Laying a communication network

Graphs:
Minimum Spanning Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Graphs: MST Dept. CS, UPC 2

Laying a communication network Minimum Spanning Trees

Graphs: MST

= Nodes are computers

= Edges are links

= Weights are maintenance cost

= Goal: pick a subset of edges such that
* the nodes are connected
* the maintenance cost is minimum

The solution is not unique.
Find another one !

Property:
An optimal solution cannot contain a cycle.

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

© Dept. CS, UPC 3 Graphs: MST © Dept. CS, UPC 4

Minimum Spanning Tree Properties of trees

 Given un undirected graph G = (V, E) with edge weights * Definition: A tree is an undirected graph that is connected and acyclic.
we, findatree T = (V,E"), with E’ € E, that minimizes
* Property: Any connected, undirected graph G = (V,E) has

. > —
weight(T) = 2 w,. |E| = |V| — 1 edges.
e€E’ * Property: A tree on n nodes hasn — 1 edges.
. . — Start from an empty graph. Add one edge at a time making sure that it
* Greedy algorithm: repeatedly add the next lightest edge connects two disconnected components. After having added n — 1
that does not produce a cycle. edges, a tree has been formed.

* Property: Any connected, undirected graph G = (V,E)
with |E| = |V| — 1is a tree.
— ltis sufficient to prove that G is acyclic. If not, we can always remove
edges from cycles until the graph becomes acyclic.

* Property: Any undirected graph is a tree iff there is a unique path
between any pair of nodes.

— If there would be two paths between two nodes, the union of the paths
Note: We will now see that this strategy guarantees an MST. would contain a cycle.

Graphs: MST © Dept. CS, UPC 5 Graphs: MST © Dept. CS, UPC

The cut property The cut property: example

Suppose edges X are part of an MST of G = (V, E). Pick any subset of nodes
S for which X does not cross between S and V — §, and let e be the lightest

edge across this partition. Then X U {e} is part of some MST. o 1 G

e
Proof (sketch): Let T be an MST and assume eisnotinT.IfweaddetoT, a 2 L7 1
cycle will be created with another edge e’ across the cut (S,V — S). We can 3

now remove e’ and obtain another tree T’ with weight(T") < weight(T). .
Since T is an MST, then the weights must be equal. e @

Graphs: MST © Dept. CS, UPC 7 Graphs: MST © Dept. CS, UPC

Minimum Spanning Tree

MST: two strategies

Any scheme like this works (because of the properties of trees):

X={} # The set of edges of the MST

repeat |V|—1 times:
pick a set ScV for which X has no edges between S and V —S
let e € E be the minimum-weight edge between S and V —S
X =XU{e}

Graphs: MST © Dept. CS, UPC 9

Prim’s algorithm

AN i e~

Graphs: MST

V=35 Invariant:
e/—-‘:"’. ° * Aset of nodes (S) is in the tree.
- °
° ; Progress:
°; * The lightest edge with exactly
°

one endpoint in S is added.

Prim’s algorithm

Invariant:
¢ Aset of trees (forest) has been
constructed.

-

Kruskal’s algorithm

Progress:
* The lightest edge between two
trees is added.

© Dept. CS, UPC 10

Prim’s algorithm

def Prim(G, w) — prev:
"""TInput: A connected undirected Graph G(V,E)
with edge weights w(e).
Output: An MST defined by the vector prev."""

for all uev:
[]
[]
®
visited ([]

visited[u] = False
previu] = nil
pick any initial node wu,
visited[uy] = True
n=1
Q: priority queue of edges using w(e) as priority
Q = makequeue()
for each (ug,v) € E: Q.insert(ug,v)

while n< |V]:

(u,v) = deletemin(Q) # Edge with smallest weight

if not visited[v]:
visited[v] = True
previv] = u
n=n+1
for each (v,x) €EE:

if not visited[x]: Q.insert(v,x)

| Complexity: O(|E| log V) |

Graphs: MST © Dept. CS, UPC 11

Graphs: MST

: | (AD,4) (AB,5) (AC,6)

(DB,2) (DC,2) (DF,4) (AB,5) (AC,6)

(BC,1) (DC,2) (DF,4) (AB,5) (AC,6)

(DC,2) (CF,3) (DF,4) (AB,5) (CE,5) (AC,6)

(CF,3) (DF,4) (AB,5) (CE,5) (AC,6)

(DF,4) (FE,4) (AB,5) (CE,5) (AC,6)

(FE,4) (AB,5) (CE,5) (AC,6)

© Dept. CS, UPC 12

Kruskal’s algorithm

Disjoint sets

Informal algorithm:
* Sort edges by weight.

* Visit edges in ascending order of weight and add them as long
as they do not create a cycle.

How do we know whether a new edge will create a cycle?

def Kruskal(G, w) — MST:
"""Input: A connected undirected Graph G(V,E)
with edge weights w,.
Output: An MST defined by the edges in MST."""

MST = {}
sort the edges in E by weight
for all (u,v) € E, in ascending order of weight:
if (MST has no path connecting u and v):
MST = MST U {(u,v)}

Graphs: MST © Dept. CS, UPC

Kruskal’s algorithm

* A data structure to store a collection of disjoint sets.

* Operations:
— makeset(x): creates a singleton set containing just x.
— find(x): returns the identifier of the set containing x.
— union(x, y): merges the sets containing x and y.

* Kruskal’s algorithm uses disjoint sets and calls
— makeset: |V| times
— find: 2 - |E| times
— union: |V] — 1 times

Graphs: MST © Dept. CS, UPC 14

Disjoint sets

def Kruskal(G, w) — MST:
"""Input: A connected undirected Graph G(V,E)
with edge weights w,.
Output: An MST defined by the edges in MST."""

for all u €V: makeset(u)

MST = {}
sort the edges in E by weight
for all (u,v) € E, in ascending order of weight:
if (find(u) # find(v)):
MST = MST U {(u,v)}
union(u,v)

Graphs: MST © Dept. CS, UPC

15

* The nodes are organized as a set of
trees. Each tree represents a set.

* Each node has two attributes: e
— parent (): ancestor in the tree
— rank: height of the subtree

* The root element is the

representative for the set: its

) . def makeset(x):
parent pointer is itself (self-loop).

(x) =x
rank(x) =0

* The efficiency of the operations
depends on the height of the
trees.

def find(x):
while x # w(x): x = w(x)
return x

Graphs: MST © Dept. CS, UPC 16

Disjoint sets

Disjoint sets

def union(x, y):
r, = find(x)
ry, = find(y)
if r, =71y return

After union(C,G), union(E,A):

def makeset(x):
(x) =x
rank(x) =0

if rank(r,) > rank(r,):
Tt(ry) = Ty
else:
m(ry) = Ty
if rank(ry) = rank(r,):
rank(r,) = rank(r,) + 1

def find(x):
while x # m(x): x = w(x)
return x

© Dept. CS, UPC 17

Disjoint sets

Graphs: MST

After makeset(A),..,makeset(G):

After union(A4,D), union(B,E), union(C,F):

After union(B,G):

Property: Any root node of rank k has at least 2% nodes in its tree.
Property: If there are n elements overall, there can be at most n/2* nodes of rank k.
Therefore, all trees have height < logn.

© Dept. CS, UPC 18

Disjoint sets: path compression

Graphs: MST

Property 1: proof by induction Property 2:

For n nodes, the tallest possible
rank k tree could have rank k, such that:

rank k + 1
rank k

n > 2k

|

k <log,n

Therefore, find(x) is O(logn) ‘

Property 1: Any root node of rank k has at least 2% nodes in its tree.
Property 2: If there are n elements overall, there can be at most n/2¥ nodes of rank k.
Therefore, all trees have height < logn.

sraphs: MST © Dept. CS, UPC 19

* Complexity of Kruskal’s algorithm: O(|E|log |V]).
— Sorting edges: O(|E|log|E|) = O(|E|log|V]).
— Find + union (2 - |E| times): O(|E| log|V]).

* How about if the edges are already sorted or sorting can
be done in linear time (weights are integer and small)?

* Path compression:

OXCROXGRGEO.

® ©
©® &

® ©

Graphs: MST © Dept. CS, UPC 20

Disjoint sets: path compression

def find(x):
if x # w(x): m(x)=Ffind(m(x))
return m(x)

¢ ®
OO B mn OO0 B OT
OROT OO ®C
OO @,(\&\0 G
{£)
CTOOVO® o
® @ ¢ (if sorting has linear cost)

Graphs: MST © Dept. CS, UPC 21

Minimum Spanning Trees

* Calculate the shortest path tree from
node A using Dijkstra’s algorithm.

* Calculate the MST using Prim’s
algorithm. Indicate the sequence of
edges added to the tree and the
evolution of the priority queue.

* Calculate the MST using Kruskal’s
algorithm. Indicate the sequence of
edges added to the tree and the
evolution of the disjoint sets. In case of
a tie between two edges, try to select
the one that is not in Prim’s tree.

Graphs: MST © Dept. CS, UPC 23

EXERCISES

Graphs: MST

© Dept. CS, UPC

22

