3

2

2

c
1

s t

e

d

Ford-Fulkerson algorithm: example

Graphs: Maxflow © Dept. CS, UPC 11

a

b

c

d

t

e

s

2

4

1

5

2

1

3

a

b
1

2

3

1

1

110 3

1 1

5

2

4
e

s

c

3

d

t

a

b

c

d

t

e

s

2

5

1

5

2

4

1
a

1

2

3

110 2

1 1

5

2

5 e

s

c
4

d

t
1

b

a

b

c

d

t

e

s

2

5

1

5

2

4

2

1

1

a

1

2

2

110 1

1 1

5

2

e

s

c
4

d

t
2

b
1

5

Ford-Fulkerson algorithm

Graphs: Maxflow © Dept. CS, UPC 12

def Ford-Fulkerson(𝑮𝑮, 𝒔𝒔, 𝒕𝒕) → 𝒇𝒇:
"""Input: A directed Graph 𝑮𝑮 𝑽𝑽,𝑬𝑬 with edge capacities 𝒄𝒄𝒆𝒆.

𝒔𝒔 and 𝒕𝒕 and the source and target of the flow.
Output: A flow 𝒇𝒇 that maximizes the size of the flow.

For each 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬, 𝒇𝒇(𝒗𝒗,𝒖𝒖) represents its flow.
"""
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬:
𝒇𝒇 𝒖𝒖,𝒗𝒗 = 𝒄𝒄 𝒖𝒖,𝒗𝒗 # Forward edges
𝒇𝒇 𝒗𝒗,𝒖𝒖 = 𝟎𝟎 # Backward edges

while there exists a path 𝒑𝒑 = 𝒔𝒔 ⇝ 𝒕𝒕 in the residual graph:
𝒇𝒇 𝒑𝒑 = 𝐦𝐦𝐦𝐦𝐦𝐦{𝒇𝒇 𝒖𝒖,𝒗𝒗 : 𝒖𝒖,𝒗𝒗 ∈ 𝒑𝒑}
for all 𝒖𝒖,𝒗𝒗 ∈ 𝒑𝒑:
𝒇𝒇 𝒖𝒖,𝒗𝒗 = 𝒇𝒇 𝒖𝒖,𝒗𝒗 − 𝒇𝒇(𝒑𝒑)
𝒇𝒇 𝒗𝒗,𝒖𝒖 = 𝒇𝒇 𝒗𝒗,𝒖𝒖 + 𝒇𝒇(𝒑𝒑)

Ford-Fulkerson algorithm: complexity
• Finding a path in the residual graph requires O(𝐸𝐸) time

(using BFS or DFS).

• How many iterations (augmenting paths) are required?
– The worst case is really bad: O(𝐶𝐶 ⋅ 𝐸𝐸), with 𝐶𝐶 being the largest

capacity of an edge (if only integral values are used).
– By selecting the path with fewest edges (using BFS) the maximum

number of iterations is O(𝑉𝑉 ⋅ 𝐸𝐸).
– By carefully selecting fat augmenting paths (using some variant of

Dijkstra’s algorithm), the number of iterations can be reduced.

• Ford-Fulkerson algorithm is 𝑂𝑂(|𝑉𝑉| ⋅ 𝐸𝐸 2) if BFS is used to
select the path with fewest edges (Edmonds-Karp algorithm).

Graphs: Maxflow © Dept. CS, UPC 13

Max-flow problem

Graphs: Maxflow © Dept. CS, UPC 14

t

e

3

2

3

4

5

110 3

1 1

5

𝑳𝑳 𝑹𝑹

The augmenting-path theorem:

A flow is maximum iff it admits no augmenting path.

Cut: An (𝑠𝑠, 𝑡𝑡)-cut partitions the nodes into two disjoint
groups, 𝐿𝐿 and 𝑅𝑅, such that 𝑠𝑠 ∈ 𝐿𝐿 and 𝑡𝑡 ∈ 𝑅𝑅.

For any flow 𝑓𝑓 and any (𝑠𝑠, 𝑡𝑡)-cut (𝐿𝐿,𝑅𝑅):

size 𝑓𝑓 ≤ capacity 𝐿𝐿,𝑅𝑅 .

The max-flow min-cut theorem:

The size of the maximum flow equals the capacity
of the smallest (𝑠𝑠, 𝑡𝑡)-cut.

a d

bs

c

Min-cut algorithm

Graphs: Maxflow © Dept. CS, UPC 15

a

b

c

d

t

e

s

2

5

1

5

2

4

2

1

1

a

1

2

2

110 1

1 1

5

2

e

s

c
4

d

t
2

b
1

5

Finding a cut with minimum capacity:

1. Solve the max-flow problem with Ford-Fulkerson.
2. Compute 𝐿𝐿 as the set of nodes reachable from 𝑠𝑠 in

the residual graph.
3. Define 𝑅𝑅 = 𝑉𝑉 − 𝐿𝐿.
4. The cut (𝐿𝐿,𝑅𝑅) is a min-cut.

Flow Residual graph

Bipartite matching

Graphs: Maxflow © Dept. CS, UPC 16

Aleix

Bernat

Carles

David Duna

Cristina

Berta

Anna

BOYS GIRLS

There is an edge between a boy and a girl if they like each other.

Can we pick couples so that everyone has exactly one partner that he/she likes?

Bad matching: if we pick (Aleix, Anna) and (Bernat, Cristina), then we cannot find
couples for Berta, Duna, Carles and David.

A perfect matching would be: (Aleix, Berta), (Bernat, Duna), (Carles, Anna) and (David, Cristina).

Bipartite matching

Graphs: Maxflow © Dept. CS, UPC 17

Aleix

Bernat

Carles

David

Cristina

Duna

Berta

Anna

s t

Reduced to a max-flow problem with 𝑐𝑐𝑒𝑒 = 1.

Question: can we always guarantee an integer-valued flow?

Property: if all edge capacities are integer, then the optimal flow found by
Ford-Fulkerson’s algorithm is integral. It is easy to see that the flow of the
augmenting path found at each iteration is integral.

1

1

1

1

1

1

1

1

Extensions of Max-Flow
• Max-Flow with Edge Demands

– Each edge 𝑒𝑒 has a demand 𝑑𝑑(𝑒𝑒). The flow 𝑓𝑓 must satisfy 𝑑𝑑 𝑒𝑒 ≤ 𝑓𝑓 𝑒𝑒 ≤ 𝑐𝑐(𝑒𝑒).

• Node Supplies and Demands
– An extra flow 𝑥𝑥(𝑣𝑣) can be injected (positive) or extracted (negative) at every

vertex 𝑣𝑣. The flow must satisfy:

�
𝑢𝑢∈𝑉𝑉

𝑓𝑓 𝑢𝑢 → 𝑣𝑣 − �
𝑤𝑤∈𝑉𝑉

𝑓𝑓 𝑣𝑣 → 𝑤𝑤 = 𝑥𝑥 𝑣𝑣 .

• Min-cost Max-Flow
– Each edge 𝑒𝑒 has a weight 𝑤𝑤𝑒𝑒. Compute a max-flow of minimum cost:

cost 𝑓𝑓 = �
𝑒𝑒∈𝐸𝐸

𝑤𝑤𝑒𝑒 ⋅ 𝑓𝑓(𝑒𝑒)

• Max-Weight Bipartite Matching
– Each edge 𝑒𝑒 has a weight 𝑤𝑤𝑒𝑒. Find a maximum cardinality matching with

maximum total weight.

Graphs: Maxflow © Dept. CS, UPC 18

EXERCISES

Graphs: Maxflow © Dept. CS, UPC 19

Flow network (from [DVP2008])

• Find the maximum flow from S to T. Give a sequence of
augmenting paths that lead to the maximum flow.

• Draw the residual graph after finding the maximum flow.
• Find a minimum cut between S and T.

Graphs: Maxflow © Dept. CS, UPC 20

S

A

B

C

D

T

G

F

E

6

1

10

2

2

20

5

6

12

4

4

1

5

10
2

