
Graphs:
Minimum Spanning Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science

Laying a communication network

Graphs: MST © Dept. CS, UPC 2

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Laying a communication network

Graphs: MST © Dept. CS, UPC 3

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

Minimum Spanning Trees

Graphs: MST © Dept. CS, UPC 4

A

B

C

D

E

F

1

4 3 4

4

2 4 5

6

 Nodes are computers
 Edges are links
 Weights are maintenance cost
 Goal: pick a subset of edges such that

• the nodes are connected
• the maintenance cost is minimum

A

B

C

D

E

F

1

4

2 4 5

The solution is not unique.
Find another one !

Property:
An optimal solution cannot contain a cycle.

Minimum Spanning Tree
• Given un undirected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with edge weights
𝑤𝑤𝑒𝑒, find a tree 𝑇𝑇 = (𝑉𝑉,𝐸𝐸′), with 𝐸𝐸′ ⊆ 𝐸𝐸, that minimizes

weight 𝑇𝑇 = �
𝑒𝑒∈𝐸𝐸′

𝑤𝑤𝑒𝑒 .

• Greedy algorithm: repeatedly add the next lightest edge
that does not produce a cycle.

Graphs: MST © Dept. CS, UPC 5

A

B

C

D

E

F

6

5 4 1

2

2 3 4

4

5 A

B

C

D

E

F

4 1 2 3 4

Note: We will now see that this strategy guarantees an MST.

Properties of trees
• Definition: A tree is an undirected graph that is connected and acyclic.

• Property: Any connected, undirected graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 has
𝐸𝐸 ≥ 𝑉𝑉 − 1 edges.

• Property: A tree on 𝑛𝑛 nodes has 𝑛𝑛 − 1 edges.
– Start from an empty graph. Add one edge at a time making sure that it

connects two disconnected components. After having added 𝑛𝑛 − 1
edges, a tree has been formed.

• Property: Any connected, undirected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)
with 𝐸𝐸 = 𝑉𝑉 − 1 is a tree.
– It is sufficient to prove that 𝐺𝐺 is acyclic. If not, we can always remove

edges from cycles until the graph becomes acyclic.

• Property: Any undirected graph is a tree iff there is a unique path
between any pair of nodes.
– If there would be two paths between two nodes, the union of the paths

would contain a cycle.
Graphs: MST © Dept. CS, UPC 6

𝑒𝑒

The cut property

Suppose edges 𝑋𝑋 are part of an MST of 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 . Pick any subset of nodes
𝑆𝑆 for which 𝑋𝑋 does not cross between 𝑆𝑆 and 𝑉𝑉 − 𝑆𝑆, and let 𝑒𝑒 be the lightest
edge across this partition. Then 𝑋𝑋 ∪ {𝑒𝑒} is part of some MST.

Proof (sketch): Let 𝑇𝑇 be an MST and assume 𝑒𝑒 is not in 𝑇𝑇. If we add 𝑒𝑒 to 𝑇𝑇, a
cycle will be created with another edge 𝑒𝑒𝑒 across the cut (𝑆𝑆,𝑉𝑉 − 𝑆𝑆). We can
now remove 𝑒𝑒𝑒 and obtain another tree 𝑇𝑇′ with weight 𝑇𝑇′ ≤ weight(𝑇𝑇).
Since 𝑇𝑇 is an MST, then the weights must be equal.

Graphs: MST © Dept. CS, UPC 7

𝑆𝑆 𝑉𝑉 − 𝑆𝑆

𝑒𝑒𝑒

The cut property: example

Graphs: MST © Dept. CS, UPC 8

A

B

C

D

E

F

1

2 2

1

2 3 1

4

3 A

B

C

D

E

F

1

2

1

1

3

MST 𝑻𝑻

A

B

C

D

1

2

𝑆𝑆

E

F

1

𝑉𝑉 − 𝑆𝑆

A

B

C

D

E

F

1

2

1

13MST 𝑻𝑻𝑻3

Minimum Spanning Tree

Graphs: MST © Dept. CS, UPC 9

𝑿𝑿 = # The set of edges of the MST
repeat 𝑉𝑉 − 1 times:

pick a set 𝑆𝑆 ⊂ 𝑉𝑉 for which 𝑿𝑿 has no edges between 𝑆𝑆 and 𝑉𝑉 − 𝑆𝑆
let 𝑒𝑒 ∈ 𝐸𝐸 be the minimum-weight edge between 𝑆𝑆 and 𝑉𝑉 − 𝑆𝑆
𝑿𝑿 = 𝑿𝑿 ∪ {𝒆𝒆}

Any scheme like this works (because of the properties of trees):

𝑆𝑆 𝑉𝑉 − 𝑆𝑆
𝑒𝑒

𝑒𝑒

𝑒𝑒

MST: two strategies

Graphs: MST © Dept. CS, UPC 10

𝑆𝑆 𝑉𝑉 − 𝑆𝑆 Invariant:
• A set of nodes (𝑆𝑆) is in the tree.

Progress:
• The lightest edge with exactly

one endpoint in 𝑆𝑆 is added.

Prim’s algorithm

Kruskal’s algorithm

Invariant:
• A set of trees (forest) has been

constructed.

Progress:
• The lightest edge between two

trees is added.

Prim’s algorithm

Graphs: MST © Dept. CS, UPC 11

def Prim(𝑮𝑮, 𝒘𝒘) → prev:
"""Input: A connected undirected Graph 𝑮𝑮 𝑽𝑽,𝑬𝑬

with edge weights 𝒘𝒘(𝒆𝒆).
Output: An MST defined by the vector prev."""

for all 𝒖𝒖 ∈ 𝑽𝑽:
visited[𝒖𝒖] = False
prev[𝒖𝒖] = nil

pick any initial node 𝒖𝒖𝟎𝟎
visited[𝒖𝒖𝟎𝟎] = True
𝒏𝒏 = 1

𝑸𝑸: priority queue of edges using 𝒘𝒘(𝒆𝒆) as priority
𝑸𝑸 = makequeue()
for each (𝒖𝒖𝟎𝟎,𝒗𝒗) ∈ 𝑬𝑬: 𝑸𝑸.insert(𝒖𝒖𝟎𝟎,𝒗𝒗)

while 𝒏𝒏 < 𝑽𝑽 :
(𝒖𝒖,𝒗𝒗) = deletemin(𝑸𝑸) # Edge with smallest weight
if not visited[𝒗𝒗]:

visited[𝒗𝒗] = True
prev[𝒗𝒗] = 𝒖𝒖
𝒏𝒏 = 𝒏𝒏 + 1
for each 𝒗𝒗,𝒙𝒙 ∈ 𝑬𝑬:

if not visited[𝒙𝒙]: 𝑸𝑸.insert(𝒗𝒗,𝒙𝒙)

Complexity: O(|𝑬𝑬| 𝐥𝐥𝐥𝐥𝐥𝐥 |𝑽𝑽|)

visited

Prim’s algorithm

Graphs: MST © Dept. CS, UPC 12

A

B

C

D

E

F

6

5 4 1

2

2 3 4

4

5 A

B

C

D

E

F

4

2

1 3 4

(DB,2) (DC,2) (DF,4) (AB,5) (AC,6)
(BC,1) (DC,2) (DF,4) (AB,5) (AC,6)
(DC,2) (CF,3) (DF,4) (AB,5) (CE,5) (AC,6)

(AD,4) (AB,5) (AC,6)𝑸𝑸:

(CF,3) (DF,4) (AB,5) (CE,5) (AC,6)
(DF,4) (FE,4) (AB,5) (CE,5) (AC,6)
(FE,4) (AB,5) (CE,5) (AC,6)

Kruskal’s algorithm

def Kruskal(𝑮𝑮, 𝒘𝒘) → MST:
"""Input: A connected undirected Graph 𝑮𝑮 𝑽𝑽,𝑬𝑬

with edge weights 𝒘𝒘𝒆𝒆.
Output: An MST defined by the edges in MST."""

MST = {}
sort the edges in 𝑬𝑬 by weight
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬, in ascending order of weight:

if (MST has no path connecting 𝒖𝒖 and 𝒗𝒗):
MST = MST ∪ { 𝒖𝒖,𝒗𝒗 }

Graphs: MST © Dept. CS, UPC 13

Informal algorithm:
• Sort edges by weight.
• Visit edges in ascending order of weight and add them as long

as they do not create a cycle.

How do we know whether a new edge will create a cycle?

Disjoint sets
• A data structure to store a collection of disjoint sets.

• Operations:
– makeset(𝑥𝑥): creates a singleton set containing just 𝑥𝑥.
– find(𝑥𝑥): returns the identifier of the set containing 𝑥𝑥.
– union(𝑥𝑥, 𝑦𝑦): merges the sets containing 𝑥𝑥 and 𝑦𝑦.

• Kruskal’s algorithm uses disjoint sets and calls
– makeset: |𝑉𝑉| times
– find: 2 ⋅ |𝐸𝐸| times
– union: 𝑉𝑉 − 1 times

Graphs: MST © Dept. CS, UPC 14

Kruskal’s algorithm

def Kruskal(𝑮𝑮, 𝒘𝒘) → MST:
"""Input: A connected undirected Graph 𝑮𝑮 𝑽𝑽,𝑬𝑬

with edge weights 𝒘𝒘𝒆𝒆.
Output: An MST defined by the edges in MST."""

for all 𝒖𝒖 ∈ 𝑽𝑽: makeset(𝒖𝒖)

MST = {}
sort the edges in 𝑬𝑬 by weight
for all 𝒖𝒖,𝒗𝒗 ∈ 𝑬𝑬, in ascending order of weight:

if (find(𝒖𝒖) ≠ find(𝒗𝒗)):
MST = MST ∪ { 𝒖𝒖,𝒗𝒗 }
union(𝒖𝒖,𝒗𝒗)

Graphs: MST © Dept. CS, UPC 15

Disjoint sets
• The nodes are organized as a set of

trees. Each tree represents a set.

• Each node has two attributes:
– parent (𝜋𝜋): ancestor in the tree
– rank: height of the subtree

• The root element is the
representative for the set: its
parent pointer is itself (self-loop).

• The efficiency of the operations
depends on the height of the
trees.

Graphs: MST © Dept. CS, UPC 16

E

B

H

C D F

G A

def makeset(𝒙𝒙):
𝝅𝝅 𝒙𝒙 = 𝒙𝒙
rank 𝒙𝒙 = 𝟎𝟎

def find(𝒙𝒙):
while 𝐱𝐱 ≠ 𝝅𝝅 𝒙𝒙 : 𝒙𝒙 = 𝝅𝝅 𝒙𝒙
return 𝒙𝒙

Disjoint sets

Graphs: MST © Dept. CS, UPC 17

E

B

H

C D F

G A

def makeset(𝒙𝒙):
𝝅𝝅 𝒙𝒙 = 𝒙𝒙
rank 𝒙𝒙 = 𝟎𝟎

def find(𝒙𝒙):
while 𝐱𝐱 ≠ 𝝅𝝅 𝒙𝒙 : 𝒙𝒙 = 𝝅𝝅 𝒙𝒙
return 𝒙𝒙

def union(𝒙𝒙, 𝒚𝒚):
𝒓𝒓𝒙𝒙 = find(𝒙𝒙)
𝒓𝒓𝒚𝒚 = find(𝒚𝒚)
if 𝒓𝒓𝒙𝒙 = 𝒓𝒓𝒚𝒚: return

if rank(𝒓𝒓𝒙𝒙) > rank(𝒓𝒓𝒚𝒚):
𝝅𝝅(𝒓𝒓𝒚𝒚) = 𝒓𝒓𝒙𝒙

else:
𝝅𝝅(𝒓𝒓𝒙𝒙) = 𝒓𝒓𝒚𝒚
if rank(𝒓𝒓𝒙𝒙) = rank(𝒓𝒓𝒚𝒚):

rank(𝒓𝒓𝒚𝒚) = rank(𝒓𝒓𝒚𝒚) + 1

Disjoint sets

Graphs: MST © Dept. CS, UPC 18

𝐴𝐴0 𝐵𝐵0 𝐶𝐶0 𝐷𝐷0 𝐸𝐸0 𝐹𝐹0 𝐺𝐺0
After makeset(𝐴𝐴),…,makeset(𝐺𝐺):

After union(𝐴𝐴,𝐷𝐷), union(𝐵𝐵,𝐸𝐸), union(𝐶𝐶,𝐹𝐹):

𝐴𝐴0 𝐵𝐵0 𝐶𝐶0

𝐷𝐷1 𝐸𝐸1 𝐹𝐹1 𝐺𝐺0

After union(𝐶𝐶,𝐺𝐺), union(𝐸𝐸,𝐴𝐴):

𝐴𝐴0

𝐵𝐵0

𝐷𝐷2

𝐸𝐸1
𝐶𝐶0

𝐹𝐹1

𝐺𝐺0 𝐴𝐴0

𝐵𝐵0

𝐷𝐷2

𝐸𝐸1

𝐶𝐶0

𝐹𝐹1

𝐺𝐺0

After union(𝐵𝐵,𝐺𝐺):

Property: Any root node of rank 𝑘𝑘 has at least 2𝑘𝑘 nodes in its tree.
Property: If there are 𝑛𝑛 elements overall, there can be at most ⁄𝑛𝑛 2𝑘𝑘 nodes of rank 𝑘𝑘.
Therefore, all trees have height ≤ log𝑛𝑛.

Disjoint sets

Graphs: MST © Dept. CS, UPC 19

Property 1: Any root node of rank 𝑘𝑘 has at least 2𝑘𝑘 nodes in its tree.
Property 2: If there are 𝑛𝑛 elements overall, there can be at most ⁄𝑛𝑛 2𝑘𝑘 nodes of rank 𝑘𝑘.
Therefore, all trees have height ≤ log𝑛𝑛.

rank 𝑘𝑘 rank 𝑘𝑘

≥ 2𝑘𝑘 ≥ 2𝑘𝑘

≥ 2𝑘𝑘+1

rank 𝑘𝑘 + 1 For 𝑛𝑛 nodes, the tallest possible
tree could have rank 𝑘𝑘, such that:

𝑛𝑛 ≥ 2𝑘𝑘

Property 1: proof by induction

𝑘𝑘 ≤ log2 𝑛𝑛

Property 2:

Therefore, find(𝑥𝑥) is O(log𝑛𝑛)

Disjoint sets: path compression
• Complexity of Kruskal’s algorithm: O(|𝐸𝐸| log |𝑉𝑉|).

– Sorting edges: O 𝐸𝐸 log 𝐸𝐸 = O(|𝐸𝐸| log |𝑉𝑉|).
– Find + union (2 ⋅ |𝐸𝐸| times): O(𝐸𝐸 log 𝑉𝑉).

• How about if the edges are already sorted or sorting can
be done in linear time (weights are integer and small)?

• Path compression:

Graphs: MST © Dept. CS, UPC 20

A

B C

D E

F G

A

B C

D G

E F≡

A

B C D E F G≡

Disjoint sets: path compression

Graphs: MST © Dept. CS, UPC 21

def find(𝒙𝒙):
if 𝐱𝐱 ≠ 𝝅𝝅 𝒙𝒙 : 𝝅𝝅(𝒙𝒙)= find(𝝅𝝅 𝒙𝒙)
return 𝝅𝝅(𝒙𝒙)

𝐴𝐴3

𝐵𝐵0 𝐶𝐶1

𝐷𝐷0

𝐸𝐸2

𝐹𝐹1 𝐺𝐺1 𝐻𝐻0

𝐽𝐽0𝐼𝐼0 𝐾𝐾0

𝐴𝐴3

𝐵𝐵0 𝐶𝐶1

𝐷𝐷0

𝐸𝐸2 𝐹𝐹1

𝐺𝐺1 𝐻𝐻0 𝐽𝐽0

𝐼𝐼0

𝐾𝐾0

find(𝐼𝐼)

𝐴𝐴3

𝐵𝐵0 𝐶𝐶1

𝐷𝐷0

𝐸𝐸2 𝐹𝐹1 𝐺𝐺1

𝐻𝐻0 𝐽𝐽0

𝐼𝐼0 𝐾𝐾0 Amortized cost of find: O(1)
Kruskal’s cost: 𝑂𝑂(𝐸𝐸)
(if sorting has linear cost)

EXERCISES

Graphs: MST © Dept. CS, UPC 22

Minimum Spanning Trees
• Calculate the shortest path tree from

node A using Dijkstra’s algorithm.

• Calculate the MST using Prim’s
algorithm. Indicate the sequence of
edges added to the tree and the
evolution of the priority queue.

• Calculate the MST using Kruskal’s
algorithm. Indicate the sequence of
edges added to the tree and the
evolution of the disjoint sets. In case of
a tie between two edges, try to select
the one that is not in Prim’s tree.

Graphs: MST © Dept. CS, UPC 23

A

BC

D E F

G

H

I

K

J 10

10

10

10

12

128

5

9

13

6 8

7

36

3

7 98

2

