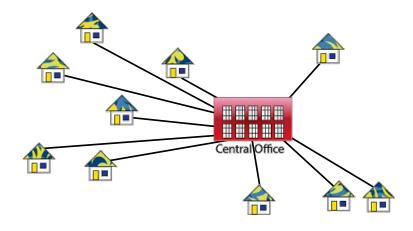
Laying a communication network

Graphs: Minimum Spanning Trees

Jordi Cortadella and Jordi Petit
Department of Computer Science



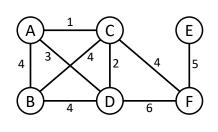
Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

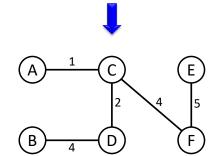
Graphs: MST © Dept. CS, UPC

Laying a communication network

Central Office

Minimum Spanning Trees





- Nodes are computers
- Edges are links
- Weights are maintenance cost
- Goal: pick a subset of edges such that
 - · the nodes are connected
 - the maintenance cost is minimum

The solution is not unique. Find another one!

Property:

An optimal solution cannot contain a cycle.

Source: https://www.javatpoint.com/applications-of-minimum-spanning-tree

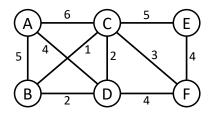
Graphs: MST © Dept. CS, UPC 3 Graphs: MST © Dept. CS, UPC

Minimum Spanning Tree

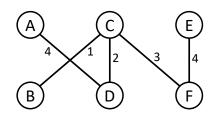
• Given un undirected graph G = (V, E) with edge weights w_e , find a tree T = (V, E'), with $E' \subseteq E$, that minimizes

weight(
$$T$$
) = $\sum_{e \in E'} w_e$.

• Greedy algorithm: repeatedly add the next lightest edge that does not produce a cycle.



Graphs: MST

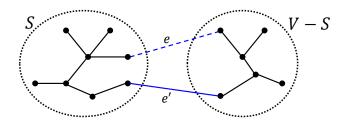


Note: We will now see that this strategy guarantees an MST.

-1 . .

The cut property

© Dept. CS, UPC



Suppose edges X are part of an MST of G=(V,E). Pick any subset of nodes S for which X does not cross between S and V-S, and let e be the lightest edge across this partition. Then $X \cup \{e\}$ is part of some MST.

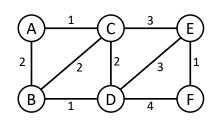
Proof (sketch): Let T be an MST and assume e is not in T. If we add e to T, a cycle will be created with another edge e' across the cut (S,V-S). We can now remove e' and obtain another tree T' with weight $(T') \leq \text{weight}(T)$. Since T is an MST, then the weights must be equal.

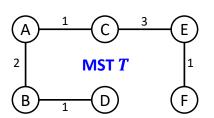
Properties of trees

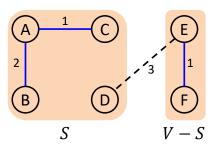
- **Definition:** A tree is an undirected graph that is connected and acyclic.
- **Property:** Any connected, undirected graph G = (V, E) has $|E| \ge |V| 1$ edges.
- **Property:** A tree on n nodes has n-1 edges.
 - Start from an empty graph. Add one edge at a time making sure that it connects two disconnected components. After having added n-1 edges, a tree has been formed.
- **Property:** Any connected, undirected graph G = (V, E) with |E| = |V| 1 is a tree.
 - It is sufficient to prove that G is acyclic. If not, we can always remove edges from cycles until the graph becomes acyclic.
- Property: Any undirected graph is a tree iff there is a unique path between any pair of nodes.
 - If there would be two paths between two nodes, the union of the paths would contain a cycle.

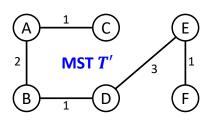
Graphs: MST © Dept. CS, UPC 6

The cut property: example







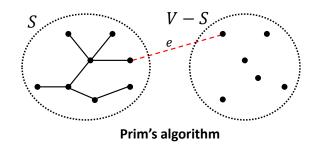


Graphs: MST

MST: two strategies

Any scheme like this works (because of the properties of trees):

```
# The set of edges of the MST
X = \{ \}
repeat |V|-1 times:
  pick a set S \subset V for which X has no edges between S and V - S
  let e \in E be the minimum-weight edge between S and V - S
  X = X \cup \{e\}
```

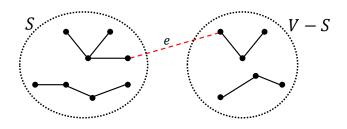


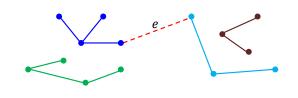
Invariant:

• A set of nodes (S) is in the tree.

Progress:

· The lightest edge with exactly one endpoint in S is added.





Graphs: MST

Kruskal's algorithm

Invariant:

 A set of trees (forest) has been constructed.

Progress:

 The lightest edge between two trees is added.

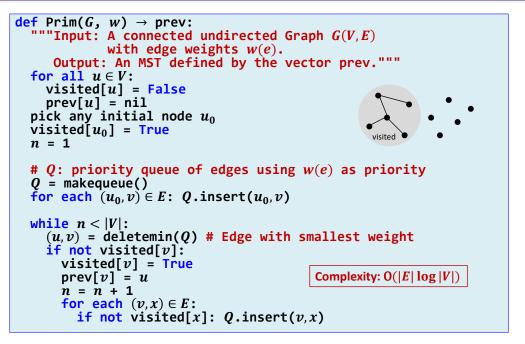
10

12

Graphs: MST

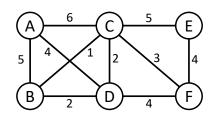
Prim's algorithm

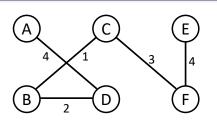
© Dept. CS, UPC



Prim's algorithm

© Dept. CS, UPC





Q :	(AD,4) (AB,5) (AC,6)
	(DB,2) (DC,2) (DF,4) (AB,5) (AC,6)
	(BC,1) (DC,2) (DF,4) (AB,5) (AC,6)
	(DC,2) (CF,3) (DF,4) (AB,5) (CE,5) (AC,6)
	(CF,3) (DF,4) (AB,5) (CE,5) (AC,6)
	(DF,4) (FE,4) (AB,5) (CE,5) (AC,6)
	(FE,4) (AB,5) (CE,5) (AC,6)

© Dept. CS, UPC Graphs: MST 11 Graphs: MST © Dept. CS, UPC

Kruskal's algorithm

Informal algorithm:

Graphs: MST

- Sort edges by weight.
- Visit edges in ascending order of weight and add them as long as they do not create a cycle.

How do we know whether a new edge will create a cycle?

```
def Kruskal(G, w) → MST:

"""Input: A connected undirected Graph G(V, E)

with edge weights w_e.

Output: An MST defined by the edges in MST."""

MST = {}

sort the edges in E by weight

for all (u, v) \in E, in ascending order of weight:

if (MST has no path connecting u and v):

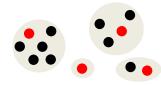
MST = MST \cup {(u, v)}
```

© Dept. CS, UPC

Kruskal's algorithm

Disjoint sets

• A data structure to store a collection of disjoint sets.

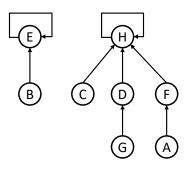


- Operations:
 - makeset(x): creates a singleton set containing just x.
 - find(x): returns the identifier of the set containing x.
 - union(x, y): merges the sets containing x and y.
- Kruskal's algorithm uses disjoint sets and calls
 - makeset: |V| times
 - find: $2 \cdot |E|$ times
 - union: |V| 1 times

Graphs: MST © Dept. CS, UPC

Disjoint sets

- The nodes are organized as a set of trees. Each tree represents a set.
- Each node has two attributes:
 - parent (π) : ancestor in the tree
 - rank: height of the subtree
- The root element is the representative for the set: its parent pointer is itself (self-loop).
- The efficiency of the operations depends on the height of the trees.



```
def makeset(x):
  \pi(x) = x
  rank(x) = 0

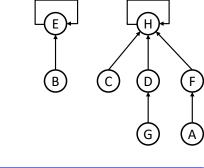
def find(x):
  while x \neq \pi(x): x = \pi(x)
  return x
```

15

14

Disjoint sets

Disjoint sets



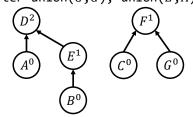
```
def makeset(x):
  \pi(x) = x
  rank(x) = 0
def find(x):
  while x \neq \pi(x): x = \pi(x)
```

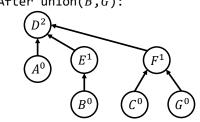
After union(A,D), union(B,E), union(C,F):

```
return x
```

After makeset(*A*),...,makeset(*G*):

After union(C,G), union(E,A): After union(B,G):





Property: Any root node of rank k has at least 2^k nodes in its tree. **Property:** If there are n elements overall, there can be at most $n/2^k$ nodes of rank k. Therefore, all trees have height $\leq \log n$.

• Complexity of Kruskal's algorithm: $O(|E| \log |V|)$.

- Sorting edges: $O(|E|\log|E|) = O(|E|\log|V|)$.

- Find + union $(2 \cdot |E| \text{ times})$: $O(|E| \log |V|)$.

© Dept. CS, UPC Graphs: MST © Dept. CS, UPC 18

Disjoint sets

Disjoint sets: path compression

How about if the edges are already sorted or sorting can

be done in linear time (weights are integer and small)?

Property 1: proof by induction

def union(x, y): $r_x = find(x)$

 $r_{y} = find(y)$

if $r_x = r_v$: return

 $\pi(r_{y}) = r_{x}$

 $\pi(r_x) = r_v$

else:

Graphs: MST

if rank $(r_x) > \text{rank}(r_v)$:

if rank (r_x) = rank (r_y) :

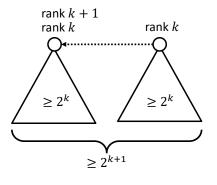
 $rank(r_v) = rank(r_v) + 1$

For n nodes, the tallest possible tree could have rank k, such that:

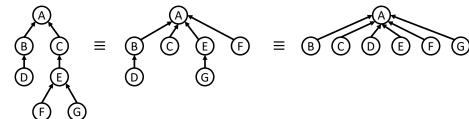
Property 2:

 $k \leq \log_2 n$

Path compression:



Therefore, all trees have height $\leq \log n$.



Therefore, find(x) is $O(\log n)$

Graphs: MST

© Dept. CS, UPC

Property 2: If there are n elements overall, there can be at most $n/2^k$ nodes of rank k.

Property 1: Any root node of rank k has at least 2^k nodes in its tree.

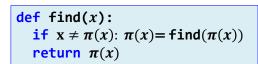
19

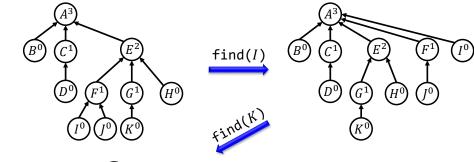
Graphs: MST

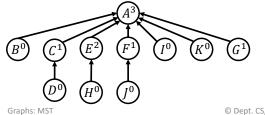
© Dept. CS, UPC

20

Disjoint sets: path compression







Amortized cost of find: O(1)Kruskal's cost: O(|E|)(if sorting has linear cost)

© Dept. CS, UPC

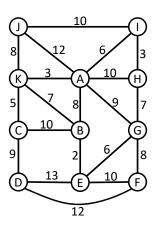
Graphs: MST

EXERCISES

© Dept. CS, UPC

22

Minimum Spanning Trees



- Calculate the shortest path tree from node A using Dijkstra's algorithm.
- Calculate the MST using Prim's algorithm. Indicate the sequence of edges added to the tree and the evolution of the priority queue.
- Calculate the MST using Kruskal's algorithm. Indicate the sequence of edges added to the tree and the evolution of the disjoint sets. In case of a tie between two edges, try to select the one that is not in Prim's tree.

Graphs: MST © Dept. CS, UPC 23